
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 1, 2004

RMI VERSUS CORBA: A MESSAGE TRANSFER SPEED
COMPARISON

FLORIAN MIRCEA BOIAN AND RAREŞ FLORIN BOIAN

Abstract. RMI (Remote Method Invocation) [5][1] and CORBA (Common
Object Request Broker Architecture) [9][1] are two technologies for commu-
nicating between objects distributed across a network. The use of distributed
objects is an attractive paradigm for designing distributed applications be-
cause of the simple abstraction layer that hides the network communication
details. This article presents the results of tests that compared the speed
of the message transfer between applications using these technologies. Five
of the various implementations available for RMI and CORBA have been
selected for the purpose of these tests. The interoperability between these
implementations is also discussed.

1. Introduction

Distributed applications are very common in today’s world. Every serious busi-
ness has a web site that besides containing static information often provides au-
tomatically generated pages. Intranet applications within the domain of the same
company usually provide direct communication between desktop applications and
the server. The very popular file sharing P2P systems have to bring together com-
puters from all over the world. In such environments, a distributed application has
to be ready to work on various platforms (Intel, SPARC, Alpha, etc.) and oper-
ating systems (Windows, Solaris, Linux, etc.). More than that, such applications
have to interface with legacy systems written in various programming languages.
Although socket communication simplifies the communication in heterogeneous
environments, the complexity of the communication protocols is ever increasing.

In 1989, the Object management Group (OMG) released the first specification
of CORBA [9][1], a standard that allowed applications distributed in heterogeneous
environments to exchange objects. The design made transparent to the developer
the platforms on which the communicating applications were running as well as
the programming language in which they were implemented.

Approximately at the same time, Microsoft created a similar product called
Distributed Object Model (DOM) implemented in C++. The main restriction
brought by DOM was the lack of implementations on non-Microsoft platforms,
which made it unsuitable for heterogeneous network environments running other
systems than Windows.

After the Java programming language was widely adopted as a programming
language of choice, Sun Microsystems introduced in 1995 the Remote Method
Invocation (RMI) [5][1] technology. RMI allowed Java objects owned by different

Received by the editors: 1/10/2004.

83



84 FLORIAN MIRCEA BOIAN AND RAREŞ FLORIN BOIAN

applications to call each other’s methods and receive back the results of the process.
The RMI benefited from Java’s platform independence and portability, but did
not adhere to the CORBA standard, thus it did not provide means to connect
to legacy systems implemented in languages other than Java. The initial RMI
implementation relied on URL naming to access remote objects. The Java Naming
and Directory Service (JNDI) [2][8] brought to RMI a flexible and logical modality
of naming services, beside the existing direct addressing approach [2][9].

Besides RMI, Sun Co. packaged with the release of Java 2, a native implementa-
tion of the CORBA standard, named Java IDL. With a few exceptions concerning
internationalization [10], the Java IDL implementaion instrumented the Java dis-
tribution with full capabilities to communicate with system implemented in other
programming languages.

To close the gap between the two supported standards (RMI and CORBA) and
to bring the RMI ease of use into cross-language programming, Sun Co. released
the RMI-IIOP solution. Using RMI-IIOP, RMI servers can communicate with
CORBA clients implemented in any language, by respecting to a few restrictions
[11]. The RMI-IIOP is basically built on top of Java IDL the rmic compiler (given
the –iiop command line option) being able to generate IIOP stubs, ties and IDL.

Beside the four Java-based technologies mentioned above, the free omniORB [4]
C++ implementation of CORBA was used to test the interoperability of CORBA
and the performance difference among different implementation languages.

Choosing between using CORBA and using RMI has been a problem ever since
Sun Co. decided to support both these competing technologies. Both options
have advantages and disadvantges related to the ease of use, flexibility and level
of integration with the Java language [12]. A study of their inter-communication
performance may help taking a decisionin this matter.

2. Experimental setup

The five technologies used in this experiment are: classical RMI, classical RMI
using JNDI as name service, RMI with IIOP, Java IDL and omniORB. For per-
formance measurement purposes a simple Echo client-server application was de-
veloped. The clients send strings to the server, and the server objects transform
the message to upper case letters and prefix it with the server request processing
time measured in milliseconds . The resulting string is returned to the client.
The same program was implemented for all five technologies. Figure 1 shows the
communication diagram of the experimental setup.

Each of the five servers creates its context and then creates an EchoImpl object
specific to its implementation, as seen in Figure 1. Each object is then regis-
tered (bind) to a name service. The RMI and RMI over JNDI use the standard
rmiregistry name service. The remaining three implementations use tnameserv as
name service, which is a default name service provided with the JavaIDL package.
The omniORB implementation offers its own name service implementation (omn-
iNames) but it can only be used by omniORB applications. After the EchoImpl
object is registered, the servers stay idle waiting for requests.

The four Java clients are all implemented as standalone applications. The
omniORB client is implemented as a WIN32 console application. Each program
is given on the command line the name of the remote object to invoke and the
string to send. Each client sends the same message a predefined number of times
to the server, records timing information and then stops. The time is measured



RMI VERSUS CORBA: A MESSAGE TRANSFER SPEED COMPARISON 85

Figure 1. Architecture of the experiment

around the remote object invocation. For accuracy, the server-side processing time
returned with the response is subtracted from the total time elapsed during the call.
This approach eliminates the program startup time from the measured time and
gives a more accurate performance measurement smoothing out inherent delays
caused by the operating system by averaging across all the readings. Neither the
clients, nor the servers write anything to the standard output (console) to avoid
affecting the communication time measurement. In addition to measuring the
performance of the remote method calls, the time necessary for naming lookups
were also measured. The same multiple iteration approach was used as in the case
of the remote invocations.

The tests were executed on an AMD Athlon 1.4 MHz computer running Win-
dows 2000 Professional. To eliminate any delays caused by network traffic, the
servers and the clients resided on the same machine. The servers were started and
continued to function while the clients were executing one at a time.

3. Implementation

The interface necessary to implement the remote objects invoked by the client
applications is shown in the table below. Two implementations are necessary, one
using IDL for the CORBA technologies and another one using Java for the pure
RMII applications.



86 FLORIAN MIRCEA BOIAN AND RAREŞ FLORIN BOIAN

The IDL and Java interface implementations are very similar. Both define an
echoString method that receives and input parameter of type string and returns a
result of type string.

A generic Java implementation of the server object is presented below. The
implementation differences between the four Java technologies consist only in the
class declaration, namely in class extended and the interfaces that are imple-
mented. The values of <EXTENDS> and <IMPLEMENTS> for each of the four
Java based technologies are given in the table following the source code.

Similar to Java, the C++ omniORB implementation is presented below.

4. Interoperability between the tested technologies

There are twenty-five possible ways to select a client and a server implementa-
tion from the five chosen technologies, but not all of them are interoperable. The
ten combinations that are compatible with each other are presented in the table
below.

As implementations of the CORBA standard, Java IDL, omniORB and RMI-
IIOP are expected to be fully compatible to each other. Indeed, the first two
technologies can be used on either the server or the client end of the application.
However, their interaction with RMI-IIOP requires additional steps.

The communication between RMI-IIOP and Java IDL is conditioned by having
access to the other end’s technology stub. In other words, the variable CLASS-
PATH in the client’s environment has to contain the class stub of the server object,
and reverse.



RMI VERSUS CORBA: A MESSAGE TRANSFER SPEED COMPARISON 87

Client \ Server Java
IDL

omniORB RMI-
IIOP

Classic
RMI

RMI-
JNDI

Java IDL X X X
omniORB X X
RMI-IIOP X X X
Classic RMI X
RMI-JNDI X

An intermediate level of Java IDL implementation is necessary in order to com-
municate between RMI-IIOP and omniORB, and in general with other non-Java
CORBA applications.

The pure RMI implementations, with or without using JNDI cannot commu-
nicate outside their technology bounds. The communication between pure classic
RMI and pure RMI-JNDI is made impossible by the naming protocol used. In
order to access an object offered by an RMI-JNDI server, a classic RMI client
needs to access the JNDI service to access the object. The reverse applies to an
RMI-JNDI application trying to access an object offered by a classic RMI appli-
cation.

The similar with RMI classic, RMI over JNDI can connect only with RMI over
JNDI partner.

5. Results of the first experiment

The test client and server programs were executed several times with different
iteration counts for name lookup operations and remote method calls. The iter-
ation numbers ranged from 1 to 6x105 in multiples of powers of ten. The results
presented below are chosen from the run with most repetitions. Three aspects of
the results are discussed below: variations in the measurements, the name lookup
duration, and the duration of a remote call.

5.1. Measurement Variations. The measurements focused on the duration of
the operations. Running the programs with iteration numbers different by orders of
ten, made visible that initial operations are slower than the subsequent ones. The
two tables below present the average duration of lookup and remote call operations
measured over various numbers of repetitions. The configuration chosen is classic



88 FLORIAN MIRCEA BOIAN AND RAREŞ FLORIN BOIAN

RMI client and server but the behavior is consistent for all the other nine situations.
The durations are expressed in milliseconds.

Lookup Itera-
tion Count

Lookup Total
Time

Lookup Aver-
age Duration

1 210 210.00
11 240 21.81
111 581 5.23
1111 2997 2.69
11111 13922 1.25
111111 123044 1.10

Method Call Itera-
tion Count

Method Call To-
tal Time

Method Call Average
Duration

1 10 10.00
20 30 1.50
300 320 1.06
4000 2201 0.55
50000 15310 0.30
600000 169286 0.28

For both, name lookup operations and remote method call operations, it is
visible that the first operations are significantly slower than subsequent ones. For
name lookups, the operation duration is around one millisecond in for large number
of iterations. Considering the second case with 11 iterations, if the duration of the
first operation (210 ms measured on the line above) is subtracted from the total
duration and the average of the remaining calls is averaged we get about 3 ms per
call. This is still larger than the 1 ms obtained in the last case. Repeating this
operation for the remaining rows, the lookup durations decrease slowly toward 1
ms, which proves that although the initial operations are by far the slowest, there
are further interferences (possibly external to the test application) that slow down
the communication. The same conclusion can be reached examining the remote
method call measurements.

5.2. Name Lookup Duration. The table below presents the duration of name
lookup measurements for the configuration with 111111 interations. It is apparent
that the lookup operation durations are dependent on the client technology. The
configuration involving omniORB are consistently faster than the rest. The RMI
implementations are faster the the Java CORBA-compatible ones. This is most
likely due to the lighter RMI implementation and the direct integration with the
Java language, with the need for conversion in a universal format.

5.3. Remote Method Call Duration. The table below presents the duration
of remote method call measurements for the configuration with 60000 interations.

The duration of the remote method calls are reversed in behavior when com-
pared with those of the name lookup operations. This time the executionm times
are dependant on the server technololgy instead of the client technology. The
configurations with omniORB as server are significantly fatser then the rest, while
those with omniORB as client are faster than thier counterparts. The higher speed



RMI VERSUS CORBA: A MESSAGE TRANSFER SPEED COMPARISON 89

Client Tech-
nology

Server Tech-
nology

Avg. Duration
per Lookup

Java IDL Java IDL 1.418329
Java IDL omniORB 1.354654
Java IDL RMI-IIOP 1.434691

omniORB omniORB 0.929962
omniORB Java IDL 1.003096

RMI-IIOP RMI-IIOP 2.515178
RMI-IIOP omniORB 1.880749
RMI-IIOP Java IDL 2.658926

Classic RMI Classic RMI 1.107397
RMI-JNDI RMI-JNDI 1.205047

Client Tech-
nology

Server Tech-
nology

Avg. Dura-
tion per Call
(client)

Avg. Dura-
tion per Call
(server)

Java IDL Java IDL 0.997540 0.011038
Java IDL omniORB 0.308578 0.003203
Java IDL RMI-IIOP 1.004380 0.009730

omniORB omniORB 0.161997 0.001988
omniORB Java IDL 0.690818 0.009608

RMI-IIOP RMI-IIOP 1.033056 0.010533
RMI-IIOP omniORB 0.273586 0.002858
RMI-IIOP Java IDL 0.988003 0.011101

Classic RMI Classic RMI 0.282143 0.006160
RMI-JNDI RMIJNDI 0.305676 0.007006

of the omniORB implementation is obviously explained by the fact that it is im-
plemented in C++ and hence the program is a native and optimized executable
instead of interpreted bytecode, which is the case of Java.

Another interesting aspect of the results is in the duration of teh server side
method execution. Although the EchoImpl object executes the same code in all
cases, the duration times differ amongst the RMI and and Java/CORBA imple-
mentations.

6. Conclusions

The experiments presented above were intended to assist in deciding the tech-
nology to use when starting a project. The results favor the C++ implementations
which is expected given the optimized native code versus the Java bytecode. How-
ever, these tests cover only a small aspect of the many issues to be taken into
account when choosing a technology. In addition to application speed, the follow-
ing important criteria have to be considered before making a decision.

Licensing costs. While Java distributions are free, most of the C++ implemen-
tations are not.



90 FLORIAN MIRCEA BOIAN AND RAREŞ FLORIN BOIAN

Development team experience. Developing in a familiar environment will always
yield faster and better results than using a new platform that first needs to be
learned.

Flexibility. If the distributed application includes Java components, using RMI
can make a developer’s job easier with features such as distributed garbage collec-
tion, object passing by value, or dynamic class downloading [10].

Platform independence. If the application has to run in a heterogeneous environ-
ment, Java is a better option that saves the effort of adapting the implementation
to each platform separately.

Productivity. Although the familiarity of the development team with one tech-
nology or another will be the decisive factor in this matter, it is generally considered
that it is more productive to program in Java than in C++. This is mostly due
to the lack of memory handling issues, hidden by the automatic garbage collector,
and the consistent and simple design of the Java library.

References

[1] Harkey O. Client – server programming with Java and Corba, John Wiley, 1999
[2] Todd N., Szolkowski M. Locating Resources Usind JNDI (Java Naming and Directory In-

terfaces, SAMS, www.developer.com/java/ent/article.php/2215571
[3] Vinoski S. CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments. IEEE Communication Machine, 35, 2, 1997. http://www.iona.com
[4] * * * AT&T Cambridge Laboratory http://www.uk.research.att.com/omniORB

or omniORB.sourceforge.net.
[5] * * * JavaTM Remote Method Invocation Documentation,

http://java.sun.com/docs/guide/rmi/index.html
[6] * * * The JNDI Tutorial: Building Directory-Enabled Java Applications

http://www.java.sun.com/products/jndi/tutorial/
[7] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu,

T. Nakatani, Overview of the IBM Java Just In Time Compiler, IBM SYSTEMS JOURNAL,
Vol 39, No 1, 2000,
http://www.research.ibm.com/journal/sj/391/suganuma.pdf

[8] * * *, JavaTM 2 SDK, Standard Edition Documentation,
http://java.sun.com/j2se/1.4.2/docs/index.html

[9] * * * Object Management Group CORBA Services Specification,
http://www.omg.org/library/csindx.html

[10] Java 2 RMI and IDL Comparison, http://lisa.uni-mb.si/∼juric/J2rmiidlc.pdf
[11] RMI-IIOP Programmer’s Guide, http://java.sun.com/j2se/1.4.2/docs/guide/rmi-

iiop/rmi iiop pg.html
[12] Java RMI & CORBA A comparison of two competing technologies,

http://www.javacoffeebreak.com/articles/rmi corba/

Babes Bolyai University, Cluj Napoca,Romania
E-mail address: florin@cs.ubbcluj.ro

Rutgers University, New York
E-mail address: boian@caip.rutgers.edu


