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Abstract. Since fractal image compression is computationally very expen-

sive, some researchers tried to parallelize the encoding algorithm. Because

this algorithm is applied independently for some image blocks, fractal im-

age compression implicitly encompasses parallelism. The quadtree-based

compression proceeds recursively and terminates when the previously fixed

threshold remains unexceeded, therefore one cannot be able to calculate and

store the whole domain pool for classification. This, however, can result

some idle processors during the encoding, which is undesirable. In this paper

a parallel implementation devoid of classification will be presented, keeping

the number of idle processors at minimal.

1. Introduction

Belonging to the class of lossy data compressors, fractal image compression is
based on self-similarity in real-world images, where ”an image is modeled as the
unique fixed point of a contractive operator on the space of images” [6]. Barnsley
was who discovered and proved the most important theorem in 1985, namely the
Collage Theorem [1, pp. 94–95], which serves as a basis for the fractal coding
of images. Jacquin wrote down first the famous algorithm of fractal image com-
pression, based on partitioned iterated function systems (PIFS). The algorithm
partitions the image into smaller independent (range and domain) blocks, where
for every range block the best matching domain block is needed to be found. The
long search time makes the encoding problematic. Besides high compression ratios
fractal image compression provides resolution independent image description, that
is the reconstructed image can be zoomed-in without pixelisation.
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The main drawback of the proposed quadtree-based fractal image compressions
on MIMD (Multiple Instruction stream and Single Data stream) architectures is
that increasing the number of processors, after a while the gain from adding a new
processor is almost zero. In this paper we present a simple algorithm for MIMD
architectures trying to maximize processor utilization during the encoding phase.

The paper is organized in the following way: in Section 2 we present the proce-
dure of fractal image compression with quadtrees. Details about the complexity
of fractal encoding of images can be found in Section 3. In Section 4 we present
some parallel implementations of fractal coding systems on MIMD architectures.
In Section 5 the proposed parallel quadtree-based fractal image compression algo-
rithm is presented in details. The test results and the conclusions can be found in
Section 6.

2. Fractal Image Compression with Quadtrees

In fractal image compression the image is modeled as the unique fixed point of
the contractive operator

W (·) =
N⋃

n=1

wn(·),

where wn, n = 1, 2, . . . , N are contraction mappings, whose set is called a par-
titioned iterated function system (PIFS). The well known copying machine is an
informal denomination of the mathematical structure called iterated function sys-
tem (IFS). The single difference between IFS and PIFS is that the domains of
the member functions of a PIFS are subsets of the plane on which the (P)IFS
is defined. These structures simplify the fractal coding of not really self-similar
sets. The domains of the transformations are called domain blocks (Di), while the
ranges are called range blocks (Ri), and we can write it in the following way:

wi : Di → Ri, i = 1, 2, . . . , N.

Let T be an arbitrary grayscale image, that is T : I2 → I, where I2 =
{(x, y) | x, y ∈ [0, 1]} and I = {x | x ∈ [0, 1]}. However, this space can be
extended to arbitrary size, only in theory we work with these domains and ranges
for the sake of simplicity. Then we seek such a contractive operator (a set of affine
transformations) that

T = W (T ) =
N⋃

n=1

wi(Di).

To measure the distance between two blocks we need to find a feasible metric.
In theory the supremum metric is used, which is easy to work with, but not so
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advantageous in practice, because it takes only one point from the image, conse-
quently is not relevant for the whole image or image block. In practice the RMS
(Root-Mean-Square) metric is used,

dRMS(T, T ′) =

√√√√ 1
n

∑

(x,y)∈I2

(T (x, y)− T ′(x, y))2, ∀T, T ′ ∈ τ,

where τ = {T : I2 → I} denotes the space of digital images. The metric dsup is
equivalent with metric dRMS .

To guarantee the z-contractivity of the w1, . . . , wn three-dimensional transfor-
mations [2, pp. 12–13], in case of grayscale images we can use transformations of
the form

wi




x

y

z


 =




ai bi 0
ci di 0
0 0 si







x

y

z


 +




ei

fi

oi


 ,

where si controls the contrast and oi controls the brightness of the transformation
[4, pp. 11, 51]. The encoding algorithm consists of finding for all the range blocks
(resulting from the used partition scheme – rectangular, quadtree, horizontal-
vertical, Delaunay-triangular, etc.) such a domain block that the distance between
them be minimal or at least smaller than a predetermined threshold. Usually the
size of the domain blocks is chosen to be greater than that of the range blocks;
comparison is realized by subsampling.

If a1, a2, . . . , an denote the pixel intensities from the set Di and b1, b2, . . . , bn

from the set Ri (|Di| = |Ri| = n, i.e. their cardinal numbers are equal), then we
search for s, o so that the following expression be minimal:

R =
n∑

i=1

[(s · ai + o)− bi]
2
.

The optimal values of the contrast scaling (s) and brightness (luminance) shift (o)
are calculated from the partial derivatives of the above expression. That is,

o =
1
n

(
n∑

i=1

bi − s

n∑

i=1

ai

)
, and s =

n
∑n

i=1 aibi −
∑n

i=1 ai

∑n
i=1 bi

n
∑n

i=1 a2
i − (

∑n
i=1 ai)

2 .

Substituting these expressions into the initial formula we get

R =
1
n

[
n∑

i=1

b2
i + s

(
s

n∑

i=1

a2
i − 2

n∑

i=1

aibi + 2o

n∑

i=1

ai

)
+ o

(
no− 2

n∑

i=1

bi

)]
.

The distance between two blocks is given by
√

R.
The fractal image encoding algorithm can be summarized as follows:
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Let us determine a partitition for image T, made up of

range blocks Ri, such that T =
⋃

Ri

Fix a t tolerance level

For all Ri do:

Let us find the domain block Di for which d(Ri, Di) is

minimal or d(Ri, Di) < t

Store the transformation wi and the coordinates of Di

End For

The quadtree partition is the most popular scheme in the fractal coding literature.
It offers an adaptive partition, which gives better approximation than the fixed
size. The partition process is not separated from the encoding step. Its name comes
from the modeling (Fig. 1). The root of the tree is the whole, unpartitioned image.
At the first level the image is divided into four equal parts. For all the ranges we
scan the image (domain pool) for a domain block (usually twice the range size),
which is very close, similar to the current range block. If the distance between the
range and the transformed domain block is below a preselected treshold, than we
store the domain coordinates and the transformation on the pixel values. If not,
we divide the current range block into four equal quadrants, which means adding
four childnodes to this range block in the tree representation. Then for each of
the ranges the previous process is repeated.

The tree we obtain is called a quadtree, because each node of the tree can have

Figure 1. Quadtree decomposition.

either four subnodes or not any.
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3. About the Complexity of Fractal Coding

Consider an n× n pixel image being encoded with fixed size partition and full-
search (full-search means that no tolerance level is used). Let the size of a range
block be nr × nr and the size of a domain block nd × nd (the size of the domain
block is often chosen to be twice the range size, that is nd = 2 · nr). It is easy
to calculate that the number of ranges is bn/nrc2 and the number of domains
(n− nd + 1)2. Then the complexity of the encoding procedure will be

nr of isometries · bn/nrc2 · (n− nd + 1)2 =
nr of isometries · O(n2) · O(n2) = O(n4)

To illustrate how computationally expensive the encoding step is, let n = 256,
nr = 8, nd = 16. Then, to encode this image 8 · 1024 · 58 081 = 475 799 552
comparison steps are needed and, as we have seen, one domain-range comparison
is quite computationally expensive.

Ruhl and Hartenstein proved that finding an optimal fractal code is an NP-hard
problem. They proved this by reducing the MAXCUT problem – which is NP-
hard – to FRACCODE. The proof and the accurate definition of these decision
problems can be found in [9]. In this paper they also proved that collage coding
is not a ρ-approximating algorithm. That is, for every ρ ∈ R+ exists a signal (i.e.
image) Γ and a transformation g ∈ π (π is the set of possible fractal codes for the
signal Γ) such that

‖Ωf − Γ‖2 > ρ · ‖Ωg − Γ‖2,
where f is the transformation that gives the best (minimal) collage error, ‖Γ −
f(Γ)‖; Ωx is the attractor of the fractal code x.

4. Parallel MIMD Fractal Image Compression

There are two main algorithm classes for fractal image compression on MIMD
architectures. The first class includes those algorithms which stores the whole
image on each PE (Processing Element), namely when all the PEs have enough
memory to have a local copy of the image. Thus each PE has the whole domain
pool at its disposal. To each PE a subset of the range blocks is assigned, which
can be made statically or dynamically. The second class includes those algorithms
which distributes the domain pool among PEs, due either to memory lack or to
other reasons. In [5] a more detailed class decomposition can be found.

Jackson and Tinney [7, 8] reported three generic schemes for parallel fractal
image coding. In the following subsections these schemes will be presented.
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4.1. Static Load Allocation. Static load allocation means that the assignment
of the tasks, jobs is made at the beginning and no other modifications can be
made afterwards. Due to the static property of this model, only fixed size parti-
tion schemes can be used, or those adaptive techniques, where the partition can
be realized before, independently of the encoding process.

The most simpler solution is to distribute the range blocks evenly across the
PEs. If we have np processors, then the work needed to be done by a PE is the
1

np
th of the work done in the sequential case. The speedup can be calculated easily

here, that is the speedup will be np. But the experimental results show that rarely
will the algorithm achieve this speedup, because for a range block a matching can
be found quickly, while for another range block to find a good matching requires
to scan almost the whole domain pool. If we had known something about the
complexity of the range blocks (a range block is said to be complex if it is difficult
to find a match for), then the ranges could have been distributed evenly across the
PEs, according to their complexity. That is, a slave processor gets a small number
of range blocks to be processed if they are complex, while another PE receives a
larger number of simpler range blocks.

M. Chady [3] mentions other two factors which can cause the speedup to fall
below the expected value. If we use a classification scheme, then the order of
the classes is very important; the common classes should be placed before the
uncommon ones, if not, the comparison process to classify a range block will be
slowed down. Although if we talk about classification schemes, one cannot realize
such a classification which provides equal comparison steps for each range block
to classify, except if classification is done in parallel, but this requires as many idle
(free) processors as many classes we have.
Chady mentions another problem which could slow down the encoding in case
of quadtree partition scheme, but of course quadtree partition cannot be applied
within static load allocation, because one can never predict how many range blocks
will be finally and where they will be.

For the reasons mentioned above, this solution cannot guarantee uniform work-
load distribution.

4.2. Dynamic Load Allocation. Dynamic load allocation is often called load
balancing. Load balancing means distributing the tasks evenly through the proces-
sors so that no processing element is overloaded. Load balancing technique is used
especially when it is difficult to predict the number of tasks or the complexity of
a task (time needed to perform the task).

The following scheme can be used as for fixed size partitions as for adaptive
partition schemes like using quadtrees. Jackson defines this method for fixed size
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partitions in [8]. In dynamic load allocation there is a master or host processor
which distributes the tasks among the other (slave) processors (Fig. 2). The
master has two queues:

• queue of tasks (range blocks, waiting to be processed)
• queue of slaves (idle processors).

Using fixed size partitions the user can determine the so called package size, i.e.
the size of individual assignments allocated by the master by specifying the number
of the range blocks per allocation. The master makes the assignments, assigns a
task to a slave until there are no more idle slave processors or range blocks to be
processed. As a task is assigned to a slave, both the task and the slave is removed
from their queues. On each return the master assigns a new task to the PE which
returned the result.
Using quadtree partition scheme the differences are very small. The slave needs
also to return a value besides the other parameters, which tells the master if a
good matching was found or not. If there was a matching found and if the queue
of tasks is empty, then the slave is placed back into the queue and the result is
stored. If a matching was found and the queue of tasks is not empty, then a new
task is assigned to the slave. If there was not found any suitable match, then the
master divides the returned range block into four equal subsquares and places back
both the range blocks and the slave into the corresponding queues and assigns a
task to a slave until one of the queues becomes empty.

4.3. Dynamic Allocation with Circulating Pipeline Processing. In this
configuration the slave processors communicate in a circulating pipeline fashion
(Fig. 2). The domain pool is distributed among the slave processors. Like in the
previous scheme the master maintains two queues. The assignments are transmit-
ted from the master PE to idle slave PEs. When a task enters the pipeline enters

P0

P1 P2 Pn-1...

queue of tasks

queue of slaves

P0

P1 P2 Pn-1...

queue of tasks

queue of slaves

Figure 2. The structure of the PEs in dynamic load allocation
and circulating pipeline schemes.

with a tag in which the number of the entering PE is stored. A range block will
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circulate in the pipeline until either a good match is found or all the pipeline nodes
have been visited. The tag carrying the number of the entering node is used to
check whether the task have visited all the PEs in the pipeline.

This configuration can be used both for fixed size and adaptive partition
schemes.

5. Parallel Fractal Image Compression with Maximal Processor

Utilization

Using classification schemes in quadtree-based fractal image compression al-
gorithms on MIMD computers may degrade the performance of the encoding.
According to Chady [3] the encoding proceeds in phases because the domain pool
needs to be calculated for classification, the size of which grows exponentially as
we proceed down in the quadtree. Therefore one cannot store the whole domain
pool for a quadtree-partitioned image, but for example for one level only, which
incidentally gives a good order for storing the parameters. However, there will be
a certain period of time when many processors will be idle, since finding a good
matching for a more complex range block may require much more computation,
while the other processors have to wait for this PE until it terminates searching
to proceed to the next quadtree level.
Avoiding classification the utilization of the processors can be increased. In this
part we present this algorithm, the main idea being that the assignments are made
immediately when new tasks arrive to the master PE. Besides this two recursive
algorithms will be given for storing the partition efficiently.

The master uses a temporary file, where the results returned by the slave
processes are stored. This is needed, because we want to save some space in the
final, compressed file. The master sends the jobs to the slaves, but it is unknown
which one will finish sooner, so if we want to save some space with storing no do-
main coordinates, first we need some space to store the temporary data (instead of
using files one can use for example binary trees). When the master divides a range
block, always assigns a unique string to the blocks, according to the position of it.
For example the string 114 uniquely determines the range block with size n

4 × n
4

(if the image is of size n × n) which is the lower-right quadrant of the upper-left
quadrant of the upper-left quadrant of the image (see Fig. 3 and 4).

The scheme of the algorithms are presented hereinafter.

Master:

Create the queues task and slave

Read the image parameters (size)
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1 2

3 4

Figure 3. The numbering of the quadrants.

Put the four initial quadrants into task

Put the processor IDs into slave

nr of ranges := 4

While task 6= ∅ and slave 6= ∅ do:

Get the first task and the first free slave

Send the task to the slave

End While

While nr of ranges6=0 do:

Block until receive the parameters from a slave

Put the slave back to slave

If a good matching was found, then:

nr of ranges := nr of ranges-1

Insert the returned parameters into the temporary

file with unique string tag

Else

Divide the range block into four quadrants

Put them into task

nr of ranges := nr of ranges+4

End If

While task 6= ∅ and slave 6= ∅ do:

Get the first task and the first free slave

Send the task to the slave

End While

If nr of ranges = 0, then:

Send to each process the terminate-message

Sort the temporary file after the unique string

tag (this can be made in parallel)

Write the image/compression parameters to the

final file
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Write the partition table to the file

Copy the needed transformation parameters from the

temporary file to the final one

End If

End While

Slaves:

Read the image data

While TRUE do:

Block until receive some task

If the terminate-message was received, then:

break

End If

Search for a matching domain block

Send to the master process the obtained parameters from

the search

End While

After the slave processors had been finished their work (they have got the
terminate-message from the master), the results are stored in the temporary file
or structure. A record contains the range coordinates, the domain coordinates
and the parameters of the pixel intensity transformation (s, o). Besides these, all
of the records (range blocks) have a unique string, after which the data can be
sorted. Then we need a so called binary partition table, based on which we will
write a recursive function which will draw the decompressed image in the decoder.
In this case we don’t have to store the coordinates of the range blocks, and thus
we can save space.
Suppose that we have the following simple partition represented by strings

111 112 113 114 12 13 14 2 3 4.

Figure 4. Visualization of the example.
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Then the corresponding binary partition will be

(1(1(0000)000)000).

This can be constructed by the following recursive algorithm.

Partition writing algorithm:

procedure write partition(length)

Begin

For i=1, i<=4 do:

if |buf.ustring| >length, then:

write(1)

write partition(length+1)

else write(0)

if i<4, then read(buf)

End For

End

call: read(buf); write partition(1)

In the decoder (viewer) a drawing function is needed, which visualizes
the decoded picture calling the true drawing function.

Decompression algorithm based on the binary quadtree data:

procedure draw(x,y,rsize)

Begin

read(buf)

If buf=1 then draw(x,y,rsize/2)

Else paint(x,y,rsize)

read(buf)

If buf=1 then draw(x+rsize,y,rsize/2)

Else paint(x+rsize,y,rsize)

read(buf)

If buf=1 then draw(x,y+rsize,rsize/2)

Else paint(x,y+rsize,rsize)

read(buf)

If buf=1 then draw(x+rsize,y+rsize,rsize/2)

Else paint(x+rsize,y+rsize,rsize)

End
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call: draw(0,0,squaresize/2)

In the above algorithm the read function reads a bit from the binary par-
tition into the variable buf. The function paint realizes the drawing of a range
block. The variable rsize contains the vertical (horizontal) height (width) of the
actual range block. The working of the function is simple: if we read 0 from the
partition table we draw the corresponding range block, if the bit we have read
was 1, then we call the function recursively with rsize/2. The range coordinates
we call with depend on where the value 1 was read.

6. Test Results and Conclusions

The application was written in C/C++ under IRIX64 on the SGI Origin 3800
supercomputer (shared memory MIMD architecture with 128 R12000 400 MHz
processors) situated at the Johannes Kepler Universität in Linz, Austria.

The tests were performed for two different pictures, which are not so relevant
to show here, just to mention that the first one is a real-world image, while the
second one is artificial. Although the results obtained are quite similar, we will
present them separately. Moreover the test results were rather similar to those
obtained using classification.

For measuring execution time and processor utilization we used the timex

command under the IRIX64 operation system. This command can be parame-
trized to show the execution time for the ”whole command” and among other
things to show the execution time and the hog factor for each process(or). The
hog factor gives the processor utilization – a real number between 0 and 1; it is
calculated using the formula (total CPU time)/(elapsed time).

The plots (Fig. 5 and 6) were created using Mathematica. At the x-coordinate
x = 2 we see the speedup (which is 1) and the processor utilization (which should
be 1) of the sequential case, because there always have to be a master processor
due to the used configuration.

In this paper we outlined the method of fractal image compression and the
adaptive quadtree partition scheme. We discussed and analyzed the three main
parallel distribution scheme applied for fractal encoding. The algorithm given in
Section 5 avoids classification, but uses temporary data structure for efficient stor-
age in the final, compressed file. We also gave an algorithm for the construction of
the binary partition table. The results obtained show almost linear speedup up to
a certain number of processors, depending on the complexity and size of the image
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Figure 5. The speedup and average processor utilization results
for the first image.
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Figure 6. The speedup and average processor utilization results
for the second image.

being encoded. Although the implemented algorithm performed quite efficient, a
better parallelization would be needed to be worth using such an architecture.
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Faculty of Mathematics and Computer Science, Cluj-Napoca, 2004.

[3] M. Chady, Application of the Bulk Synchronous Parallel Model in Fractal Im-

age Compression, School of Computer Science, University of Birmingham,

http://citeseer.ist.psu.edu/255267.html.

[4] Y. Fisher (ed.), Fractal Image Compression - Theory and Application, Springer-Verlag, New

York, 1996.

[5] J. Hämmerle, A. Uhl, Parallel Algorithms for Fractal Image Coding on MIMD Architec-

tures, in Proceedings of the First International Conference on Visual Information Systems

(Visual’96), Melbourne, February 1996, pp. 182–191.

[6] H. Hartenstein, M. Ruhl, D. Saupe, Region-Based Fractal Image Compression, IEEE Trans.

on Image Process., Vol. 9, No. 7 (2000), pp. 1171–1184.
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