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ROAMING OPTIMIZATION: A NEW EVOLUTIONARY
TECHNIQUE FOR MULTIMODAL OPTIMIZATION

R. I. LUNG AND D. DUMITRESCU

Abstract. A new evolutionary technique for multimodal optimization called
Roa-ming technique (RT) is proposed. Multiple optima are detected using
subpopulations evolving in isolation. A stability measure is defined for sub-
populations by which they are characterized as stable or unstable. Stable
subpopulations are considered to contain local optima. An external popula-
tion called the archive is used to store the optima detected. After a number
of generations the archive contains all local optima. Experimental results
prove the efficiency of the algorithm.

1. Introduction

Most real world problems require the detection not only of one global optimum
but also of the other global or local optima. In some cases the local optima may be
almost as good as the global one, or they may provide the human decision maker
with a better insight into the nature of the design space.

Evolutionary algorithms were initially designed to detect global optima and
special techniques to avoid premature convergence to local optima have been de-
velopped. However, it is only natural due to the intrinsic parallelism of the evo-
lutionary methods to assume that such methods should be able to detect also
multiple solutions.

Several evolutionary approaches to the multimodal optimization problem have
been made. Among them we mention: fitness sharing [1], crowding [2], determin-
istic crowding [4], Multinational genetic algorithm [6], Forking genetic algorithm
[5] and the adaptive elitist-population based genetic algorithm [3].

2. Roaming optimization

A new evolutionary technique for multimodal optimization called Roaming tech-
nique is proposed.

Roaming technique identifies the local optima using isolated subpopulations
and stores them in an external population called archive.

A stability measure for subpopulations is defined. By using it, subpopulations
are evaluated as stable or unstable. Unstable subpopulations evolve in isolation
until they become stable. The best individual in a stable subpopulation is consid-
ered to be a potential local optimum.
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The number of subpopulations is a parameter of the algorithm and it is not
related to the expected number of local optima. This confers flexibility and ro-
bustness to the roaming search mechanism.

Potential optima are saved into the archive. Stable subpopulations are spread
over the search space in order to detect other optima.

After a certain number of generations the archive contains all optima.

3. Roaming technique

Consider the optimization problem:{
maximize eval(x),
x ∈ S,

where S is the solution space and eval(x) is the fitness value of individual x.
Let N be the number of subpopulations. At each generation t the population

P is composed of N subpopulations Pi, i = 1, . . . , N .
We may define an order relation on P .

Definition 3.1. We say that individual x is better then y, and we write x � y, if
and only if the condition

eval(x) ≥ eval(y),
holds.

3.1. Stability measure. A stability measure is introduced for determining whe-
ther a subpopulation has located a potential optimum.

By evolving subpopulation Pi for n generations a new subpopulation P
′

i having
the same size as Pi is obtained.

Definition 3.2. The number n of iterations the subpopulations evolve in isolation
until their stability is measured is a parameter of the algorithm called the iteration
parameter.

Let x∗i be the best individual in the parent subpopulation Pi. We define an
operator B as the set of individuals in the offspring in subpopulation P

′

i that are
better then x∗i :

B : P −→ P(P )

B(x∗i ) = {x ∈ P
′

i | x � x∗i }.
Using the cardinality of the set B a stability measure SM(Pi) of subpopulation

Pi may be defined.

Definition 3.3. Stability measure of the subpopulation Pi is the number SM(Pi)
defined as

SM(Pi) = 1− card B(x∗i )
card Pi

,

where x∗i is the best individual in Pi and card A represents cardinality of the set
A.
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Proposition 3.4. Stability measure of a subpopulation P has the following prop-
erties:

(i) 0 ≤ SM(P ) ≤ 1;
(ii) If SM(P ) = 1 then x∗ is a potential local optimum;

where x∗ is the best individual in P .
Proof. It is obvious using stability measure definition.

Figure 1. Subpopulations P and P ′ illustrating the stability
measure concept

Definition 3.5. A subpopulation P is called σ-stable if the condition

(1) SM(P ) ≥ σ

holds, where 0 ≤ σ ≤ 1. A 1-stable subpopulation is called a stable subpopulation.

Remarks 3.6. The following remarks on subpopulations stability can be made:
(i) A subpopulation P is called σ-ustable if it is not σ-stable.
(ii) The best individual in a stable subpopulation can be considered a po-

tential local optima.

Example 3.7. Suppose subpopulation P contains 3 individuals and x∗ is the best
of them (Figure 1). The offspring subpopulation P ′ contains two individuals, x1

and x2 that are better then x∗. We have

x1 � x∗, x2 � x∗, but x∗ � x3.

Therefore
B(x∗) = {x1, x2}.
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The stability measure of P is

SM(P ) = 1− card B(x∗)
card P

SM(P ) =
1
3
.

In conclusion, we can say that P is a 1-unstable subpopulation.

3.2. Archive. Within Roaming technique 1-unstable subpopulations evolve in iso-
lation until they become stable. The best individual in a stable subpopulation is
considered a potential local optimum. An external population called the archive
is used to store detected potential optima.

Consider a stable subpopulation P , and x∗ the best individual in P . Then x∗

is considered a potential local optimum.
It is reasonable to suppose that a potential optimum can be a local optimum

or can be very close to a local optimum.
Before adding a candidate solution x∗ to the archive the distance between x∗

and every solution a in the archive is compared with an archive parameter δ. δ
is an algorithm parameter and is related to the minimum distance between two
optima. If the condition d(x∗, a) < δ holds then only the best fitted from x∗ and
a enters the archive.

Figure 2. Adding a potential optima to the archive case (i): x1

is included into the archive

Summarizing, a solution x∗ is added to the archive if and only if one of the
following situations arrize:

(i) the distance to all other solutions in the archive is higher then δ, meaning
that x∗ represents a new optimum for the archive;
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Figure 3. Adding a potential optima to the archive case (ii): x2

is included into the archive

Figure 4. Adding a potential optima to the archive case (ii): x3

is not included into the archive

(ii) x∗ is better then a solution a in the archive that is at a distance smaller
then δ from x∗, in which case x∗ replaces a.

Figures 2 3 and 4 illustrate the two archive addition cases. In the first case
(Figure 2) the potential optimum x1 is added to the archive. This is the case
when the distance to all individuals in the archive is higher then δ. In the second
case (fig. 3) there is an individual a2 in the archive within the distance δ. x2 is
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better then a2, therefore x2 is added to the archive. Figure 4 describes another
situation that can arrize, in which the potential optima x3 is not added to the
archive.

Remark 3.8. The archive is used exclusively to store the potential optima. So-
lutions preserved in the archive do not participate in further selection processes.
Thus the Roaming technique can not be considered as an elitist one.

3.3. Roaming subpopulations. Consider a potential optimum x∗i has been a-
dded to the archive. To avoid the search process to get stuck, the search performed
by the subpopulation Pi has to be redirected towards other regions of the search
space. In this respect stable subpopulations are selected to be spread in the search
space in order to detect new optima.

Subpopulations selected for spreading are called Roaming Subpopulations. Se-
lection is performed using subpopulations stability measure.

A parameter RS ∈ [0, 1] is used as a threshold in order to select the stable
subpopulations. If for subpopulation P we have SM(P ) > RS then it is selected
as a roaming subpopulation. Acctually all RS-stable subpopulations are selected.
The RS-unstable subpopulations are called non-roaming subpopulations.

Roaming subpopulations are spread in the search space in order to detect other
optima. The subpopulaiton roaming is realized using variation operators acting on
subpopulations. We have used a mutation operator for subpopulations that applies
strong mutation to each individual of the subpopulation. To ensure complete
change of the individuals of the subpopulations, the mutation rate should be close
to 1. Other types of genetic operators for subpopulations can be defined.

3.4. Computing next generation. Let P ′
i (t) be the offspring subpopulation

from Pi(t). The next generation P (t+1) is composed of the roamed subpopulations
and the offspring P

′

i (t) of all non-roaming subpopulations Pi(t).

3.5. Roaming algorithm. Roaming technique evolves several subpopulations in
order to detect the local optima of a multimodal problem.

A measure for the stability of a subpopulation is used. Unstable subpopula-
tions evolve in isolation until they become stable. The best individual of a stable
subpopulation is considered to be a potential local optima. Potential local optima
are saved into an external population called archive.

The algorithm stops after a given number of generations. At the end the archive
contains detected local optima.

Figure 5 illustrates one iteration of the algorithm for a population P (t) com-
posed of five subpopulations.

Roaming algorithm may be outlined as follows:

Roaming algorithm



ROAMING OPTIMIZATION: A NEW EVOLUTIONARY TECHNIQUE 105

Figure 5. An iteration of the algorithm

Input: N - subpopulations number
Popsize - subpopulation size
Ngen - maximum number of generations
n - iteration parameter
δ - archive parameter
RS - roaming threshold
pc, pm -crossover probability and mutation rate

Output: Archive - the set of local optima

Step 1. Initialization:
a) t := 0;
b) Initialize Pi(t) for each i = 1, . . . N by randomly generating popsize
number of individuals;
c) Archive := ∅.

Step 2. Evaluate each individual x in each subpopulation Pi(t) by computing its
fitness eval(x);

Step 3. Evolve each subpopulation Pi(t) for n iterations applying selection, re-
combination and mutation . Let P

′

i (t) be the resulting offspring subpop-
ulation.

Step 4. Evaluate each individual x in the offspring subpopulation P
′

i (t) by cac-
ulating its fitness eval′(x).
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Step 5. For each subpopulation Pi(t) calculate:
a) The best individual x∗i ;
b) The stability measure SM(Pi(t)) using Definition 3.3.

Step 6. For each subpopulation Pi(t) having SM(Pi(t))=0 try to add x∗i to the
Archive.

Step 7. For each i = 1, . . . N do if SM(Pi(t)) ≥ RS then consider Pi(t) to be a
roaming subpopulation;

Step 8. Migrate all roaming subpopulations using strong mutation with rate = 1
Step 9. Set P (t+1) = {Pi(t) |Pi(t) is a Roaming Subpopulation} ∪{P ′

i (t) |Pi(t)
is not a Roaming Subpopulation}; t = t + 1. If t < Nrgen then go to
step 2, else stop.

4. Experimental results

Roaming Algorithm has been tested for several standard functions. In this
section the following functions are considered:

• f1(x) = e−2 ln(2)( x−0.1
0.8 )2

sin6(5πx), 0 ≤ x ≤ 1,

• f2(x) =
5∑

j=1

j cos((j + 1)x + j), 0 ≤ x ≤ 10,

• f3(x1, x2) = 1 + sin2 x1 + sin2 x2 − 0.1 · e(−x2
1−x2

2), −5 ≤ x1 ≤ 5,
−5 ≤ x2 ≤ 5.

The parameters used to run the algorithm for functions f1, f2 and f3 are presented
in Table 1.

Evolution of the archive content for function f1 the is presented in Figures 6
and 7. Roaming algorithm detects the peaks of the function at early stage of the
search process. This can be noticed also for the functions f2 and f3 in Figures 8
and 10 where the achive content after 10 generations is presented.

Figure 6. Function f1 - the archive after 10 generations

Figures 9 and 11 present the final achive for functions f2 and f3. The number
of optima stored in the archive for each function in presented in Table 2.
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Figure 7. Function f1 - the archive after 75 generations

Table 1. Parameters used for f1, f2 and f3

Parameter f1 f2 f3

Subpopulation number 15 15 10
Subpopulation size 10 10 10
Number of generations 75 75 50
δ 0,1 0,3 2
Iteration parameter 1 1 1
RS 0,8 0,8 0,8
Crossover probability 0,5 0,5 0,5
Mutation rate 0,05 0,05 0,05

Figure 8. Function f2 - the archive after 10 generations

4.1. Parameters Setting. Roaming technique uses specific parameters such as
the RS threshold, δ and the number of subpopulations.

The RS parameter is chosen so that only stable subpopulations are selected to
roam. Acctually all RS-stable subpopulations are selected to roam.
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Figure 9. Function f2 - the archive after 75 generations

Figure 10. Function f3 - the archive after 10 generations

Figure 11. Function f3 - the archive after 50 generations
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Table 2. Number of peaks detected for functions f1, f2 and f3

Function Number of generations Number of detected peaks
f1 75 5
f2 75 10
f3 50 16

The value of δ depends on the distribution of the local optima in the fitness
landscape. For evenly distributed landscapes, the choice of δ does not represent a
problem. However it is almost impossible to choose a suitable value for δ in the
case of the functions with unevenly spaced optima. A mechanism to avoid the use
of this parameter is the object of current work.

The algorithm works for any number of subpopulations. If a small number
of subpopulations it is used then in order to detect more optima the number of
generations has to be increased. Convergence speed depends on the subpopulation
number.

5. Conclusions and future work

A new evolutionary technique for multimodal optimization called Roaming is
proposed. The technique uses a number of roaming subpopulations in order to de-
tect multiple optima. A measure for the stability of a sub-population is introduced
in order to asses whether a subpopulation has located an optimum or not.

Subpopulations evolve in isolation until an optimum is detected. Detected op-
tima are saved into an archive and the corresponding subpopulations are spread
towards new promissing regions of the search space.

Numerical examples are presented to illustrate the efficiency of the technique
proposed.
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