
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

COMODI: GUIDELINES FOR A COMPONENT-BASED
FRAMEWORK FOR SCIENTIFIC COMPUTING

ZSOLT I. LÁZÁR, BAZIL PÂRV, ANDREEA FANEA, JOUKE R. HERINGA,

AND SIMON W. DE LEEUW

Abstract. The present work discusses the aspects pertaining to the change

of scientific software development practices towards the paradigm of component-

based programming [1]. It summarizes the symptoms that indicate the ne-

cessity of a renewal in computational sciences. The main ingredients for the

solution are identified and a vision on how effective code sharing can affect

future scientific research is presented. Starting from the premises of today’s

scientific software development a set of requirements for the framework, com-

ponent descriptor language, component wiring and component repository are

formulated. We claim that the community rather needs a useful tool even if

of restricted use than an ultimate high-tech solution that will remain unac-

cessible to a community not willing to change overnight those programming

practices it has been accustomed to for decades.

1. Introduction

1.1. The problem. Today, most scientists can program and do it as an every-
day activity. A rich variety of hardware architectures, operating systems, software
libraries, protocols, standards, languages, etc. are in place. The scientist, as com-
puter user, trying to communicate and share “business logic” with fellow scientists
has to fight the ubiquitous incompatibilities at a day-to-day basis. A large seg-
ment of the community writes its own software tools. Consequently, several people

Received by the editors: September 2, 2004.

2000 Mathematics Subject Classification. 68U99, 68N99.
1998 CR Categories and Descriptors. D.2.12 [Software Engineering]: Interoperabil-

ity – Interface definition languages; D.2.11 [Software Engineering]: Software Architectures –

Languages, Patterns; D.2.6 [Software Engineering]: Programming Environments – Graphical

environments, Integrated environments, Interactive environments, Programmer workbench; G.4

[Mathematics and Computing]: Mathematical Software – User interfaces; J.2 [Computer

Applications]: Physical Sciences and Engineering – Aerospace, Archaeology, Astronomy, Chem-

istry, Earth and atmospheric sciences, Electronics, Engineering, Mathematics and statistics,

Physics .

91



92 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

and research groups around the globe code for the same problem without knowing
about each other. With the available source code the task is still major due to the
fact that most programs are written for one specific problem and with no reusabil-
ity considerations in mind. Scientific programs are often not properly structured
and even if so, ad hoc binding standards are followed. Even if they used the same
programming language, which is not really typical, adapting third party modules
for personal use would prove to be a lengthy endeavor.

Many theoretical publications report on results of computer simulations. Un-
less, some widely popular software is used, reproducing the simulation by interested
parties is more effort than most scientists would take.

This situation is referred to by Douglas Post as an actual crisis in computational
sciences [2]. His report analyzes the symptoms, causes and possible solutions to
this crisis. One of his conclusions is that high-performance computing should move
towards newer technologies that provide better efficiency in terms of development
efforts even on the cost of loosing some performance.

1.2. The solution. Component-based programming is one of todays’ hottest top-
ics in computer science [3]. Many view it as the holy grail of software reuse. Sharing
code would provide computational sciences with at least three major benefits:

(1) Efficiency due to enhanced reusability, diversity and availability
(2) Quality due to the strong focus of expert groups, ranking systems
(3) Reproducibility of computer experiments by the author, referees and

third party scientists

The means for achieving these goals are as follows:

(1) development environment for high-level visual programming
(2) standardized scientific component descriptor language (CDL)
(3) component developer tools facilitating the “componentization” of exist-

ing and future scientific software
(4) interactive project management and monitoring
(5) distributed component repository

Basically, a framework is needed which allows the assembling of scientific mod-
ules into a computational project depending on the services they offer. These
services are defined via their interfaces documented in an XML-based Component
Descriptor Language. These components are stored in a global component repos-
itory. Additional developer tools should facilitate adapting newly developed and
existing code to the framework.



FRAMEWORK FOR SCIENTIFIC COMPUTING 93

1.3. The benefits. Reuse oriented research would truly revolutionize computa-
tional sciences. In the component oriented future it is expected that...

• scientists program from scratch only when developing new algorithms
and domain specific models

• reuse and integrate seamlessly other’s components to support their own
research

• find other’s computational works in an instant and select from a large
repository

• share their code with others
• reproduce results of computational studies published anywhere
• double check their own results using the same or similar algorithms de-

veloped by other authors
• have better control of complex computational projects
• component-technology will fully integrate with GRID technologies
• a top quality component layer will sediment in a few years by ”natural

selection”

2. State of the art

The first concrete steps towards component-based scientific computing have
been made before the turn of the century. [4] describes a “standard for inter-
operability among high-performance scientific components”. They touch upon
most fundamental concepts of component-based programming in the context of
high-performance computing and suggest a standard that they term as “Common
Component Architecture” (CCA). Their recommendation for an interface defini-
tion language (IDL) closely follows the CORBA principles. The ideas therein are
further developed in [5]. This group, however, favors an XML-based language for
describing component interfaces. In both cases Java is chosen as the implemen-
tation language for the integration framework. Most of later works focus on the
integration of the component-based approach into the realm of distributed comput-
ing in general and grid computing in particular. Notable efforts have been made
by several member institutes of the Common Component Architecture Forum [6]
for delivering different implementations of a CCA framework [7, 8, 9]. Most of
the activity is centered around the Babel language interoperability tool [10] of the
Lawrence Livermoore National laboratory [11]. Babel uses the Scientific Interface
Definition Language (SIDL) for defining the interfaces of components implemented
in any of the programming languages encountered in scientific computing. The
palette includes C, Fortran and variants but also higher-level languages such as
Java and Python.



94 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

Alexandria [12] is meant to be the future repository for CCA compliant com-
ponents. As per now it contains no components.

Efforts of more restricted scope can be encountered in different fields of science
such as life sciences [13], chemistry [14], nuclear physics [15], to name a few.
The tremendous need in all computational sciences for sharing code is apparent if
we consider the popularity of Netlib [16]. Netlib is a collection of mathematical
software, papers, and databases with hundreds of numerical libraries available for
download. There is an enormous number of over 270 million requests that have
been made to the repository. And Netlib only includes mathematical software,
no modeling or simulation packages built over them. Unfortunately, there is no
uniform way for reusing this large variety of modules originating from different
places and being the result of independent and uncorrelated efforts.

OpenDX is a powerful, full-featured software package for the visualization of
scientific, engineering and analytical data [17]. Its open system design is built on
familiar standard interface environments. Its sophisticated data model offers great
flexibility in creating visualizations by providing hundreds of built-in specialized
functions. The user can drag and drop different data filters onto the canvas and
connect output to inputs for setting up the data flow diagram (Figure 1). OpenDX
automatically checks the compatibility of the interfaces. The functions in OpenDX
are hard-coded into the application. One can contribute with new components by
applying the prescriptions that are set for the interfaces. The new component will
become available after the recompilation of the application.

3. Scientific vs. commercial software development

In spite of the determining influence of natural sciences on information technol-
ogy, the maturing process of computer science started with the rise of interest of
the private sector. The economical factors imposed several restrictions on using
and developing software. The need for optimizing all aspects fueled studies that
were beyond the goal of natural sciences. Important aspects included development
and maintenance costs implying internal qualities such as reusability and external
qualities such as ease of use. As the necessities of science regarding computer
technologies are different from the needs of businesses and home users, their tools
and programming methodologies are also different. We can even say that though
natural sciences drive the evolution of IT they lag behind when it comes to using
mature software development methodologies. Below, we have summarized a few
of the main distinctive features of programming in natural sciences. The reader
should be aware that these statements describe trends not laws. In most cases
exceptions are available abundantly:



FRAMEWORK FOR SCIENTIFIC COMPUTING 95

Figure 1. Example of flow-based programming. Representation of a data

visualization project in Open Data eXplorer [17]

• requires scientific background of the programmer
• for a specific purpose, therefore of limited applicability
• for internal use
• does not have the constraints of commercial software development (bud-

gets, deadlines, marketing strategies)
• performance critical
• developers use low-level languages such as C and Fortran
• high-level abstractions such as OOP concepts are rare
• requires more computer resources than commercial software (CPU, stor-

age)
• lower complexity in terms of function points
• higher complexity algorithms
• less focus on reuse
• less investment in design
• requires less user interaction
• projects involve small to medium sized developer groups

Even though one can identify interdependencies between several items in the above
list it is hopeless trying to disentangle them into cause-effect sequences. Any



96 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

project that aims at changing many decades of programming traditions in com-
putational sciences has to bear in mind these differences. Otherwise, attempts to
make up the “grand unified way” will not have the proposed impact on the scien-
tific community and will be downgraded to research of purely academic interest.

4. Requirements

Let us now formulate the expectations that we set against those constituents of
a complete solution, which together will make component-based programming in
computational sciences possible.

The framework should:

(1) be portable: since one of the main goals is to reduce environment de-
pendence, a platform-independent programming is required such as Java,
Python or other interpreted language.

(2) allow for high-performance computation: the implementation language
of the framework should offer the facilities necessary for binding low
level languages such as C and Fortran. The portability of the framework
implies a higher level interpreted language. Therefore a careful design
should assure a minimum involvement of the framework during project
runtime.

(3) make component development and deployment easy
(4) allow for easy customization of user interfaces to domain specific needs
(5) be user friendly
(6) be open source

The component descriptor language should:

(1) describe both syntactically and semantically the component
(2) support the programming style of computational scientists as far as data

structures
(3) be extensible

The component wiring mechanism should:

(1) constitute a low overhead in terms of execution time
(2) require little or no glue-code writing from the developer
(3) not require such changes in the implementation or interface of compo-

nents that would make them unusable outside the framework

Certain amount of glue-code is usually inevitable. This task, however, should be
the responsibility of additional developer tools.

The repository should:

(1) be distributed



FRAMEWORK FOR SCIENTIFIC COMPUTING 97

(2) offer uniform and transparent access to every site storing components
(3) expose both direct user interfaces and transparent web service type ac-

cess points
(4) employ a comprehensive and unambiguous classification scheme of com-

ponents
(5) provide advanced search facilities
(6) provide ranking facilities of components as to popularity, user satisfac-

tion, etc.
(7) allow for easy upload and download of components

5. Approach

Present section will discuss those guidelines that have been set forth for the
COmputational MODule Integrator (COMODI) project [1]. COMODI is an in-
ternational and interdisciplinary initiative attempting to offer a viable solution to
computational sciences for moving towards the promised land of component tech-
nology. Henceforth, depending on the context, the word “COMODI” will refer
either to the project itself, comprising the participants, ideas and means, or to
the framework software with or without additional ingredients such as the com-
ponent descriptor language and developer tools. Considering the faint success
of present attempts it is apparent that the main challenges are not so much of
technical nature but rather consist in finding the solution that is most likely to
receive acceptance from the conservative community of computational scientists.
COMODI’s aim is to shape present programming practices such that they could
metamorphose into future paradigms. In the first stage, COMODI will try to
accommodate to present trends in scientific software development. This will be
followed by a new generation of components that will adapt to the most recent
paradigms.

COMODI’s first target is the scientific software developer segment. The rea-
soning behind this strategy is to build up a component repository that by its sheer
size will provide the variety and quality of components that will be appealing to
most users. Besides, due to the level of proficiency in computer related issues,
the developer segment will tolerate with more patience the less user-friendly and
buggy versions in the initial phase of COMODI and will be able to contribute with
important amount of know-how to its development.

Most present efforts to bring under the same roof the problematics of component-
based, distributed and parallel programming are in their infancy. Indeed, this
unification will most probably be ultimate solution for computational sciences.
However, the surveys made by COMODI show that even though many scientists



98 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

rely on parallel code the parallelism therein is usually transparent. Most don’t
participate in the development of parallel code and are aware of grid computing
to the extent they are aware of quantum computing. Therefore we claim that ef-
fort should be invested into developing a framework, CDL and repository without
mixing it with the paradigms of distributed computing.

Where does COMODI want to be better?

• short learning curve for scientific component developers
• no constructs of high-level abstraction, no new languages required, leav-

ing that to a later stage
• bottom-up construction of the framework
• automatic glue-code generation
• zero source code line change for adapting scientific routines to COMODI

5.1. Structure of the framework. In order to make COMODI itself easily ex-
tensible it has to be component-based. This requires the separation of the frame-
work into a core layer and several other modules built on the top of it. It is possible
to enforce a very general view on this component architecture and deal uniformly
with computational components and components that are intimately related to
the framework itself. In this approach, anything apart from the core is a compo-
nent, be it a simple numerical component or a heavyweight GUI. However, this
uniformity, while simplifying the integration of components vital to the proper
functioning of COMODI, will hit back by compromising the postulated simplicity
of wiring computational components by users. Even though the customizability
of COMODI to the needs of different user groups is a priority we can build upon
the premise that the group of those that will contribute to COMODI will be a
fraction of those that will use it or contribute to the repository. Therefore it is
sensible not to sacrifice the support of user and component developer activities to
those related to the development of COMODI.

COMODI will expose a core level API allowing the independent development of
satellite modules such as GUIs and batch system handlers. The component archi-
tecture of the framework software itself would permit the contribution of several
parties to the development of COMODI. More importantly, it will diversify the
user experience allowing such “packagings” that best fit the purposes of a user
group of a particular profile or closely resemble such visual development environ-
ments that this group is accustomed to, such as LabView, Simulink or OpenDX.

Under this cover COMODI, the CDL and the wiring mechanisms will be able
to develop without exposing the users to major interface functionality disruptures
between versions.



FRAMEWORK FOR SCIENTIFIC COMPUTING 99

5.2. Granularity. There is no consensus as to what exactly a component and a
component’s port is [3]. This is due to the differences between the various lan-
guages concerning structuring code and passing data between processing units.
In our case, a component can be viewed from the perspective of the computa-
tional project wherein the constituting elements are functions and procedures. If
regarded from the point of view of the data that the project operates with, com-
ponents should be objects in the sense of the OOP terminology. And finally, it is
common to use the word “component” to a bundle of software entities, interfaces,
classes, data, deployed as a unit. In other words, the physical properties of the
software define the boundaries of a component.

At a lowest granularity level, where functions can be considered as components,
each argument in the function signature can be considered a port. At a level of a
class method, calls stand for the elementary access point while at a physical level
deployment, packages can be considered the unit of assembly and whole interfaces
represent the entry points. The table below is a summary of the different levels of
granularity.

Component Port

Function argument of the signature
Class function signature
Package interface/pure abstract class

COMODI works at the lowest level using functions as atomic components. Even
though it is meant to be a support for low-level programming, higher levels can
also be emulated. Alternatively, COMODI can come with higher level APIs built
over the base API. The higher level API’s can be used for components that obey
the rules of OOP.

5.3. Component wiring. In order to satisfy the requirement of low overhead in
performance it is necessary that the framework does not intermediate the commu-
nication between components. Instead, it will wire up the connections by setting
direct component-to-component references [10]. Therefore the components will
have to comply with certain rules as to the interfaces they expose. These rules,
however, should be set such that the guidelines formulated in section 4 are closely
followed. [18] discusses in more detail several alternatives.

5.4. Component Descriptor Language. The problem of the CDL is the alpha
and omega of any component-based framework. It should inspire from existing
technologies such as CORBA, but at the dawn of grid computing web services
are the most likely to set the standards. Given the many aspects that ought to
be considered, [19], present paper will not even try to go deep into this topic.



100 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

COMODI’s CDL is XML-based, even though a CDL file can also have an SIDL
type of representation that is more appealing to the technically trained eye [10].
The CDL’s complexity is expected to grow together with the user community and
the number of application areas.

6. Conclusions and outlook

The tasks to be carried out for achieving COMODI’s objectives of efficient code
sharing are major. It will clearly need a large user and component developer base
that will bring into motion the component repository. This goal can be achieved
only with a sufficiently low accommodation effort threshold. COMODI is an at-
tempt to minimize this threshold on the cost of temporarily sacrificing generality.
As such, it is not meant to be long-lived in present form. However, higher-level
constructs, when the times are ripe, can be built over, hiding such obscure de-
tails that in COMODI’s initial form are required for assisting a community with
deep roots in “performance mining” and low-level programming. The benefits of
code sharing can put scientific research on a ground that challenges science-fiction.
Nevertheless, the islands of isolated feeble initiatives should coalesce into a general
awareness and coherent world-wide effort. Otherwise, computational sciences are
doomed to spend at least another decade in the past.

7. Acknowledgments

This research is supported by the Netherland’s Organization for Scientific Re-
search (NWO) with grant no. 048.031.003 and by the National Research Council
of Romania (CNCSIS) with grant no. 37/2004.

References

[1] COMODI homepage, http://phys.ubbcluj.ro/comodi/

[2] D. Post, The Coming Crisis in Computational Science, Proceedings of the IEEE Interna-

tional Conference on High Performance Computer Architecture: Workshop on Productivity

and Performance in High-End Computing, Madrid, Spain, February 14, 2004

[3] C. Szyperski, D. Gruntz and S. Murer, Component Software; Beyond Object Oriented Pro-

gramming, 2nd edition, Addison-Wesley (2002)

[4] R. Armstrong, Dennis Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker and,

B. Smolinski, Toward a Common Component Architecture for High-Performance Scientific

Computing, Proceedings of the 8th IEEE International Symposium on High-Performance

Scientific Distributed Computing, August (1999)

[5] R. Bramley, K. Chiu, S. Diwan and D. Gannon, A Component Based Ser-

vices Architecture for Building Distributed Applications, Ninth IEEE International

Symposium on High Performance Distributed Computing, August 01-04, 2000

(http://www.extreme.indiana.edu/ccat/papers/hpdc2000.pdf)



FRAMEWORK FOR SCIENTIFIC COMPUTING 101

[6] Common Component Architecture (CCA) Forum homepage, http://www.cca-forum.org

[7] CCAFE homepage, http://www.cca-forum.org/∼baallan/ccafe

[8] SCIRun homepage, http://www.sci.utah.edu

[9] XCAT homepage, http://www.extreme.indiana.edu/xcat

[10] Babel homepage, http://www.llnl.gov/CASC/components/babel.html

[11] Component Architecture for Scientific Computing homepage,

http://www.llnl.gov/CASC/components/

[12] Alexandria component repository homepage,

http://www.llnl.gov/CASC/components/alexandria.html

[13] IBM Life Sciences Framework homepage,

http://www-306.ibm.com/software/info/university/products/lifesciences/framework/

[14] Octet Molecular Informatics Framework homepage, http://octet.sourceforge.net/

[15] ROOT homepage, http://root.cern.ch/

[16] Netlib homepage, http://www.netlib.org/

[17] Open Data Explorer homepage, http://www.opendx.org/

[18] Zs.I. Lázár, B. Pârv, COMODI: Component Wiring in a Framework for Scientific Comput-

ing, Studia Universitatis Babes-Bolyai, Series Informatica 49 (2), 2004, pp. 103–110

[19] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, J.

Darlington, Meaning and Behaviour in Grid Oriented Components, Proceedings

of the Third International Workshop on Grid Computing, Springer-Verlag (2002)

(www.lesc.ic.ac.uk/iceni/pdf/Grid2002.pdf)

Department of Theoretical and Computational Physics, Faculty of Physics, Babeş-

Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-Napoca, Romania

E-mail address: zlazar@phys.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-

puter Science, Babeş-Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-

Napoca, Romania

E-mail address: bparv@cs.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-

puter Science, Babeş-Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-

Napoca, Romania

E-mail address: afanea@cs.ubbcluj.ro

Physical Chemistry & Molecular Thermodynamics, DelftChemTech, Technical Uni-

versity of Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

E-mail address: J.R.Heringa@tnw.tudelft.nl

Physical Chemistry & Molecular Thermodynamics, DelftChemTech, Technical Uni-

versity of Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

E-mail address: S.W.deLeeuw@tnw.tudelft.nl


