
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL
TECHNIQUE

R. GORUNESCU AND D. DUMITRESCU

Abstract. Since the various clustering methods developed over the time
have failed to prove their flawless efficiency in the field, it might be that
evolutionary computation holds the solution to this issue as well.

The goal of this paper is to present such an evolutionary technique with
a classical clustering engine behind it.

Keywords: incremental clustering, evolutionary computation, genetic
algorithms, merging, splitting, weighted similarity measures

1. Introduction

A new evolutionary clustering technique is proposed. This method represents
an evolutionary variant of the incremental clustering technique.

Incremental clustering (IC)[6] is a powerful clustering method that is of great
interest mainly because the number of clusters is not specified. This feature is very
important in the field of unsupervised learning. Therefore, instances are added one
by one forming a tree, starting with an empty root node. The best location for
the new instance or the best restructuring of the part of the tree affected by it is
determined by several operators, operators whose diversity leads us to the second
reason behind the success of the IC method. The ordinary Euclidean distance -
usually used for building an objective function - is replaced by a function called
category utility which measures the quality of the partitioning.

2. Incremental Clustering

The idea behind the IC algorithm is quite simple. We start with an empty
root. Instances are added sequentially until there are none remaining, as follows:
for each instance we compute the category utility of placing it into an existing
leaf versus the category utility of forming a leaf by itself. Whichever is better will
determine the location of that instance. This is the general approach, but if we

Received by the editors: September 12, 2003.
2000 Mathematics Subject Classification. 62H30, 68T20.
1998 CR Categories and Descriptors. I.5.3 [Pattern Recognition]: Clustering – Clustering

algorithms; I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods and Search –
Heuristic methods.

25

26 R. GORUNESCU AND D. DUMITRESCU

were to continue in this manner the resulting clustering would be dependent on the
order in which instances were considered. Therefore, we move on to the next two
operators that intervene now in the process. Firstly, there is the merging operator
- that is combining two classes into a single one before the new instance is added
to the resulting leaf - and secondly, the reverse one, that is the splitting operator
- dividing a class into two. These two operators have proven to be extremely im-
portant in balancing the possible negative effects of the above mentioned ordering
of instances.

2.1. Category utility criterion. A function to measure the quality of the clus-
tering with a complex role is considered. The proposed function maximizes both
the probability that instances in the same class have common attribute values and
the probability that instances from different classes do not.

Let us consider the following notations:
P (A = v|C) is the probability that an instance has value v for its attribute

A, given that it belongs to class C. The higher the probability, the more likely
instances in the same class will have attribute values in common.

P (C|A = v) is the probability that an instance belongs to class C, given that it
has value v for its attribute A. The higher the probability, the less likely instances
from different classes will have common attribute values.

P (A = v) is a weight of the fact that frequently occurring attribute values have
a stronger influence on the evaluation.

Let C1, ..., Ck be the current partition. The category utility function U(C1, ..., Ck)
is the quantity defined as follows:

U(C1, ..., Ck) =
∑

C

∑

A

∑
v

P (A = v)P (A = v|C)P (C|A = v),

where the first sum is taken with respect to all clusters, the second one with
respect to all attributes of the members in class C and the third with respect to
the attribute values.

However, this expression is not the one that is being used in practice. Instead,
we will use a slightly changed form. This new expression is obtained by applying
the Bayes formula for conditional probabilities, that is

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A),
and thus by simplying the first expression using the above formula, we obtain:

∑

C

∑

A

∑
v

P (A = v|C)2P (C)

The final form of the category utility will measure the amount by which in-
formation about what cluster the current instance is in does make a difference,
compared to the situation of not knowing anything about the cluster structure,
summed over all the clusters by their probabilities. Finally it is divided by the

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 27

number of clusters to discourage the phenomenon that each instance would be put
in its own cluster.

3. A new evolutionary clustering algorithm

The drawbacks of the IC method are not particularly disturbing at large, with
only one exception. To what extent is the final result dependent on the order of
examples? Are the two operators - splitting and merging - sufficient to prevent
this dependence?

The present method is desired to take care of this aspect through the tech-
niques of evolutionary computation, on the one hand, and to take advantage of
the characteristics of a powerful method, the incremental clustering, on the other
hand.

The incremental nature of the IC method will be preserved precisely. The mech-
anisms of evolutionary algorithms will provide the several parallel possibilities of
ordering the instances. The effect of the merging and splitting operations will be
identical to that of the original method by means of the recombination and muta-
tion operators. Finally, the expression of the fitness function will be inspired from
the category utility criterion, but dwelt upon more from a similarity comparison
between instances point of view rather than from a probabilistic one.

3.1. Representation. Initial population. The value of a gene will represent
the cluster number of the instance labelled with the position of that gene. That
is, if we denote by c the current chromosome, then ci will give the number of the
cluster in which the i-th instance will be, i = 1, ..., m, where m is the number of
instances of the specified database. For example, if we have four objects, then
the chromosome (1,3,3,2) means that instance one is in a cluster, instance four in
another cluster, and instances two and three in the third cluster.

The initial population will be made up of chromosomes with a single 1-valued
arbitrary position, that is for every chromosome we take randomly an instance
and put it in the first cluster. In this way, the algorithm starts to offer several
parallel possibilities of ordering the data, and continues furthermore in this sense
by the means of a special variation operator.

3.2. Fitness function. First of all, we have to define the similarity measure be-
tween two instances of our considered database, since our function is built upon
its expression. We have used a weighted similarity measure, since each attribute
of our data has a different degree of importance in the field they are extracted
from.

distance(a, b) =
n∑

k=1

compare(ak, bk),

where a and b are the two instances and n represents the number of attributes.
At this point there are two cases:

28 R. GORUNESCU AND D. DUMITRESCU

(i) If we are dealing with numerical attributes, the difference between the two
attributes is the square weighted Euclidian similarity measure, that is:

compare(ak, bk) = (ak − bk)2weightk,

where weightk is a positive number specifying the importance of attribute k.
(ii) In the other case, of the nominal attributes, we have considered their rep-

resentation as fuzzy. Therefore, for the difference between such attributes, the
max-min distance specific to fuzzy data is considered:

compare(ak, bk) = max(
nk

min
i=1

)(ai
k, 1− bi

k)weightk,

where nk is the number of values for the k-th attribute of the chromosome.
For the expression of the fitness value, we will act as it follows.
Let c be the current chromosome and we would like to compute its performance.
Then

eval(c) =

k∑
Clst=1

∑
i,j=1,...,m,i<j,ci=cj=Clst

distance(instancei, instancej)

k
,

where instancei represents the i - th instance in the database and k represents
the number of clusters denoted by that chromosome.

If a gene with a unique value in that chromosome is found, its penalty (instead
of the distance function in the above formula) for forming a cluster of its own will
be 1.

The division by the number of clusters prevents the phenomenon of too crowded
clusters.

As it can be easily seen, this performance function is somewhat similar to
the expression of the category utility in IC, with the significant difference that,
while category utility has to be maximized, we are trying to minimize our fitness
function.

Another fitness evaluation can be considered independent of the category utility
criterion, but still considering the basic idea of clustering, that is minimizing intra-
class distance and maximizing inter-class distance. Therefore, we are led to the
following multi objective optimization problem (MOEA):

f1(c) =

∑
k

∑
ci=cj=ck

d(instancei, instancej)

|ck|2 → min

and

f2(c) =

∑
k

∑
ci=ck,cj 6=ck

d(instancei, instancej)

|ck|2 → max

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 29

Standard MOEAs [1] can be used for solving our problem.
The output of a MOEA is a set of feasible solutions, the optimal Pareto solutions

[1].
To avoid difficulty in choosing a single Pareto solution, we propose to combine

the objective functions f1 and f2 in a unique criterion function:

F (c) = k1f1 + k2
1
f2

We are led to F → min.

3.3. Variation Operators.

3.3.1. Recombination. The standard 2:2 one point crossover operator is used. When
used, it will produce either a merging or a splitting of the two clusters involved.

The best two individuals from both parents and offsprings are kept.

3.3.2. Mutation. As regarding mutation, special interest has to be paid, as two
types are considered.

The first one is in charge of splitting. When a gene is considered for this kind
of mutation, a second one that has the same value is searched for, and if a single
one found, the current gene will get the number of the next cluster to be formed.
Else, nothing happens.

The second type of mutation puts the current instance (given by the index of
the current gene) in an existing cluster, whether that instance is or not part of a
cluster containing other instances as well. This second mutation operator is clearly
in charge either of splitting or merging.

Again the best individual among parent and offspring is accepted in the new
population, in both cases.

3.3.3. Increment. A new variation operator — increment — is introduced. It is
applied for every chromosome, taking randomly a gene of the current one, whose
value is necessarily zero, and assigning it either the number for the next cluster
to be formed or the number of an existing cluster. This operator is in charge of
keeping the incremental nature taken over from the IC method. It actually puts
an undistributed instance in a new or an existing cluster.

3.3.4. Stop condition. The algorithm stops when, after a number of iterations,
considered equal in value to the number of the objects in the data set, no progress
in the value of the overall fitness function can be observed.

The best chromosome from the final population will give the optimal clustering.

3.4. Other parameter settings and experimental results. Consider a fic-
tional data set that describes the weather conditions for playing some unspecified
game[6] given in Table 1.

30 R. GORUNESCU AND D. DUMITRESCU

id
o
u
tl

o
o
k

te
m

p
e
r
a
tu

r
e

h
u
m

id
it
y

w
in

d
y

x
1

(s
u
n
n
y
-0

.7
8
,o

v
er

ca
st

-0
.4

5
,r

a
in

y
-0

.2
0
)

(h
o
t-

0
.9

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.1

0
)

(h
ig

h
-0

.7
8
,n

o
rm

a
l-
0
.1

2
)

(t
ru

e-
0
.1

3
,f
a
ls

e-
0
.9

0
)

x
2

(s
u
n
n
y
-0

.8
0
,o

v
er

ca
st

-0
.3

4
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.8

0
,m

il
d
-0

.4
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.8
0
,n

o
rm

a
l-
0
.2

0
)

(t
ru

e-
0
.8

9
,f
a
ls

e-
0
.2

3
)

x
3

(s
u
n
n
y
-0

.3
0
,o

v
er

ca
st

-0
.8

5
,r

a
in

y
-0

.3
4
)

(h
o
t-

0
.9

0
,m

il
d
-0

.3
0
,c

o
o
l-
0
.1

0
)

(h
ig

h
-0

.9
0
,n

o
rm

a
l-
0
.3

0
)

(t
ru

e-
0
.1

6
,f
a
ls

e-
0
.7

7
)

x
4

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.9
0
)

(h
o
t-

0
.4

0
,m

il
d
-0

.8
0
,c

o
o
l-
0
.5

0
)

(h
ig

h
-0

.7
0
,n

o
rm

a
l-
0
.1

0
)

(t
ru

e-
0
.2

2
,f
a
ls

e-
0
.8

6
)

x
5

(s
u
n
n
y
-0

.1
3
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.7
0
)

(h
o
t-

0
.1

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.8

0
)

(h
ig

h
-0

.3
0
,n

o
rm

a
l-
0
.8

0
)

(t
ru

e-
0
.1

5
,f
a
ls

e-
0
.8

8
)

x
6

(s
u
n
n
y
-0

.2
0
,o

v
er

ca
st

-0
.4

0
,r

a
in

y
-0

.8
7
)

(h
o
t-

0
.2

0
,m

il
d
-0

.4
0
,c

o
o
l-
0
.9

0
)

(h
ig

h
-0

.3
0
,n

o
rm

a
l-
0
.7

9
)

(t
ru

e-
0
.7

7
,f
a
ls

e-
0
.3

0
)

x
7

(s
u
n
n
y
-0

.5
0
,o

v
er

ca
st

-0
.8

0
,r

a
in

y
-0

.3
0
)

(h
o
t-

0
.3

0
,m

il
d
-0

.2
0
,c

o
o
l-
0
.9

2
)

(h
ig

h
-0

.4
0
,n

o
rm

a
l-
0
.9

8
)

(t
ru

e-
0
.8

9
,f
a
ls

e-
0
.2

0
)

x
8

(s
u
n
n
y
-0

.9
0
,o

v
er

ca
st

-0
.7

0
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.6

0
,m

il
d
-0

.8
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.8
4
,n

o
rm

a
l-
0
.2

2
)

(t
ru

e-
0
.1

4
,f
a
ls

e-
0
.8

8
)

x
9

(s
u
n
n
y
-0

.7
8
,o

v
er

ca
st

-0
.3

4
,r

a
in

y
-0

.2
0
)

(h
o
t-

0
.2

0
,m

il
d
-0

.6
0
,c

o
o
l-
0
.9

6
)

(h
ig

h
-0

.1
3
,n

o
rm

a
l-
0
.9

5
)

(t
ru

e-
0
.1

0
,f
a
ls

e-
0
.9

8
)

x
1
0

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.7
0
)

(h
o
t-

0
.1

0
,m

il
d
-0

.9
0
,c

o
o
l-
0
.5

0
)

(h
ig

h
-0

.2
4
,n

o
rm

a
l-
0
.8

7
)

(t
ru

e-
0
.3

4
,f
a
ls

e-
0
.6

8
)

x
1
1

(s
u
n
n
y
-0

.8
0
,o

v
er

ca
st

-0
.3

0
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.2

0
,m

il
d
-0

.8
7
,c

o
o
l-
0
.4

0
)

(h
ig

h
-0

.3
2
,n

o
rm

a
l-
0
.8

9
)

(t
ru

e-
0
.5

6
,f
a
ls

e-
0
.4

5
)

x
1
2

(s
u
n
n
y
-0

.4
0
,o

v
er

ca
st

-0
.9

0
,r

a
in

y
-0

.3
0
)

(h
o
t-

0
.1

2
,m

il
d
-0

.9
0
,c

o
o
l-
0
.6

0
)

(h
ig

h
-0

.8
2
,n

o
rm

a
l-
0
.3

0
)

(t
ru

e-
0
.8

5
,f
a
ls

e-
0
.3

0
)

x
1
3

(s
u
n
n
y
-0

.2
0
,o

v
er

ca
st

-0
.9

0
,r

a
in

y
-0

.5
0
)

(h
o
t-

0
.9

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.4
0
,n

o
rm

a
l-
0
.8

0
)

(t
ru

e-
0
.6

5
,f
a
ls

e-
0
.2

2
)

x
1
4

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.3

0
,r

a
in

y
-0

.9
0
)

(h
o
t-

0
.4

0
,m

il
d
-0

.7
8
,c

o
o
l-
0
.1

1
)

(h
ig

h
-0

.9
8
,n

o
rm

a
l-
0
.1

4
)

(t
ru

e-
0
.9

4
,f
a
ls

e-
0
.1

2
)

0
.2

0
.3

0
.1

0
.4

T
a
b
l
e

1
.

T
he

w
ea

th
er

da
ta

se
t

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 31

We consider the values for the other parameters involved given in Table 2.

population size recombination probability mutation probability
100 0.7 0.7

Table 2. Algorithm parameter values

The best chromosome obtained is:

5 5 3 6 2 7 7 6 4 2 4 1 8 1

Therefore, the corresponding classes are:

A1 = {x1, x2},

A2 = {x3},

A3 = {x4, x8},

A4 = {x5, x10},

A5 = {x6, x7},

A6 = {x9, x11},

A7 = {x12, x14}
and

A8 = {x13}.
What is very encouraging is that all the final chromosomes provide in 9 cases

out of 10 the following clustering results:
(i) instances x6, x7 in a cluster,
(ii) instances x5, x10 in a cluster,
(iii) instances x3, x8 in a cluster,
(iv) instances x1, x2 in a cluster, and
(v) instances x12, x14 in a cluster.

32 R. GORUNESCU AND D. DUMITRESCU

3.5. Conclusions and future work. The proposed method provides a good
enough clustering method. In future work, a better control over the merging and
the splitting is desired.

Moreover, a comparison between the results of the original IC method and the
evolutionary one would be of real interest.

References

[1] Coello Coello, C., Van Veldhuizen, D., Lamont, G., Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic/Plenum Publishers, New York, 2002.

[2] Dumitrescu, D., Genetic Algorithms and Evolution Strategies, Blue Publishing House, Cluj-
Napoca 2000

[3] Dumitrescu, D., Lazzerini, B., Jain, L., C., Dumitrescu, A., Evolutionary Computation, CRC
Press, Boca Raton, Florida, 2000

[4] Gorunescu, R., Evolutionary Incremental Clustering. A New Technique for Detecting Natural
Grouping, Research Notes in Artificial Intelligence and Digital Communications, 103, 2003,
73–81

[5] Michalewicz, Z., Genetic Algorithms + Data Structures + Evolution Programs, 2nd edition,
Springer - Verlag, 1992

[6] Witten, I., H., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann, 1999

Faculty of Mathematics and Computer Science, Department of Computer Science,
University of Craiova, 13 Al. I. Cuza 1100 Craiova Romania

E-mail address: ruxandragorunescu@yahoo.com

Faculty of Mathematics and Computer Science, Department of Computer Science,
Babes-Bolyai University, 3400 Cluj - Napoca Romania

E-mail address: ddumitr@cs.ubbcluj.ro

