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A WEIGTHED-PATH-FOLLOWING METHOD FOR
THE LINEAR COMPLEMENTARITY PROBLEM

MOHAMED ACHACHE

Abstract. In a recent paper [3] a weighted path-following in-
terior point method (IPM) has been developed to solve linear
programs (LP) based on a method for finding a new family of
search directions. In this paper we describe a similar approach
for linear complementarity problems (LCP). We prove that the
algorithm performs the same number of iterations as in [3] .

1. Introduction

Formally, generalized path-following interior point methods (or the
so-called target-following methods) are related to the classical central
path methods but they are more general in the sense that the barrier
parameter is a multidimensional vector and not a real number. Geo-
metrically, these methods are based on the observation that with every
algorithm which follows the central path we can associate a target se-
quence on this central path. A good survey of this concept can be
found in [9] . Weighted-path following methods can be seen as a par-
ticular case of target-following methods. These methods were studied
by Ding and Li [4] for primal-dual linear complementarity problems.
Recently, Darvay [3] has been developed a weighted path-following
algorithm for solving the linear optimization (LO) problem, based on
a new method for finding a new family of search directions. In this
paper, we describe a similar approach for solving the linear comple-
mentarity problem (LCP).
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This paper is organized as follows. In the next section the LCP prob-
lem, the statement of the problem and the associated weighted prob-
lem are presented. Section 3 deals with the existence and uniqueness
of the solution of the weighted problem and its differentiability. Sec-
tion 4 is devoted to the search direction and the description of the
algorithm. Section 5 presents the convergence analysis of the algo-
rithm and its polynomial complexity. Section 6 ends the paper with a
conclusion.

1.1. Notations. Our notation is the usual one. In particular, Rn

denotes the space of real n−dimensional vectors and Rn
+ the nonneg-

ative orthant of Rn. Let u, v ∈ Rn, uT v is their inner product, ‖u‖
is the Euclidean norm and ‖u‖∞ is maximum norm. Given a vector
u in Rn, U =diag(u) is the n × n diagonal matrix with Uii = ui for
all i, where Uii denotes the i-th element on the diagonal of U . The
vector e = [1, . . . , 1]T is the vector of ones in Rn. Given the vectors

x and y in Rn, xy = [x1y1, x2y2, . . . , xnyn]T denotes the coordinate-
wise product of x and y, and 〈x, y〉 the scalar product of x and y. We

shall use also the notation x
y

=
[

x1

y1
, x2

y2
, . . . , xn

yn

]T

with yi 6= 0 for all

i. For a given arbitrary function ψ, and an arbitrary vector x we will
use the notation ψ(x) = [ψ(x1), . . . , ψ(xn)]T . d(A,B) is the distance
between the sets A and B.

2. The LCP problem and the statement of the problem

The linear complementarity problem (LCP) is defined as:
find x > 0 and y > 0 such that

(1) y = Mx + q, xT y = 0

where M is a given (n×n) real matrix and q is a given n−dimensional
real vector, the inequalities are understood to be components-wise.
The complementarity condition xT y = 0, is equivalent to xiyi = 0, for
i = 1, 2, ..., n.
The linear complementarity problems model many important mathe-
matical problems. The books [1, 7] are good documentations of com-
plementarity problems.
The feasible set, the strict feasible set and the solution set of the
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problem (1) are denoted respectively by

F =
{
(x, y) ∈ R2 : Mx + q = y, x > 0, y > 0

}
,

F0 = {(x, y) ∈ F : x > 0, y > 0} ,

and
Scp = {(x, y) ∈ F : xiyi = 0, i = 1, 2, ..., n} .

Throughout the paper we make the following assumptions.
Assumption 1 F0 6= ∅.
Assumption 2 M is a positive semidefinite matrix.
Assumption 1 implies that F0 is the relative interior of F and also
that the set of solution of (LCP) is nonempty convex and compact.
We formulate (1) into the equivalent convex minimization problem:

(2) min
[
xT y s.t. x > 0, y > 0,Mx + q = y

]
.

We observe, that if (x, y) is a solution of the (LCP), then the global
minimizer of (2) is zero, see [13]. We associate with (2) the following
weighted problem:

(Pw) min

[
gw(x, y) = xT y −

n∑
i=1

w2
i ln

xiyi

w2
i

]
, s.t. (x, y) ∈ F0.

where w2 = [w2
1, w

2
2, . . . , w

2
n]

T
for a given positive vector w.

Denote by L(x, y, z, w), the Lagrangian of the problem (Pw)

(3) L(x, y, z, w) = xT y +
n∑

i=1

w2
i ln

(
w2

i

xiyi

)
− zT (Mx + q − y).

The first order optimality conditions for (3) give the system of non-
linear equations

y −X−1w2 −MT z = 0,(4)

x− Y −1w2 + z = 0,(5)

Mx + q − y = 0,(6)

where z ∈ Rn, X =diag (x) and Y =diag(y).
From the first and the second equation in (4− 6), we obtain

{
XY e− w2 −XMT z = 0,

XY e− w2 + Y z = 0.
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It follows that

(7) (MT + X−1Y )z = 0.

Recall that M is positive semidefinite. Hence, for all h 6= 0

〈(MT + X−1Y
)
h, h〉 = 〈Mh, h〉+ 〈X−1Y h, h〉 > 〈Mh, h〉 > 0.

It follows that
(
MT + X−1Y

)
is invertible. Thus z = 0, and the

system (4-6) reduces to

(8) F(x, y, w) =

(
XY e− w2

Mx + q − y

)
=

(
0
0

)
.

The system (8) can be written as

(9) Mx + q = y, xy = w2,

where xy = [x1y1, x2y2,··· ,xnyn]T . This form is convenient for the analy-
sis of the convergence of the suggested algorithm. Hence, solving the
problem (Pw) is equivalent to solving the system (9).

Our next aim is to show that the weighted problem (Pw) has one
unique minimizer. To this end, we follow the technique of proof from
[2, 10] for the classical barrier logarithmic methods to show the exis-
tence of the minimizer.

3. Existence and the uniqueness of the minimizer of (Pw)

Let us define the following function g̃w by

g̃w(x) = gw(x,Mx + q).

Proposition 3.1. Under assumptions 1 and 2, we have
1) the function g̃w is strictly convex on

{(x, y) : x > 0, y = Mx + q, y > 0} .

2) the problem (Pw) and the system (8) are equivalent for w > 0.
3) for each w ∈ (0, +∞)n , the problem (Pw) has one unique global
minimizer or equivalently the system (8) or (9) has a unique solution
denoted by (x(w), y(w)) with x(w) > 0 and y(w) > 0.
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Proof. To prove the strict convexity of g̃w, we omit first the constant

part
n∑

i=1

w2
i ln w2

i from it. Then we have

g̃w(x) = xT (Mx + q)−
n∑

i=1

w2
i ln xi −

n∑
i=1

w2
i ln(Mx + q)i,

since

∇g̃w(x) = (M + MT )x + q −X−1w2 −MT [diag(Mx + q)]−1 w2,

and

∇2g̃w(x) = M + MT + X−2W + MT [diag (Mx + q)]−2 W 2M

where W 2 =diag(w2).
Hence ∇2g̃w is a positive definite matrix and thereby g̃w is strictly
convex function on {(x, y) : x > 0, y = Mx + q, y > 0} .
For the second statement, we have the objective function gw of the
problem (Pw) can be written as

n∑
i=1

[
xiyi − w2

i ln
xiyi

w2
i

]

and since each term in brackets attains the minimum under the con-
dition (x, y) ∈ F0, if and only if, xiyi = w2

i , then any minimizer of
(Pw) is a solution of the system (8) and vice versa.
For the last statement, let w ∈ (0, +∞)n be fixed. We have

ĝw(x) = gw(x,Mx + q) = xT (Mx + q) +
n∑

i=1

w2
i ln

xi(Mx + q)i

w2
i

.

Recall that in view of assumption 1, Scp is nonempty and bounded.
Therefore

{
(x, y) ∈ F : xT (Mx + q) 6 0

}
is bounded. By assumption

2, the level set
{
(x, y) ∈ F : xT (Mx + q) 6 t

}
is bounded for any t. It

follows that the level set

Ω(t) = {x ∈ Rn : gw(x, Mx + q) 6 t, Mx + q > 0}
is also bounded since ĝw differs only by the term

n

−
∑

i=1

w2
i ln

xi(Mx + q)i

w2
i
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from the quadratic function xT (Mx+ q). Again in view of assumption
1, it follows that Ω(t) 6= ∅ for sufficiently large t. Finally, if (x, y) ∈ F0

approaches the boundary of F , then

ln
xi(Mx + q)i

w2
i

→ +∞.

This implies that gw(x, Mx + q) → +∞. Thus ĝw must have a global
minimizer in F0denoted by x(w). Since ĝw is strictly convex, then
x(w) is unique.
If one of the components of x(w) is zero, then gw(x,Mx + q) → +∞.
It follows that x(w) > 0. From the system (8), y(w) is also determined
uniquely and y(w) > 0.
The next objective is to show the differentiability of the solutions of
the weighted problem (Pw), w 7→ x(w) and w 7→ y(w) on (0,∞)n .

Theorem 3.2. The functions w 7→ x(w) and w 7→ y(w) are C∞ on
(0,∞)n.

Proof. Let us recall again the mapping defined in (8) by

F : R2n
+ ×Rn

+ → R2n

F(u,w) = (Mx + q − y,Xy − w2).

The Fréchet derivative of F with respect to u = (x, y) is:

F′u(u,w) =

(
Y X
M −I

)
.

Since(
I 0
−MY −1 I

)(
Y X
M −I

)
=

(
Y X
0 −(I + MY −1X)

)
,

it follows that the Jacobian matrix F′u(u,w) is invertible for (u,w) with
x > 0, y > 0 and w > 0.
Let now w̄ be fixed in (0, +∞)n and u(w̄) = 0. Hence F(ū, w̄) =
0. Since F is continuously differentiable and F′(u,w) is invertible,
applying the implicit function theorem we obtain that there exists
θ continuously differentiable function on a neighborhood of w̄ such
that F(θ(w), w) = 0. Since the nonlinear system (8) characterizes the
optimal solution (x(w), y(w)) of (Pw), therefore θ(w) = u(w). The
function u is differentiable. By an immediate induction it is C∞.
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Proposition 3.3. Let (x(w), y(w)) be a solution of (Pw). Then
1) xT (w)y(w) → 0 as w 7→ 0.
2) d(Sε,Scp) → 0 as ε 7→ 0 where

Sε =
{
(x, y) : x > 0, y > 0, Mx + q = y, xT y 6 ε

}
.

3) combining 1) and 2) we have d((x(w), y(w)),Scp) → 0 as w → 0.

Theorem 3.4. For any w > 0, there is a unique solution (x(w), y(w))
to (8) and the path {(x(w), y(w)) : w > 0} is smooth.

Remark 3.1. The central path method corresponds to the path
{(x(µe), y(µe)) : µ > 0} . So, our method can be viewed as a general-
ization of the classical central path method.

In the next section we describe a similar approach as in [3] to solve
the (LCP). This section follows closely the argument developed in [3]
for finding a new family of search directions by using the system (9).

4. New search directions and the algorithm

Let R+ = {x ∈ R : x > 0} , and consider the function

ϕ ∈ C1, ϕ : R+ → R+.

We suppose that ϕ is a one to one function, i.e. ϕ−1 exists. Then the
system (9) can be written in the following equivalent form

Mx + q = y, x > 0, y > 0,

ϕ(xy) = ϕ(w2).
(10)

Suppose that we have (x, y) ∈ F0, i.e. x and y are strictly feasible.
Applying Newton’s method for the system (10) we obtain the new
class of search directions

M∆x = ∆y,

yϕ
′
(xy)∆x + xϕ

′
(xy)∆y = ϕ(w2)− ϕ(xy).

(11)

Now the following notations are useful for studying the complexity of
the proposed algorithm:

v =
√

xy and d =
√

xy−1.

Observe that these notations lead to

(12) d−1x = dy = v.
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Denote
dx = d−1∆x, dy = d∆y,

and hence, we have

(13) v(dx + dy) = y∆x + x∆y,

and

(14) dxdy = ∆x∆y.

So the system (11) becomes

M̄dx = dy,

dx + dy = pv,

where M̄ = DMD, with D =diag(d) and

pv =
ϕ(w2)− ϕ(xy)

vϕ′(v2)
.

As in [3] , we put ϕ(t) =
√

t. Hence the Newton’s direction in (11) is

M∆x = ∆y,√
y

x
∆x +

√
x

y
∆y = 2(w −√xy),

(15)

with

(16) pv = 2(w −√xy) = 2(w − v).

We define for any vector v the following proximity measure by

(17) σ(v, w) =
‖pv‖

2 min(w)
=
‖v − w‖
min(w)

,

where ‖.‖ is the Euclidean norm and min(w) = min {wi : 1 6 i 6 n} .
Now, for measuring the closeness of w2 to the central path, we use the
following quantity

σc(w) =
max(w2)

min(w2)
,

where max(w) = max {wi : 1 6 i 6 n} . Now the primal-dual algo-
rithm can be defined formally as follows.

Algorithm 4.1. We assume that (x0, y0) ∈ F0, and let w0 =
√

x0y0.
Let ε > 0 be the given tolerance, and 0 < θ < 1 the update parameter
(default θ = 1/(σc(w

0)n)1/5).
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begin
x := x0; y := y0

w := w0;
while xT y > ε do begin
w := (1− θ)w;
compute (∆x, ∆y) from (15)
x := x + ∆x;
y := y + ∆y;
end

end.

In the following section we prove that the algorithm converges to a
solution of the (LCP) in polynomial time.

5. The convergence analysis and the complexity analysis

Let
qv = dx − dy.

Then

dxdy =
p2

v − q2
v

4
,

and

(18) ‖qv‖ 6 ‖pv‖ .

This last result follows directly from the equality

‖pv‖2 = ‖qv‖2 + 4dT
x dy.

In the following Lemma we give a condition to ensure the feasibility
of the full step Newton.
Let x+ = x+∆x then y+ = M(x+∆x)+q = Mx+q+M∆x = y+∆y.

Lemma 5.1. Let σ = σ(u, v) < 1. Then the full Newton step is strictly
feasible, hence

x+ > 0 and y+ > 0.

Proof. For each 0 6 α 6 1 let x+(α) = x + α∆x and y+(α) =
y + α∆y. Hence

x+(α)y+(α) = xy + α(x∆y + y∆x) + α2∆x∆y.

Now, in view of (13) and (14) we have

x+(α)y+(α) = v2 + αv(dx + dy) + α2dxdy.
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In addition from (16) we have

v +
pv

2
= w,

and thus

v2 + vpv = w2 − p2
v

4
.

Thereby

x+(α)y+(α) = (1− α)v2 + α(v2 + vpv) +
α2

4
(p2

v − q2
v) =

= (1− α)v2 + α(w2 − (1− α)
p2

v

4
− α

q2
v

4
),

(19)

thus the inequality x+(α)y+(α) > 0 holds if∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥
∞

< min(w2).

Using (17) and (18) we get∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥
∞

6 (1− α)

∥∥∥∥
p2

v

4

∥∥∥∥
∞

+ α

∥∥∥∥
q2
v

4

∥∥∥∥
∞

6

6 (1− α)
‖pv‖2

4
+ α

‖qv‖2

4
6 ‖pv‖2

4
= σ2 min(w2) < min(w2).

Hence, x+(α)y+(α) > 0 for each 0 6 α 6 1. Since x+(α) and y+(α)
are linear functions of α, then they don’t change sign on the interval
[0, 1] and for α = 0 we have x+(0) > 0 and y+(0) > 0. This leads to
x+(1) > 0 and y+(1) > 0.
In the next Lemma we show that σ < 1 is sufficient for the quadratic
convergence of the Newton process.

Lemma 5.2. Let x+ = x + ∆x and y+ = y + ∆y be the iterates
obtained after a full Newton step with v =

√
xy and v+ =

√
x+y+.

Suppose σ = σ(v, w) < 1. Then

σ(v+, w) 6 σ2

1 +
√

1− σ2
.

Thus σ(v+, w) < σ2,which means quadratic convergence of the Newton
step.
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Proof. By substituting α = 1 in (19) we have

(20) v2
+ = w2 − q2

v

4
.

Using (13) and (20) we obtain

min(v2
+) > min(w2)− ‖q2

v‖∞
4

> min(w2)− ‖qv‖2

4
>

> min(w2)− ‖pv‖2

4
= min(w2)(1− σ2),

and this relation yields

(21) min(v+) > min(w)(
√

1− σ2).

Furthermore, from (17) and (21) we get

σ(v+, w) =
‖w − v+‖
min(w)

=
1

min(w)

∥∥∥∥
w2 − v2

w + v+

∥∥∥∥ 6

6
∥∥w2 − v2

+

∥∥
min(w)(min(w) + min(v+)

6 ‖p2
v‖

(2 min(w))2(1−√1− σ2)

6 1

1−√1− σ2

( ‖pv‖
2 min(v)

)2

=
σ2

1−√1− σ2
.

This proves the lemma. In the following lemma we find an upper
bound for the duality gap obtained after a full Newton step.

Lemma 5.3. Let x+ = x + ∆x and y+ = y + ∆y. Then the duality
gap is

xT
+y+ =

∥∥w2
∥∥− ‖qv‖2

4
,

hence
xT

+y+ 6
∥∥w2

∥∥ .

Proof. In view of (19) and with α = 1, we have

x+y+ = w2 − q2
v

4
,

then

xT
+y+ = eT (x+y+) = eT w2 − eT q2

v

4
=

∥∥w2
∥∥− ‖qv‖2

4
.
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Hence
xT

+y+ 6
∥∥w2

∥∥ .

The proof is complete.
The next Lemma discusses the influence on the proximity measure of
the Newton process followed by a step along the weighted path.

Lemma 5.4. [3]Let σ = σ(v, w) < 1 and w+ = (1 − θ)w, where
0 < θ < 1. Then

σ(v+, w+) 6 θ

1− θ

√
σc(w)n +

1

1− θ
σ(v+, w).

Furthermore, if σ 6 1/2, θ = 1/(σc(w)n)1/5 and n> 4 then we get
σ(v+, w+) 6 1/2.

Lemma 5.5. [3]Assume that x0 and y0 are strictly feasible, and let

w0 =
√

x0y0. Moreover, let xk and yk be the vectors obtained after k

iterations. Then the inequality
(
xk

)T
yk 6 ε is satisfied for

k >
⌈

1

2θ
ln

(x0)T y0

ε

⌉
.

For the default θ = 1/(σc(w
0)n)1/5 we obtain the following theorem.

Theorem 5.6. [3] Suppose that the pair (x0, y0) ∈ F0, and let w0 =√
x0y0. If θ = 1/(σc(w

0)n)1/5 then Algorithm 4.1 requires at most⌈
5

2

√
σc(w0)n ln

(x0)T y0

ε

⌉

iterations. For the resulting vectors we have
(
xk

)T
yk 6 ε.

6. Conclusion

In this paper, we have described a similar approach to the one de-
veloped by Darvay for linear programs, to solve the monotone linear
complementarity problem. Here we have transformed the (LCP) prob-
lem into an equivalent convex minimization problem based on some
weighted methods. We have adopted the function developed in [3]
to obtain new search directions and to develop the new primal-dual
algorithm. We have proved that this algorithm performs no more than⌈

5

2

√
σc(w0)n ln

(x0)T y0

ε

⌉
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iterations. This result is the same as the one found for the algorithm
developed for the (LP).
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