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A DESIGN PROPOSAL FOR AN OBJECT ORIENTED
ALGEBRAIC LIBRARY

VIRGINIA NICULESCU

ABsTrRACT. Object oriented programming and design patterns introduce a
high level of abstraction that allows us to implement and work with math-
ematical abstractions. Classic algebraic libraries, based on imperative pro-
gramming, contain subalgorithms for working with polynomials, matrices,
vectors, etc. Their big inconvenience is the dependency on types. For exam-
ple, a polynomial can be built over any kind of algebraic unitary commutative
ring (R, +, *), and we have to define a different set of procedures that imple-
ment the common operations with polynomials, for every such ring.

We propose here an object oriented approach for designing an algebraic
library, based on design patterns, which remove this inconvenient. The big
advantage of this approach is given by the creational design patterns, specif-
ically Abstract Factory and Singleton. They introduce significant flexibility
and abstractness. Thus, we may work with abstract algebraic structures,
such as: groups, rings, fields, etc., like mathematicians do.
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1. INTRODUCTION

During the time, many algebraic libraries, which contain subalgorithms for
working with polynomials, matrices, vectors, etc., have been built [7, 8, 2].

The big inconvenience of classic imperative algebraic libraries is their depen-
dency on the types. For example, an polynomial can be built over any kind of
algebraic unitary commutative ring (R, +, ), and we have to define a different set
of procedures that implement the common operations with polynomials, for every
such ring.

Some other approaches are based on generic programming[8]. This may repre-
sent a solution but it has some inconveniences:
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e Not all object oriented languages have mechanisms for genericity, and
those having these mechanisms — like STL of C++ — don’t offer the
possibility to constrain the parameterized types to any explicit condi-
tions. (Still, in the “Generic Java” proposals, the parametric types may
be constrained to some conditions[10], but GJ is yet not used.)

e A parameterized matrix multiplication routine could be written and in-
stantiated for matrices over integers, rationals, maybe real and complex
numbers, numbers in Z/mZ and so on. But, this will produce the com-
plete multiplication code for each type, in the executable.

Object oriented programming and design patterns form a very good framework
for implementing a general algebraic library. We analyze here an object oriented
approach for designing an algebraic library, based on design patterns, which re-
move the inconvenient of type dependency. We will create abstract classes that
implement general abstract algebraic structures, and we will use Abstract Factory
design pattern for building the special values.

Object oriented programming has been used before for designing some algebraic
libraries [8], but the difference is given by the usage of creational design patterns.
In this way, we can build not only a flexible numerical algebraic library, but a
general abstract algebraic library.

2. CREATIONAL DESIGN PATTERNS

Creational design patterns abstract the instantiation process. They are based on
composition and inheritance. They allow us to make the pass from the hardcoding
of a fixed set of behaviors towards defining a smaller set of fundamental behaviors
that can be composed into any number of more complex ones. Thus, creating
objects with particular behaviors requires more than simply instantiating a class.
Five creational design patterns are considered to be classic: Abstract Factory,
Prototype, Factory Method, Builder and Singleton [5].

We need, for our library, to use some special values, such as null and unity
elements, in some classes where we don’t know the concrete type of the special
values. So, we have to create them by using special methods.

For example, building a general class for a polynomial does not have to be
dependent on the coefficient types. So, we will use a general abstract type for the
coeflicients. But for the implementation of the class polynomial, we need to work
with the special values 0 and 1.

Abstract Factory, Factory Method, and Prototype design pattern may be used
for our purpose, and we analyse which one is more appropriate.

Factory Method is not appropriate for building the library, because it imposes
the derivation of new classes for the main algebraic structures. For example, for a
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polynomial, the purpose is to define in our library a completely defined class, and
let the user to use it for any appropriate coefficient type.

The Prototype pattern may be used with some advantages. The Prototype pat-
tern imposes only that every type defines a method clone, that allow an element
to be copied. The advantage is that using the Prototype pattern leads to fewer
classes than using the Abstract Factory pattern, but the structuring of the library
would not be so good.

So, we have chosen the Abstract Factory design pattern. Different factory
classes that define creational methods for the special values are defined, such as:
GroupFactory, FieldFactory, etc.

Factory classes may use Singleton pattern, in order to allow a single factory
instance for each type.

3. THE DESIGN SCHEME

We start from a general algebraic element: AlgElem, which is implemented as
an interface with no methods. We define the interfaces corresponding to algebraic
elements, starting from their definition.

3.1. Basic structures. A very well known and used basic algebraic structure is
the group. We define consequently an interface GroupElem that extends AlgElem
(Figure 1). This interface contains a method isZero() that allows us to verify
if an element is the identity element or not, a method for the computation of
the opposite for an element, and a method for the operation +. The method
isAddCommutative () will be defined to return true or false, depending on the
concrete case. If it is possible, this method should be defined static, and implicitly
returning false.

Rings are other basic algebraic structures, and corresponding to them, we
define three interfaces: RingElem, UnitaryRingElem, DivisionRingElem, and
FieldElenm (Figure 1). For fields, which are commutative division rings the corre-
sponding interface is FieldElem.

The method isMultiplyCommutative() returns true or false in the ring
classes, and always true for the field classes.

The method isInvertible() returns always true for DivisonRingElem and
FieldElem objects. Similarly, the method isMultiplyCommutative () always re-
turn true, in the classes implementing the FieldElem interface.

3.2. Polynomials. Now we consider the set of all polynomials — R[X], over a
commutative ring with identity (R, +,-). R[X] is a subring with identity of the
ring (RN, +, ), where RN is the set of all functions with the domain N and codomain
R.
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FIGURE 1. The class diagram for the basic structures

Corresponding to these, we consider two interfaces derived from the interface
UnitaryRingElem: Polynomial and DivisionPolynomial (Figure 2).

The method division has some strong preconditions, assuring that the neces-
sary conditions for polynomials division are satisfied.
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FIGURE 2. The class diagram for polynomials

To implement a concrete class for the ADT Polynomial, we have to choose the
representation of the data. There are two classic ways for representation:

e using an array of coefficients;
e using a list of monoms.

We may also consider other storage formats, and, as well, we may introduce
storage format abstraction level like in [8]. This would mean creating another
abstract class StorageFormat, from which the specialized storage format classes
are derived. Bridge and Iterator patterns have to be used in this case.

In order to better illustrate the associated factory classes, we will consider in this
presentation only these two kinds of storage, and we will use simple inheritance.

Using the first representation, the operation of coefficient selection is very fast,
because of the direct access. The second one is very useful for the implementation
of sparse polynomials.
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Corresponding to each of them we define two concrete implementation classes
— ArrayPolynomial,
ArrayDivisionPolynomial and LinkedPolynomial, LinkedDivisionPolynomial.
The coefficients type is also UnitaryRingElem, and so the Composition pattern
is used here.

3.3. Matrices and Vectors. We start from the definition of the vector space.

Definition 1 (Vector Space). A wvector space over a field K is an abelian group
(V,+) together with a so-called external operation
K xV (kov)—k-v,
satisfing the following axioms:
(1) k- (v1+wv2) =k-v1 +k-vy;

(2) (k1—|-]<22)"l}:k‘1"0—|—]€2~1};
(3) (K1-k2) v ="Fy- (k2 v);
4) 1-v=w

Theorem 1. Let V be a vector space over K and n € N*. Then V" has a
structure of a vector space over K, where the operations are defined by

(1, 0) 4 (U], 00) = (V1 4+ vy, .. v + 1),
E(vi,...,vn) = (kvy,. .. ko),

where k € K and (vy,...,v,), (vy,...,v,) € V™.

For vectors implementation, we will consider the vector space, for which V =
W™, n € N*, where (W, +) is an abelian group. Corresponding to it, we build a
class Vector (Figure 3). The method
scalarProd(FieldElem) corresponds to the external operation.

We may consider the matrices to be elements of the vector space W™ (K) =
Mn(K). The corresponding class is SimpleMatrix.

If the elements of the matrices are unitary ring elements ((W,+,-) forms a
unitary ring), we can define a product operation between two matrices A and B
that respect the following property: cols(A) = rows(B) = n. The product matrix
C' is defined by:

n
c(i,j) =Y a(i, k) - b(k, 5)-
k=0
For this case, we defined a class Matrix derived from the class SimpleMatrix
(Figure 3).
Some specific operations can be defined for matrices, such as computation of
the rank.



A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 95

N

GroupElem

A

<4interfaces >
iz ctor

addil

/‘{75“'32; a4 T‘?\

Arrayhie ctor eeinterfaces > Linkedvector
SimplemMatrix

GroupFactory 43 Group Facter
/ ciinterfacer > \ i L

fatrix

Arraysim plehdatrix Linked Simplefatrx

m ultip 1wy

D may

“dinterfaces
Arraytdatrix Squarehdatrix LinkadMatrix

inwersa ()
is0nel)

determ ()
visln\rertible() Y:?\\x

SrrvEgllare Matriy Linked Squarehdatrix

FieldFactor UnimryRingElem Field Factons

FI1GURE 3. The class diagram for Vectors and Matrices

Square matrices with elements from a unitary ring (R, 4+, -) form also a unitary
ring (Figure 3). On square matrices we may introduce many specific operations,
such as computation of the determinant, and of the inverse matrix, etc. The class
SquareMatrix is derived from the class Matrix, and it has specific methods.
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For matrices, we may also consider two classic ways for data representation,
corresponding to dense and to sparse matrices:

e using a bi-dimensional array of elements;
e using a list of triples.

Corresponding to these representation, we have two kinds of concrete classes for
matrices (Figure 3). Like for the polynomials case, Composition design pattern is
also used for vectors and matrices.

3.4. Other Structures and Classes. The library may be extended with many
other structures and classes.

For example, we can add a general abstract class named AlgebraicSystem,
which allows the user to solve a n x n algebraic system. The concrete classes
derived from it, will implement some concrete solving methods.

3.5. Factories. For simetry, we define an empty interface AlgFactory, which is
the root of factories hierarchy.

The interface GroupFactory declare only one method: createZero() :AlgElem.
The interface FieldFactory extends the interface GroupFactory, and adds a new
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FIGURE 5. The class diagram for some concrete factories

method: createOne() :AlgElem. We have chosen the name FieldFactory, be-
cause fields are much more used, but this interface will be also used for the unitary
and division rings.

In order to solve the problem of creation for the special value 0 and 1, the
implementations of the class Polynomial has to use a FieldFactory instance.
For example, one constructor of the class Polynomial creates an null polynomial.
To create a null polynomial, we have to create a null coefficient, and we can do this
by using the method createZero() of a class that implements FieldFactory.

The concrete classes for matrices also have to use a GroupFactory. Square
matrices classes need for the creation of identity matrices, both methods of a
FieldFactory.



98 VIRGINIA NICULESCU

Polynomial pl = new ArrayPolynomial(RealFactory.getInstance());

Polynomial p2 = new LinkedPolynomial(ComplexFactory.getInstance());

FIGURE 6. The creation of null polynomials over R and over C

Matrix ml new LinkedMatrix (10,10, RealFactory.getInstance());

Matrix m2 = new ArrayMatrix(10,10, ComplexFactory.getInstance());

FIGURE 7. The creation of two 10 x 10 matrices over R and over C

Matrix m = new ArraySquareMatrix(10,
new ArrayPolynomFactory(RealFactory.getInstance()))

FIGURE 8. The creation of a null 10 x 10 matrix over R[X]

GroupFactory and FieldFactory are basic factories. We may define some other
specialized factories, such as: PolynomFactory, MatrixFactory (Figure 5).
These classes create the null and the unity values for polynomials, and matrices.
These factories extend GroupFactory and FieldFactory, but in the same time
they use these interfaces for creation of their basic elements. Their constructors
receive a GroupFactory or a FieldFactory instance, which is used in the functions
createZero(), or createOne().

For concrete examples, concrete factories have to be built, and examples are
given for the real and complex numbers: RealFactory and ComplexFactory.
These concrete factories may implement Singleton[5] pattern.

4. IMPLEMENTATION

Any object oriented language can be chosen.

We have chosen Java because is an almost pure object oriented language, which
offers many advantages. We have been very interested in having a good and
simple mechanism for exception handling. We need it because there are many
preconditions that impose different types of verification — for example, the necessity
of checking if a parameter instance has a specific type. Our implementation in Java,
define a main package named Algebra, which has some subpackages: Factories,
BasicStructures, and Structures.
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5. CONCRETE EXAMPLES

Let’s consider that we need to work with polynomials with coefficients’ types:
real and complex. First, we define two classes Real and Complex, which implement
FieldElem interface. Also, two factory classes has to be built: RealFactory and
ComplexFactory, which implement the interface FieldFactory. The code showed
in the Figure 6 illustrates the creation of two null polynomials: one over the R
and another over the C.

Similarly, we can work with matrices with elements of type real and complex,
without creating any other class (Figure 7).

But, we can also work with matrices that have polynomial elements, like it is
showed in the Figure 8.

6. CONCLUSIONS AND FUTURE WORK

We have defined here a design scheme for a general algebraic library. The
design scheme is based on object oriented programming, and it offers generality
and flexibility. The Abstract Factory and Singleton creational design patterns,
and some other design patterns, such as Composition, have been used.

The library is designed in a way that offers the user the possibility of working
with general algebraic structures without concerning about the types dependencies.

Some general abstract algebraic structures and also some basic concrete alge-
braic structures have been designed. The users may define, without any problems,
other algebraic structures based on the abstract ones. Also, existing algebraic
structures may be combined and used in different ways. These are possible mainly
because of using creational design patterns.

The fact that OOP allows us to describe problems in the terms of the problem
space, rather than the terms of the solution space[3], is very well emphasized here.
We can work and reasoning with mathematical abstractions as: groups, fields,
rings, ...

This design scheme represents the first step for developing a general algebraic
library; in the next step we intend to introduce the storage format abstraction
level, which is based on Bridge and Iterator patterns. We intend to combine the
storage format abstraction level with Abstract Factory pattern, in a way in which
the factory will be also responsible for the creation of the specialized storage.
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