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OPTIMAL CLASS FRAGMENTATION ORDERING IN OBJECT
ORIENTED DATABASES

ADRIAN SERGIU DARABANT, ALINA CAMPAN, AND ANDREEA NAVROSCHI-SZASZ

Abstract. Distributed Object Oriented Databases require class fragmen-
tation, performed either horizontally or vertically. Complex class relation-
ships like aggregation and/or association are often represented as two-way
references or object-links between classes. In order to obtain a good quality
horizontal fragmentation, an optimal class processing order is needed. We
present in this paper a new technique for establishing an order for class frag-
mentation. We improve fragmentation quality by capturing the semantic of
input queries in the context of the aggregation hierarchy.

1. Introduction

Fragmentation is an important task that should be carried out in a Distributed
Object Oriented Database (DOODB). The purpose of distributing a database is
to increase query processing parallelism and to achieve high performance. Similar
to the relational model, fragmentation in DOODB is performed horizontally and
vertically. Horizontal fragmentation groups into fragments objects that are highly
used together. Each object has the same structure and a different state or content.
Thus, a horizontal fragment of a class contains a subset of the whole class exten-
sion. Vertical fragmentation breaks the logical structure of the class: attributes
and methods, and distributes them across the fragments. The objective here is
to group class attributes and methods that are frequently accessed together by
queries. Each fragment contains, in this case, the same objects, but with different
subsets of the attributes and methods [3].

Compared to the flat relational model, the object oriented paradigm intro-
duces new issues into the fragmentation problem, due to its inherent complex
nature. Complex object relationships like aggregation and association are part
of this paradigm. They are often represented as two-way pointers or references,
for performance reasons. This symmetric representation induces many cycles in
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the association and aggregation graphs. We claim that the order of class frag-
mentation should take in account the links between classes. As long as there are
cycles in the class graphs it is difficult to establish a fragmentation order between
classes. In this paper we propose a method that properly eliminates cycles, by
taking into consideration the semantic of class relationships and/or the strength
of these relationships. We use query statistics in order to quantify the strength
of links between entities. We propose an algorithmic approach that determines
the proper order of fragmentation in an object database. Similar work has been
conducted in [6], but only the inheritance relations are taken in account. The full
semantic power of aggregation and associations is not captured however. Other
research directions in object-oriented fragmentation do not address this problem
at all [2, 5, 7, 8].

In section 2 we present the data model and basic concepts needed for problem
definition. In section 3 we give an algorithm for establishing the optimal class
fragmentation order in a context of an input set of queries. In section 4 we apply
our algorithm to an example database and we conclude in section 5.

2. Data Model and Basic Concepts

We use an object-oriented model with the basic features described in the lit-
erature [1, 3]. Object-oriented databases represent data entities as objects sup-
porting features like inheritance, encapsulation, polymorphism, etc. Objects with
common attributes and methods are grouped into classes. A class is an ordered
tuple C = (K,A, M, I), where A is the set of object attributes, M is the set of
methods, K is the class identifier and I is the set of instances of class C. Class
attributes/methods are classified as simple and complex. Simple attributes have
primitive data types as their domain. Simple methods access only attributes of
their class. Complex attributes have other classes as their domain. Complex meth-
ods access attributes and/or methods of other classes. Further, they can have as
return value objects of a different class type.

Every object in the database is uniquely identified by an OID. Each class can
be seen in turn as a class object. Class objects are grouped together in metaclasses
[3].

Classes are organized in an inheritance hierarchy, in which a subclass is a spe-
cialization of its superclass. Although we deal here for simplicity only with simple
inheritance i.e. a class can have at most one superclass, moving to multiple inher-
itance would not affect the fragmentation algorithms in any way, as long as the
inheritance conflicts are dealt with into the data model. We denote the fact that
C1 is a superclass of C2 by C1 ≺ C2. Association between an object and a class is
materialized by the instantiation operation. An object O is an instance of a class
C if C is the most specialized class associated with O in the inheritance hierarchy.
An object O is member of a class C if O is instance of C or of one of subclasses
of C.



OPTIMAL CLASS FRAGMENTATION ORDERING IN OBJECT ORIENTED DATABASES 47

An OODB is a set of classes from an inheritance hierarchy, with all their in-
stances. There is a special class Root that is the ancestor of all classes in the
database.

Aggregation and association are implemented as OID pointers. They are rep-
resented as a directed cyclic graph.

Definition 1. An entry point into a database is a meta-class instance bound to
a known variable in the system.

An entry point allows navigation to all classes and class instances of its sub-tree
(including itself). There are usually more entry points in an object database.

Definition 2. Given a complex hierarchy H, a path expression P is defined as
C1.A1...An, n ≥ 1 where: C1 is an entry point in H, A1 is an attribute of class C1,
Ai is an attribute of class Ci in H such that Ci is the domain of attribute Ai−1 of
class Ci−1 (1 ≥ i ≥ n).

Definition 3. A query is a tuple with the following structure, q=(Target class,
Range source, Qualification clause), where:

- Target class - (query operand) specifies the root of the class hierarchy
over which the query returns its object instances.

- Range source - a path expression specifying the source hierarchy.
- Qualification clause - logical expression over the class attributes in con-
junctive normal form. The logical expression is constructed using simple
predicates: attribute θ value where q ∈ {<,>,≤,≥, =, 6=, }.

Definition 4. We model the inheritance hierarchy as a directed acyclic graph
Inh = (Class, Γ), where Class is the set of all classes in the database, Γ =
{(C1, C2)|C1, C2 ∈ Class , C1 6= C2, C2 is superclass of C1}.

We give a working example of an inheritance hierarchy for a reduced university
database in Fig. 1.

Let Q = q1, . . . , qt be the set of all queries in respect to which we want to
perform the fragmentation.

Definition 5. We model the aggregation hierarchy as directed cyclic graph
Agg = (Class, Λ), where Class is the set of all classes in the database, Λ =
{(C1, C2)|C1, C2 ∈ Class, C1 6= C2, C2 aggregates or is associated to C1}. Each
edge u receives a weight, denoted as weigth(u), equal to the number of path ex-
pression from queries in Q traversing that edge. We say that a link is stronger as
its weight is larger.

The aggregation hierarchy for our example is depicted in Figure 2.

3. Class Fragmentation Ordering

In the following paragraphs we give a representation of all relations between
classes (inheritance, aggregation and association), we explain the reasons behind
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Figure 1. The database inheritance hierarchy

Figure 2. The database aggregation hierarchy

our modeling scheme. We propose an algorithm that takes as input an object
database and returns the optimal order in which classes should be fragmented so
that semantics of the queries is fully reflected in the resulting fragments. We prove
that the proper order can always be found - i.e. the problem has always at least
one solution.

3.1. Relationship modeling.

Definition 6. Let Pred = {p1, . . . , pq} be the set of all simple predicates Q is
defined on. Let Pred(C) = {p ∈ Pred|p imposes a condition to an attribute of
class C or to an attribute of class C ′, where C ′ ≺ C}.
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Given two classes C ′ and C, where C ′ ≺ C, Pred(C) ⊇ Pred(C ′). Thus the set
of predicates for class C comprises all the predicates directly imposed on attributes
of C and the predicates defined on attributes of its parent class C ′ and inherited
from it. We model class predicates this way in order to capture on subclasses the
semantic of queries defined on superclasses [4].

Definition 7. The directed graph modeling all relations between classes is denoted
as CandidateRelGraph=(NAClass,U) where NAClass is the set of non-abstract
classes in Class. (C1, C2) ∈ U if:

- Class C1 is aggregated by class C2

- ∃C ∈Class, C ≺ C2 and C aggregates C1; this means that aggregation
is inherited by a class from its ancestor.

- ∃C ∈Class, C ≺ C1 and C is aggregated by C2; this means that the fact
of being aggregated is inherited by a class from its ancestor.

- ∃C ′1, C ′2 ∈Class, C ′1 ≺ C1, C
′
2 ≺ C2 and C ′1 is aggregated by C ′2; i.e. the

fact of being aggregated by / aggregating a class is inherited.

Definition 8. Let RelGraph=(FClass,V) be the subgraph of CandidateRelGraph,
where FClass=NAClass-{C|C ∈ NAClass, Pred(C) = ∅ and @ a path in Candi-
dateRelGraph between C and a class C ′ ∈NAClass so that Pred(C ′) 6= ∅}.

We don’t keep abstract classes because clustering an empty set of objects has no
meaning. By propagating aggregation relations through the inheritance hierarchy
we eliminate the inheritance dimension from RelGraph and we keep in the same
time the semantic of aggregation for each particular class. This will turn out to be
a necessary and helpful decision for our method, as we will see. As a consequence,
every pair (inheritance path, aggregation link) is transformed into a link with the
weight of the aggregation link.

We start from the presumption that a fragmentation algorithm first performs
fragmentation on the classes with query conditions on them. Then, derived frag-
mentation is performed on the aggregator or aggregated classes that are linked
with the already fragmented classes. Definition 8 eliminates classes that do not
meet any of these requirements because they cannot be fragmented.

Definition 9. We denote by CAN(C) the node aggregation coefficient of class
C, defined as follows:

(1) CAN(C) =
∑

u∈V,u=(C,_)

weigth(u) + CAN(C ′), C ′ ≺ C.

An aggregation edge C1 → C2 will be traversed by path expressions following
the pattern a.b.c . . . C2.C1. . . . d.e.f . This means that the path expression nav-
igates from instances of C2 to one or more instances of C1. It makes sense to
first fragment class C1 and then class C2; when fragmenting C2 we should take in
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account the fragmentation of C1. We want to place in the same fragment of C2

objects aggregating instances from a fragment of C1. Objects of a fragment of C2

should aggregate as much as possible objects from the same fragment of C1.
When the aggregation graph has cycles they should be broken in order to be

able to perform fragmentation. One edge needs to be ignored from each cycle.
Our decision is to select the least traversed edge by path expressions. The CAN
measure precisely quantifies the navigation frequency for edges adjacent to a node.

When class A aggregates a class C1 it aggregates all subclasses of C1. A refers
instances of C1 and of all its subclasses. This is why we transfer the CAN of C1

to its subclasses.
The CAN coefficient of a node quantifies how strong the other classes aggregate

the node. Intuitively, classes with large CAN values strongly influence the overall
fragmentation of the entire database. We want to fragment classes in descending
order of CANs, as much as possible. We conserve this way the strongest aggre-
gation relationships and we perform derived fragmentation with respect to these
relationships, together with primary fragmentation, in a single step.

3.2. Algorithm FragOrder.

Algorithm FragOrder is
Input: RelGraph =(FClass,V); CAN(C),where C ∈FClass;
Output: L=[C1, C2, . . . , Cn], n=|FClass|; L gives the fragmentation order.
Var:

LNC - CAN ordered (descending) list of classes having conditions;
LNFC - the set of classes having no conditions imposed on them.

Begin
LNC:=[C|C∈FClass, Pred(C) 6= ∅, in CAN descending order];
LNFC:=FClass-LNC; L:=∅;
While FClass 6= ∅ do

i:=1; continue:=true;
While i≤|LNC| and continue=true do

C:=LNC[i];
If {u|u∈V,u=(A,C),A∈LNC}=∅ //C doesn’t aggregate any class

Call Remove(C,RelGraph,LNC,LNFC);
continue:=false;

Else //C aggregates classes from LNC
Call BreakCycles(C,RelGraph);
If {u|u∈V,u=(CA,C),CA∈LNC}=∅

Call Remove(C,RelGraph,LNC,LNFC)
continue:=false;

End if;
End if;
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End while;
End while;

End.

Subalgorithm Remove(C,RelGraph,LNC,LNFC) is
Begin

LNC:=LNC-[C]; L:=L+[C];
New:={U|U∈LNFC,(C,U)∈V} ∪

{U|U∈LNFC,(U,C)∈V, @ path in RelGraph from CC∈LNC to U};
LNC:=LNC+[C|C∈New]; Resort(LNC);
LNFC:=LNFC-New;
FClass:=FClass-C;

End;

Subalgorithm BreakCycles(C,RelGraph) is
Begin

// We first break trivial cycles
@ While C participates in a trivial cycle P

V:=V-{u|u∈P,weigth(u)=min{weight(v),v∈P}}
@ End While
// Breaking non-trivial cycles
@ While C participates in a cycle P

V:=V-{u|u∈P,weigth(u)=min{weight(v),v∈P}}
@ End While

End;

We use LNC - the list of classes with conditions either directly defined on them
or induced by fragments of their aggregated classes. These are the classes that
we can fragment at a given moment. We try to take out from LNC the most
aggregated class (this class should be the first to fragment) - and add this class
to L. A class C (with maximum CAN) can be taken out from LNC if it has no
incident edges (C does not aggregate any of the remaining classes in LNC). If C
aggregates classes from LNC then we break the trivial cycles C is involved in (if
any), in order to free it. In each cycle we break the weakest aggregation edge. If
C is not freed then we pass to the next class in LNC and we reiterate the same
process. When we remove a class from LNC, we add that class to L and we add
all its successors and all its predecessors (S) that do not aggregate classes from
LNC (there cannot be any induced aggregation conditions from LNC on S).

3.3. Correctness Issues.

We prove that the algorithm terminates and that the problem always has (at
least one) solution. First of all we prove that when no more nodes can be taken
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out from RelGraph, there is a cycle in RelGraph. Then we prove that, by breaking
cycles, we free in each iteration one node.

Theorem 1. Given an oriented graph G = (X, Γ), X = {x1, . . . , xn}, if ∀xi,
|Γ−(xi)| > 0 ⇒ G contains at least a cycle.

Proof : Let’s presume by reductio ad absurdum that ∀xi, |Γ−(xi)| > 0 and there
are no cycles in G.
We take an xi1 ∈ X. |Γ−(xi1)| > 0 means that there exists at least one xi2 ∈ X
so that (xi2 , xi1) ∈ Γ. Let Y be the set {xi1}. |Γ−(xi2) > 0 means that there
exists at least one xi3 ∈ X so that (xi3 , xi2) ∈ Γ. If xi3 ∈ Y then there is a
cycle. If xi3 /∈ Y , let Y = Y ∪ {xi2}. By continuing this process, either we obtain
a cycle if xik

∈ Y , or we reach the situation where we detected no cycle and
Y = {xi1 , . . . , xin

}. But |Γ−(xin
)| > 0, which means that there exists at least one

y ∈ X so that (y, xin) ∈ Γ. Node y must be in Y , as there are no other nodes
from which to choose. We have thus constructed a cycle, fact that contradicts our
presumption.

Theorem 2. Given an oriented graph G = (X, Γ), X = {x1, . . . , xn}, if ∀xi,
|Γ−(xi)| > 0, by breaking a finite number N of times an edge (xk1 , xk2), 1 ≤ k ≤ N ,
we obtain a new graph G′ = (X, Γ′), Γ′ = Γ−{(xk1 , xk2), 1 ≤ k ≤ N} so that exists
xj ∈ X with |Γ′−(xj)| = 0.

Proof : If ∀xi ∈ X, |Γ−(xi)| > 0, then, according to Theorem 1, there is at least
a cycle in G. Let (xi1 , xi2 , . . . , xim),m ≤ n, xij 6= xij+1 , 1 ≤ j < m, xim = xi1 be a
cycle. We choose from it an edge to be eliminated, let it be (xij , xij+1), 1 ≤ j < m.
This means that |Γ−(xij+1)| decreases by 1. As |Γ−(xi)| is finite ∀xi ∈ X, following
the same procedure a finite number of times we reach the situation when for a node
xj ∈ X, |Γ−(xj)| = 0.

4. An example

Given the database in Figure 1 and Figure 2 having as entry points Doc, Person,
Faculty, and a set of queries:
q1: This application retrieves all graduates having their supervisor in ProgrMeth or
InfSyst OrgUnits.
q1 = (Grad, Faculty.Dept.Student, Grad.Supervisor.OrgUnit.Name in ("ProgrMeth",
"InfSyst") );
q2: This application retrieves all undergraduates with scholarships from Comp. Sci.
q2 = (UnderGrad, Faculty.Dept.Student, UnderGrad.Dept.Name like "CS%" and Un-
derGrad.Grade between 7 and 10)
q3: This application retrieves all undergraduates older than 24 years from Math and
Comp. Sci. depts.
q3 = (UnderGrad, Faculty.Dept.Student, (UnderGrad.Dept.Name like "Math%" or Un-
derGrad.Dept.Name like "CS%") and UnderGrad.Age()≥24 )
q4: This application retrieves all researchers having published at least two papers.
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q4 = (Researcher, Doc.Person,Researcher.count(Reasercher.doc)≥2)
q5: This application retrieves all teachers from ProgrMeth and InfSyst OrgUnits with
salary greater than 40000.
q5 = (Prof, Faculty.OrgUnit.Employee, Prof.OrgUnit.Name in ("ProgrMeth", "InfSyst")
and Prof.salary≥40000 )
q6: This application retrieves all profs having published at IEEE or ACM
q6 = (Prof, Doc.Person., Prof.Paper.Publisher in ("IEEE" , "ACM") and Prof.Position="prof")
q7: This application retrieves all tech reports published after 1999.
q7 = (TechReport, Doc, TechReport.year>1999)
q8: This application retrieves all depts with students having grades less than 5.
q8 = (Set(Student.Dept), Person, Student.Grade<5)
q9: This application retrieves all employees with salaries greater than 35000.
q9 = (Employee, Person, Employee.salary>35000)
q10: This application retrieves all grads with at least one paper.
q10 = (Grad, Person, Grad.count(Grad.Paper)≥1)
q11: This application retrieves all students from Comp. Sci. depts
q11 = (Student, Person,Student.Dept.Name like "CS%")
q12: This application retrieves all students from Math depts.
q12 = (Student, Person,Student.Dept.Name like "Math%")
q13: This application retrieves all staff with salaries greater than 12000.
q13 = (Staff, Person, Staff.salary>12000)
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Dept 2 5 3
Grad 3 2 2
UnderGrad 3 2 2
Prof 1 1 2 2
Researcher 1 2 2
Staff 1 2 2
OrgUnit 2 0 0 1
TechReport 1 1 0
Paper 1 1 0
Faculty 0 0

Table 1. RelGraph adjacency matrix.
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the adjacency matrix for RelGraph is given in Table 1.
In our example all non-abstract classes have conditions imposed on them by

the set of queries. The resulting class fragmentation order resulted by applying
the algorithm is: Researcher→Staff→OrgUnit→Prof→Grad→Dept→UnderGrad
→TechReport→Paper→Faculty.

5. Conclusions and Future Work

We claim that class fragmentation order is significant in distributed object
orientated databases. We investigate in this paper a method for choosing this
order in respect to a set of application queries given as input. Initial experiments
show that the fragmentation order has an important impact in the fragmentation
quality. We plan to develop measures for quantifying this quality improvement.
We also aim to compare different, richer scenarios with and without fragmentation
order involved and to study the limitations, if any, of this technique.
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