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UNBOUNDED AND BOUNDED PARALLELISM IN BMF.
CASE-STUDY: RANK SORTING

VIRGINIA NICULESCU

Abstract. BMF is a formalism that allows us to design parallel programs
independently of the target architecture, and to transform the programs into
more efficient programs using equational reasoning. We show in this paper
that even the abstractness of BMF is very high, bounded and unbounded
parallelism can be expressed in this model, and also that BMF allows us to
transform a program into different variants, each of them being more appro-
priate for a specific architecture type. We consider the case-study of rank
sorting, for which we construct first a general unbounded parallel program.
Then, we transform the program for bounded parallelism, by imposing a
limited number of processors. Three variants are obtained. The implementa-
tions of the programs onto shared memory, distributed memory, and pipeline
architectures are analyzed, too.

1. Introduction

The problem of constructing parallel software is much more difficult than for the
sequential case. This is ultimately because there is no longer a single computation
model to play the role that the von Neumann model plays in sequential computing.
The goals of parallel software construction are also more ambitious. To be useful
over any significant period of time, a parallel program must be able to be executed
by many parallel computers, differing internally in significant ways. Thus the
programmer’s problem is not only to build an optimal program for a particular
parallel computer, but to build one that is optimal for many different parallel
computers [6].

2. Bird-Meertens Formalism

Bird-Meertens formalism (BMF) on lists was originally created for the design
of sequential programs [1], but it becames very popular in the parallel setting. In
BMF, higher-order functions (functionals) capture, in an architecture-independent
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way, general idioms of parallel programming, which can be composed for repre-
senting algorithms. BMF functionals use elementary operators and functions as
parameters, so that a BMF expression represents a class of programs which can be
reasoned about, either taking into account particular properties of the customizing
functions or independently of them [5, 2, 3].

2.1. BMF Notation. The basic data structure it is considered the non-empty
list: [α], where α is the elements type. Function application is denoted by juxta-
position, considering the tightest binding and association to the left.

The simplest functional of BMF is map, which applies a unary function f ,
defined on the elements type, to each element of a list:

(1) map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]

The functional map is highly parallel since the computation of f on different
elements of the list can be done independently if enough processors are available.
The elements of a list can be lists again and f may be quite a complex function
or composition of functions.

In addition to the parallelism of map, BMF allows to describe tree-like par-
allelism. This is expressed by the functional red (for reduction) with a binary
associative operator ⊕:

(2) red (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

Reduction can be computed on a binary tree with ⊕ in the nodes. The time
of parallel computation depends on the depth of the tree, which is log n for an
argument list of length n.

Other functionals may be defined, but these two are the most important and
the most used.

Functions are composed in BMF by means of functional composition ◦, such
that (f ◦ g) x = f (g x). Functional composition is associative and represents the
sequential execution order.

BMF expressions - and, therefore, also the programs specified by them - can be
manipulated by applying semantically sound rules of the formalism. Thus, we can
employ BMF for formally reasoning about parallel programs in the design process.
BMF is a framework that facilitates transformations of programs into each others.
A simple example of BMF transformation is the map fusion law:

(3) map (f ◦ g) = map f ◦map g

If the sequential composition of two parallel steps on the right-hand side of Eq.
(3) is implemented via a synchronization barrier, which is often the case, then the
left-hand side is more efficient and should be preferred.
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A very important skeleton in BMF is the homomorphism that reflects the divide-
and-conquer algorithms [2, 3]. Still, we will not refer to it in this paper.

We are going to focus on how BMF expresses unbounded and bounded paral-
lelism.

3. Bounded and Unbounded Parallelism

For serial algorithms, the time complexity is expressed as a function of n – the
problem size. The time complexity of a parallel algorithm depends on the type of
computational model being used as well as on the number of available processors.
Therefore, when giving the time complexity of a parallel algorithm it is important
to give the maximum number of processors used by the algorithm as a function
of the problem size. This is referred to as the algorithm’s processor complexity.
For example, a serial algorithm to find the maximum of a set with n elements has
complexity O(n), since it requires n−1 comparisons. In contrast, a trivial parallel
algorithm for the same problem has time and processor complexities O(log n) and
O(n) respectively.

The synthesis and analysis of a parallel algorithm can be carried out under
the assumption that the computational model consists of p processors only, where
p ≥ 1 is a fixed integer. This is referred to as bounded parallelism. In contrast,
unbounded parallelism refers to the situation in which it is assumed that we have
at our disposal an unlimited number of processors. Let us assume that a parallel
algorithm A solves a problem of size n on p processors. If there exists a polynomial
F such that for all n, p < F (n), then the number of processors is said to be
polynomially bounded; otherwise it is polynomially unbounded.

From a practical point of view algorithms for bounded parallelism are prefer-
able. It is more realistic to assume that the number of processors available is
limited. Although parallel algorithms for unbounded parallelism, in general, use
a polynomially bounded number of processors(e.g. O(n2), O(n3), etc.) it may
be that for very large problem sizes the processors requirement may become im-
practically large. However, algorithms for unbounded parallelism are of great
theoretical interests, since they give limits for parallel computation and provide a
deeper understanding of a problem’s intrinsic complexity.

So, because of these, the right way for designing parallel programs is to start
from unbounded parallelism and then transform the algorithm for bounded paral-
lelism. There are two methods for carrying out such transformations. One is the
decomposition of the problem into subproblems of smaller sizes, and another is
the decomposition of the algorithm into substeps in such a way that each of them
can be executed using a smaller number of processors.

The BMF programs usually reflect the unbounded parallelism. The functional
map, for example, has the time complexity equal to O(1) with a processor com-
plexity n (n is the list’s length).
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In order to transform BMF programs for bounded parallelism, we may introduce
the type [α]p of lists of length p, and affix functions defined on such lists with the
subscript p, e.g. mapp [3]. Partitioning of an arbitrary list into p sublists, called
blocks may be done by the distribution function:

(4) dist(p) : [α] → [[α]]p
The following obvious equality relates distribution with its inverse, flattening:
red(|) ◦ dist(p) = id, where | means concatenation.

Using these, we obtain the following equality for the functional map:

(5) map f = flat ◦mapp (map f) ◦ dist(p)

where the function flat : [[α]]p → [α] transforms a list of sublists into a list by
using concatenation (flat = red(|)).

For reduction, the transformation for bounded parallelism is as it follows:

(6) red(⊕) = redp(⊕) ◦mapp (red(⊕)) ◦ dist(p)

We will consider that only the functions with subscription p will be distributed
over the processors. The others will be sequentially computed.

4. Case-study: Rank Sort

The idea of the rank sort algorithm is the following: determine the rank of each
element in the unsorted sequence and place it in the position according to its rank.
The rank of an element is equal to the number of elements smaller than it [4].

Rank sort is not exactly a good sequential sorting algorithm because the time
complexity in the sequential case is: O(n2) (n is the length of the sequence). But
this algorithm leads to good parallel algorithms.

Using this simple example, we are going to illustrate that the abstract design
using BMF can comprise different cases that may appear at the implementation
phase: shared memory versus distributed memory and pipeline computation, and
different numbers of processors. So, the abstractness of this formalism does not
exclude performance.

4.1. BMF design. By using the definition of the method we arrive to the follow-
ing simple BMF program:

(7)

rank : [α] → [α]
rank l = map (count l) l

count : [α]× α → [α]
count l x = red(+) ◦map (f x) l

f : α× α → α

f x y =
{

1, if x ≥ y
0, if x < y
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A simple and obvious transformation can be made:

(8) red(+) ◦map (f x) l = red(+) (map (f x) l)

which simple means that the application of the function f x is made in the same
step with the reduction, not in a separate sequent step.

4.2. Unbounded parallelism. We will analyze first the unbounded parallelism.
For computing the first functional map we need a number of processors equal
to the length of the input list – n. Each application of the function count l
is a reduction which can be computed with O(log n) time complexity and O(n)
processor complexity. So, for whole program the unbounded time complexity is
O(log n) with the processor complexity equal to O(n2).

4.3. Bounded parallelism. For bounded parallelism we need to transform the
program by imposing the number of processors to be equal to p. For the transfor-
mation we use the function dist(p).

As it may be noticed from the specification, the algorithm contains two phases:
one represented by the function map and the other represented by the function
count, each of them having the list l as argument. The function dist(p) simple
divided the argument list into p balanced sublists. So we may apply it for the
computation of the function map, or for the computation of the function count,
or for both.

There are two cases that we have to take into account:
(1) p ≤ n,
(2) n < p ≤ n2

4.3.1. Case p ≤ n. If the number of processes is less or equal to the size of the
sequence, than the function dist(p) may be applied only once: for the function
map, or for the function count.

In the first case we obtain the following BMF program, by using the equational
rule (5):

(9) rank l = (flat ◦mapp (map count l) ◦ dist(p)) l
count l x = red(+) (map (f x) l)

This means that each processor sequentially computes the ranks for n/p elements.
If we applied the function dist to the function count we obtain the following

BMF program:

(10)
rank l = map (count l) l
count l x = redp(+) ◦mapp (red(+)) ◦ (map (f x)) ◦ dist(p) l

Here we have used the equational rule (6). This program sequentially computes
the ranks of the elements, but the the ranks are computed in parallel using p
processors. For computing the rank of an element x, the processors compare x
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forall (i = 0; i < p; i + +) do in parallel
for (k = 0; k < n/p; k + +) do

global read(A[i ∗ n/p + k], ak);
r = 0;
for (j = 0; j < n; j + +) do { count the numbers less than ak}

global read(A[j], aj);
if (aj < ak) r + +; fi

rof
global write(r,R[i ∗ n/p + k]);

rof
llarof

Figure 1. The SM program for p ≤ n

with all their n/p local elements and compute local ranks; then the local ranks are
added.

The two cases reflect different ways for algorithm decomposition in substeps,
which can be computed with p processors. We consider that the functions with
the subscript p will be computed in parallel on the p processors, and the functions
without subscription will be computed sequentially. This leads to the following
time complexities: (n2/p) for the first case, and (n2/p + n log p) for the second.
Obvious the first is the best.

Implementations for p ≤ n. On Shared Memory (SM) architectures the list l is
shared by all processors, so normally we will choose the first case with the better
time complexity. We may transform the correspondent BMF program into the
PRAM-like program described in the Figure 4.3.1.

Each processor makes n2/p readings and n/p writings from/in the shared mem-
ory. If we consider a CREW architecture the complexity is (n2/p+α(n2/p+n/p)),
where α is the unit time for shared memory access.

On a Distributed Memory (DM) architecture, the second alternative is better
since we have the list distributed over the processors. An element is broadcasted
to all the processors during the step that computes its rank - so there are n steps.
Each processor compares the current received element with the local elements and
computes a local rank. Local ranks are summed using a tree like computation that
represents the reduction. A psudo-MPI program is described in the Figure 4.3.1.

The time complexity is given by the following expression: n(n/p+log p(1+β)+
bβ), where β is the unit time for communication, and constant b reflects the time
for broadcast.

Pipeline architectures may also be used for implementing this algorithm. If
there are n processors, each processor has a local value a[i]. The elements of
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Rank(mypid) :
for (i = 0; i < n; i + +) do

Bcast(A[i]); { the root is the process that contains A[i] }
rl = ComputeLocalRank(A[i]);
Reduce(rl,mypid);

rof

Figure 2. The DM program for p ≤ n

the list are piped into the pipeline, and the rank is updated in each processor by
comparing the piped value with the local value. The current rank is also piped
into the pipeline. If p < n than each processor makes more comparisons at each
step. The time complexity, for this implementation, is: (n+p−1)(n/p+β), where
β is the unit time for communication between two processors.

4.3.2. Case n < p ≤ n2. If we have more than n processors and p = q ∗ r, we may
use the function dist for map and also for count computations. So, we arrive to
the following BMF program:

(11) rank l = (flat ◦mapq (map count l) ◦ dist(q)) l
count l x = redr(+) ◦mapr (red(+)) ◦ (map (f x)) ◦ dist(r) l

The time complexity for this case is (n/q)(n/r + log r).
On a SM architecture the program differs by the program presented in Figure

4.3.1 with the fact that for each element the function count is computed using
a tree-like computation. Each processor makes n2/p + (n/q) log r readings and
(n/q) log r writings from/in the shared memory.

For a DM architecture the processes may be arranged on a q× r mesh, and the
data distribution of the first line may be replicated on the other lines of processors.
Each line computes the ranks of a sublist with n/q elements. The time complexity
is n2/p + n/q(log r(1 + β) + bβ).

A pipeline architecture with more than n processors is no useful for this problem.

5. Conclusions

We have analyzed here the developing of parallel programs for rank sorting
using Bird-Meertens formalism. First, a general unbounded parallel program is
constructed. Then, we transform the program, by imposing a limited number
of processors. Three variants are obtained, two for the case p ≤ n and one for
the case n < p ≤ n2. Then the implementations of the programs onto shared
memory (SM), distributed memory (DM), and pipeline architectures are analyzed.
If p ≤ n the first BMF variant is used for implementation on SM architectures; for
DM and also for pipeline architectures the second variant is most appropriate. A
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pipeline architecture with more than n processors for this problem is not useful.
If n < p ≤ n2 the implementations on SM and DM architectures start from the
same BMF program. For the DM case data replication is going to be used.

Time complexities for each case are analyzed too.
Parallel programs for rank sorting have been developed before, rank sorting

algorithm being one that shows that a poor sequential algorithm for a problem
may lead to very good parallel algorithms. It has been considered especially for
sorting on SM machines [7]. We have shown here in a formalized way that we
may successful use it for DM and pipeline architectures. Also, we have formally
analyzed the case when the number of processes p is between n and n2.

Yet, with this example, a more important thing has been emphasized: BMF
programs can be formally transformed for bounded parallelism and the variants
which are obtained may be analyzed later for choosing the right one for a specific
target machine.

The abstract design using BMF can comprise different cases that may appear
at the implementation phase: shared memory versus distributed memory and
pipeline computation, and different numbers of processors. So, the abstractness
of this formalism does not exclude performance.
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