
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

A NEW INTERFACE FOR REINFORCEMENT LEARNING
SOFTWARE

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about its
performance. In this paper we propose an original interface for programming
reinforcement learning simulations in known environments. Using this inter-
face, there are possible simulations both for reinforcement learning based on
the states’ utilities and learning based on actions’ values (Q-learning).
Keywords: Reinforcement Learning, Agents.

1. Introduction

The interface is realized in JDK 1.4, and is meant to facilitate to develop soft-
ware for reinforcement learning in known environments.

There are three basic objects:agents, environments and simulations.
The agent is the learning agent and the environment is the task that it inter-

acts with. The simulation manages the interaction between the agent and the
environment, collects data and manages the display, if any.

Generally, the inputs of the agent are perceptions about the environment (in our
case states from the environment), the outputs are actions, and the environment
offers rewards after interacting with it.

Figure 1 illustrates the interaction between the agent and the environment in a
reinforcement learning task.

The reward is a number; the environment, the actions and perceptions are
instances of classes derived from the IEnvironment, IAction and IState interfaces
respectively. The implementation of actions and perception can be arbitrary as
long as they are understood properly by the agent and the environment. It is
obvious that the agent and the environment has to be chosen to be compatible
with each other in this way.

Received by the editors: December, 10, 2002.
2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial In-

telligence – Learning.

3



4 GABRIELA ŞERBAN

Figure 1. The interaction between the agent and the environment

The interaction between the agent and the environment is handled in discrete
time. We assume we are working with simulations. In other words there are no
real-time constraints enforced by the interface: the environment waits for the agent
while the agent is selecting its action and the agent waits for the environment while
the environment is computing its next state.

We assume that the agent’s environment is a finite Markov Decision Process.
For using the interface, the user has to define the specialized object classes

HisState, HisEnvironment and HisAgent, by creating instances for each. The agent
and the environment are then passed to a simulation object (CSimulation), that
initializes and interconnects them. Then, CSimulation::init() will initialize and
execute the simulation.

If the agent learns the states’ utilities, it has to be derived from the AgentUtility
class, otherwise, if it learns the actions’ values (Q-learning) it has to be derived
from the AgentQValues class.

In the followings we present a prototypical example for a concrete agent.
(1) First, the user defines the class corresponding to a concrete state of the

environment.
public class HisState implements IState
{...}

(2) Second, the user defines the class corresponding to the concrete environ-
ment in which the agent acts.
public class HisEnvironment implements IEnvironment
{...}

(3) The user defines the class corresponding to the concrete agent.
public class HisAgent implements AgentUtility
{



A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 5

public void actions(){...}
}
if the agent learns the states’ utilities, respectively
public class HisAgent implements AgentQValues
{

public void actions(){...}
}
if the agent learns the actions’ values.
Using the method actions(), the agent perceives the actions that can be
executed. In our approach, the agent’s actions are numbered (starting
from 1).

(4) Finally, the user defines the application class which initializes the simu-
lation of learning process for the concrete agent in the concrete environ-
ment.
class Application {

public static void main(String args[]){
IEnvironment m=new HisEnvironment();
RLAgent ag=new HisAgent();

//the agent perceives its actions
ag.actions();

//instantiation for the object that realizes the simulation
CSimulation s=new CSimulation(ag, m);

//on initialize the simulation - α, γ, ε, number of episodes
s.init(0.01, 0.3, 0.1, 10);

//on display the policy
s.policy(System.out);

}
We have to mention that the learning algorithms used for implementing the

agents’ behavior are the URU algorithm [4] for learning the states’ utilities (values),
respectively the SARSA algorithm [1] for Q-learning.

2. The Design of the Interface

The classes used for realizing the interface are the following:
• IList INTERFACE

Defines the structure of a list of objects, having operations for man-
aging the list: adding an element on a given position, removing an ele-
ment from a given position, returning the number of elements from the
list, returning an element from a given position.

• IState INTERFACE
Defines the structure of a state from the environment (could have an

explicit representation or an implicit one if the environment is unknown



6 GABRIELA ŞERBAN

and the agent has to retain a model of the environment). The methods
of this class are for: returning a String with the member data of the
class, testing the equality of two states.

• IAction INTERFACE
Defines the structure of an action that the agent could execute. The

methods of this class are for: returning a String with the member data
of the class, testing the equality of two states.

• Element ABSTRACT CLASS
Defines a generic element represented as a triplet (IState, IAction,

value) needed for realizing the learning. Depending on the learning agent
(learns the states’ or the actions’ values), value will represent the utility
of the state IState, respectively the Q-value of the pair (IState, IAction).

• Utility SUBCLASS of Element
Defines the class corresponding to an element (defined above) used

in learning the states’ utilities.
• QValues SUBCLASS of Element

Defines the class corresponding to an element (defined above) used
in learning the actions’ values.

AGENT

The agent is the entity that interacts with the environment, receives perceptions
(states) from it and selects actions. The agent learns by reinforcement and could
have or not a model of the environment.

• RLAgent ABSTRACT CLASS
Is the basic class for all the agents. The specific agents will be

instances of subclasses derived from RLAgent. The methods of this class
are:
(1) void actions() ABSTRACT METHOD

This function is given by the user for the specialized agent class and
defines the list of actions that the agent could execute.

(2) Element choose(Element e, Integer r, double epsilon, IEnvi-
ronment m) ABSTRACT METHOD
This function is used in learning and allows the choice of the next
element (having the type QValues or Utility , depending of the
chosen learning type) to which the agent moves, starting from the
current element e, in the environment m and choosing as a selection
mechanism the ε-Greedy selection (epsilon is given as parameter).
After this choice, the parameter r will contain the reward obtained
by the agent.
This method will have specific definition according to the learning
method (Q-value, utility).



A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 7

(3) QValues next(IState s, IEnvironment m) ABSTRACT
METHOD
This function gives the agent’s policy for moving after learning. If
the object having the type QValues returned by the method contains
the state snext and the action a, it means that the agent’s policy is
the following: from the state s, the agent will choose the action a
and will move to the state surm.
This function has specific definition according to the agent’s type,
too.

(4) Element initial(IState s) ABSTRACT METHOD
The state s being the initial state of the environment, the method
returns the initial element (QValues or Utility, corresponding to
the learning’s type) which will starts the learning. This method
has specific definition according to the agent’s type.

(5) void learning(double alpha, double gamma, double epsilon, int
episodes, IEnvironment m)
Is the basic method which implements the learning algorithm of
the agent in the environment m. There are given: the learning
rate (alpha), the reward factor (gamma), the value for epsilon for
the ε-Greedy selection mechanism, the number of training episodes
(episodes).
This method is not abstract, is concretely defined in the class RLA-
gent (indifferent what is the learning’s type, the learning method is
the same).

• AgentUtility ABSTRACT CLASS
Is a subclass of the class RLAgent, being the entity which defines the

behavior of an agent that learns by reinforcement based on the states’
utilities. This class specializes the methods (2), (3) and (4) (defined in
the superclass) according to learning based on states’ utilities.

The method actions() is not defined in this class (that is why the
class is abstract), but will be defined in the class corresponding to the
specialized agent created by the user (and who can be an instance of a
class derived from AgentUtility).

• AgentQValues ABSTRACT CLASS
Is a subclass of the class RLAgent, being the entity which defines the

behavior of an agent that learns by reinforcement based on the actions’
values. This class specializes the methods (2), (3) and (4) (defined in
the superclass) according to the Q-learning method.

The method actions() is not defined in this class (that is why the
class is abstract), but will be defined in the class corresponding to the
specialized agent created by the user (and who can be an instance of a
class derived from AgentQValues).



8 GABRIELA ŞERBAN

ENVIRONMENT

The environment basically defines the problem to solve. It determines the
dynamic of the environment, the rewards and controls, the ending of the training
process. In our approach, the environment will have an implicit representation as
a space of sates (IState).

• IEnvironment INTERFACE
Is the basic class for all environments. The specific environments

will be instances of subclasses derived from IEnvironment. The environ-
ment classes defined by the user (subclasses of IEnvironment) will give
specialized definitions for the following functions:
(1) boolean isValid(IState s) ABSTRACT METHOD

Is the function that verifies if a state s (represented explicitly or
implicitly) is valid in its environment.

(2) IState initial() ABSTRACT METHOD
Is the method that returns the initial state of the environment (the
state that will be used for initializing the learning).

(3) boolean isFinal(IState s) ABSTRACT METHOD
Is the method that returns the final state of the environment (the
state that will be used by the agent for ending the training pro-
cess). The final state could be given explicitly, or given implicitly
by certain conditions.

(4) IState next(IState s, IAction a, Integer r) ABSTRACT
METHOD
Is the main method of the interface IEnvironment. This method
will be called by an instance of the class that simulates the learning
(CSimulation), at each step of the simulation.
This function determines the environment to make a transition from
the current state s to a next state surm, after executing the specific
action a. The state surm will be returned, the function supplying
in the same time the reward r obtained after the transition.
In the case that the action a could not be applied in the state s, the
method returns null.

(5) double value(IState s) ABSTRACT METHOD
Is the method that gives the value of a state in the environment (the
initial utility of the state and the initial Q-values). We considered
that this value depends only on the current state, not on the selected
action (in the case of Q-learning).
This method will be used for initializing the learning process.

SIMULATION

• CSimulation INTERFACE



A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 9

Is the basic object of the interface, that manages the interaction
between the agent and the environment. Defines the heart of the inter-
face, the uniform usage that all agents and environments are meant to
conform to.

An instance of the simulation class is associated with an instance of
an agent and an environment at the creation moment. This is made in
the constructor of the class CSimulation. The methods of this class are
for:
(1) void init(double alpha, double gamma, double epsilon, int

episodes)
Is the method that initializes the simulation with the given param-
eters (is the function that starts the learning process of the agent).

(2) void policy(PrintStream ps)
Is the method that gives the moving policy for the agent, obtained
at the end of the simulation (after the training process).
The class CSimulation keeps references to the instances of the agent
and the environment. This facilitates cross-references of instances
in case it is need.

public class CSimulation
{

private RLAgent a; //reference to the agent’s instance
private IEnvironment m; //reference to the environment’s instance
...

}

3. Experiment

In this section we illustrate the use of the interface on a concrete example.
Let us consider the problem of a path-finding robot, whose goal is to learn (by
reinforcement) to come out from a maze (moving from an initial to a final state).

We assume that:
• the maze has a rectangular form; in some positions there are obstacles;

the agent starts in a given state and tries to reach a final (goal) state,
avoiding the obstacles;

• from a certain position on the maze the agent could move in four direc-
tions: north, south, east, west (there are four possible actions);

For example, let us consider the environment from Figure 2. The state marked
with 1 represents the initial state of the agent, the state marked with 2 represents
the final state and the states filled with black contain obstacles (which the agent
should avoid).

For using the interface, we defined the specialized classes for which we exe-
cuted the simulation (HisState, HisEnvironment and HisAgent) (For lack of space



10 GABRIELA ŞERBAN

Figure 2. The agent’s environment

the complete description of the classes may be found at the following URL:
http://www.cs.ubbcluj.ro/∼gabis/agent.zip).

The moving policy learned by the agent after the training and reported by the
CSimulation object is the same in both learning cases (states’ utilities or Q-values).
The learned path is: (4,1)-(3,1)-(2,2)-(2,3)-(1,3)-(1,4), respectively the sequence
of actions that the agent should execute is: North, East, North, East, North, East.

4. Further Work

A further work for generalizing the interface would be the study of the case in
which the agent’s environment is a Hidden Markov Model [3].

References

[1] Sutton, R., Barto, A., G., Reinforcement learning, The MIT Press, Cambridge, England,
1998

[2] Serban, G., A Reinforcement Learning Intelligent Agent, Studia Universitatis ”Babes-
Bolyai”, Informatica, XLVI (2), 2001, pp. 9–18

[3] Serban, G., Training Hidden Markov Models – a Method for Training Intelligent Agents,
Proceedings of the Second International Workshop of Central and Eastern Europe on
Multi-Agent Systems, Krakow, Poland, 2001, pp. 267–276

[4] Serban, G., A New Reinforcement Learning Algorithm, Studia Universitatis ”Babes-
Bolyai”, Informatica, XLVIII (1), 2003, pp. 3–14

”Babeş-Bolyai” University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro


