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AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR
DEDUCTIVE DATABASES

ADRIAN ONEŢ

Abstract. In this article we present a learning method to obtain rules for
the semantic query optimization in deductive databases. Semantic query
optimization can dramatically speed up deductive database query answering
by knowledge intensive reformulation. We will present a learning method for
rules that will help to semantically optimize queries for deductive databases.i
We tried to change the algorithm in [2] to work for deductive database as well
in this direction we propose a method for an approximate cost evaluation for
deductive database predicates.

1. Introduction.

The semantic query optimization (SQO) is based on the use of the semantic
rules, as it is There is no river trough Carei city. Using these rules, we can
reformulate the queries in lower cost ones, for example: Which are the cities that
are in the Carei neighborhood? (in the following we will consider that two cities are
neighbors if there exists a river that connects these two cities). Using the semantic
rules we can answer this query even without accessing the deductive database, so
we will obtain a 100% cost reduction. Average savings from 20 to 40 percents are
reported in the literature.

Unlike other systems, conceived for deriving rules from one database table,
the Hsu&Block inductive method [2] of learning can learn semantic rules from a
database with several relations (and, in our case, by using several base or derived
predicates). For instance, if we consider a database that contains three relations
pupils, bachelor grades, coordinator, the bachelor grades can concord with the
papers coordinator (e.g. All who have Mestereanu as coordinator obtained grades
superior to 9 at the bachelor exam). The learning algorithm can select the relevant
ways from the disjunction of two or more predicates (which is often made by
the user). By using the semantic relations that describe some regularities in the
disjunction of two or more predicates, our optimizer will be more than efficient
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in the diminution of more complex queries execution price. We need to underline
that this mechanism is profitable in a static database (without many updating in
the extensional database as well as in the intensional one).

2. The semantic query optimization

The semantic query optimization is applied to different database types. Al-
though the basic pattern of the semantic optimization refers only to the conjunc-
tive queries, it can also be extended to other types, more complex. The general
idea is that the complex queries can be decomposed in one or more conjunctive
queries; after that the system can apply the semantic optimization of these queries.
In this chapter we’ll focus only on the conjunctive queries.

For an easier comprehension, we’ll use the following knowledge database:
The extensional database structure:
Town [Name, Components]
Descriptions [Type Component, Description]
Integration [Component, Type Component]
Fraternity [Name Town1, Name Town2, Date]

with the following meaning: the relation town contains the name and the dif-
ferent components in this town (e.g. the town: Bucharest has the component:
Art Museum). The second relation, descriptions, obtains, for each component
type a description of the respective town (e.g. if the component Art Museum
belongs to the component type Historical Objective - according to the relation in-
tegration - and if in the relation description we have the tuple: Type Component:
Historical Objective Description: Tourism, than we can say that Bucharest town
is a touristic town). As we have already shown, the relation integration tells us
to which type component belongs a component by a transitivity relation. Finally,
the relation fraternity gives us information about towns which are united, such
as the date when they established the fraternity.

The intensional database structure: (in order to describe the intensional data-
base, we maintain the Prolog syntax regarding to the variables and constants
name)

objectives(Locality, Objective) :-
town(Locality, Component),

type objective(Component, Type component),
descriptions(Type component, Objective).

type objective(Component, Type component) :-
integration(Component, Type component).

type objective(Component, Type component) :-
integration(Component, Type component1),

type objective(Type component1, Type component).
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We consider the following data in the extensional database:
Town
CAREI CASTLE
CAREI PARK
TURDA FACTORY
CLUJ SQUARE
CLUJ BOTANIC GARDEN
DEJ FACTORY

Descriptions
HISTORICAL OBJECTIVE TOURISM
WORKS POLLUTION
GREEN SAPCES BEAUTY
COMMERCIAL PLACES BUSINESS

Integration
CASTEL MONUMENT
MONUMENT HISTORICAL OBJECTIVE
FACTORY WORKS
PARK GREEN SPACES
SQUARE COMMERCIAL PLACES
BOTANIC GARDEN GREEN SPACES

Fraternity
CAREI DEJ
TURDA CLUJ
CLUJ DEJ

The main principle of the semantic query optimization is based on finding the
equivalent queries for the initial query, but at a lower cost. The construction of
the equivalent queries with the initial query is realized by using some semantic
rules, which will be learned by the system from the previous queries. By a lower
cost of the queries we understand a real cost approximation (the exact calculus of
the cost would determine the diminution of the algorithm efficiency).

The difference between the syntactic optimization and the semantic one consists
in using the semantic knowledge for expanding the search field for the semantic op-
timization. The conventional syntactic optimizations search the cheaper equivalent
queries from the logical point of view for the initial queries [5] (the optimizations
which re-sort literals/constraints belong to this category). The semantic optimiza-
tion, on the other hand, searches the queries with the lowest cost equivalent to
the initial query, by giving some semantic information. That is why, this type of
optimization has a bigger search field and the lowest cost is also more probable
comparing to the queries obtained by the syntactic optimization.
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3. The learning model

In this sequence we try to present a learning model of the semantic rules (model
presented in [2]). The figure 1 shows the database organization with a semantic
optimizer and a learning system. The optimizer uses the semantic rules in order
to optimize the queries and to send the optimized queries to rule on the deductive
database in order to find the result. When the deductive database is dealing with
a complex query (we mean expansive), the optimizer connects the learning system
to learn a set of rules which are to be used for the optimization of other similar
queries. The system will learn gradually sets of rules used for optimization.

Query
optimizer

intensional DB

extensional DB

Learning
system

query reformulated query

deductive database

rule bank

Fig.1 The structure of a knowledge database with a semantic optimizer

In the figure 2 there is a simple example of such a learning/optimization pattern.
This model consists in two components [Chun95], a learning inductive component
and an operational one. A query will call the learning component; afterward
the system will apply an inductive learning algorithm to induct an alternative
query of the initial query, but at a lower cost. Afterwards, the operationalization
component, using the initial query and the alternative query learned, deduce a set
of semantic rules.

In this example, the tuples from the relation are considered positive or negative
depending of the query satisfaction or non satisfaction. The alternative query will
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have to cover only the positive instances of the relation, thus the response to the
alternative query will be the same as for the main query.

(A2£0)Ù(A3=2)

A1     A2      A3

A        1        2

B        1        2

Z        0        2

-

-

+

EDB

Alternative query

A1=Z

( ( A 2 £ 0 ) Ù ( A 3 = 2 ) ) Û ( A 1 = Z )

( ( A 2 £ 0 ) Ù ( A 3 = 2 ) ) Û ( A 1 = Z )

( A 1 = Z ) Þ( A 3 = 2 )

( A 1 = Z ) Þ ( A 2 £ 0 )
o p e r a t i o n a l i z a t i o n

I n d u c t i v e  d e s c r i p t i o n
f o r m a t i o n

q u e r y  s a m p l e

e q u i v a l e n t  q u e r i e s r u l e s  t o  b e  l e a r n e d

Fig.2 A learning pattern

Given a set of queries considered positive or negative, the problem of finding a
description which covers only the positive instances, is named supervised inductive
learning [2]. The more difficult problem is to compare the cost of different queries
(when choosing the most appropriate semantic rule). If we use a calculus of the
real cost, this optimization algorithm could not justify its objectives (the cost of
such a calculus is big enough, sometimes even impossible to calculate). In this
chapter we propose less expansive method which approximates the cost of such
queries.

The operationalization component deduces semantic rules by using two equiva-
lent queries. These two queries consist in two phases. In the first one, the system
transforms the equivalence of the two queries into Horn clauses. For instance,
given the queries: (A2 ≤ 0)∧ (A3 = 2) and the equivalent query A1=’Z’, they will
be transformed in two clauses:
1)(A2 ≤ 0) ∧ (A3 = 2) ⇒ A1 =′ Z ′

2)A1 =′ Z ′ ⇒ (A2 ≤ 0) ∧ (A3 = 2)
The second rule can be expanded again in order to satisfy the Horn clause syntax:
3)A1 =′ Z ′ ⇒ (A2 < 0)
4)A1 =′ Z ′ ⇒ (A3 = 2)

After transformation, we obtain the rules 1), 3) and 4) which satisfy our syn-
tactic demands. In the second phase, the system tries to compress the antecedents
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of these rules for reducing their cost. Thus, if the rules have more than one an-
tecedent, can be used the greedy minimal cover algorithm in order to eliminate
the respective constraints. The minimal cover problem is to find a sub-set from a
collection of sets, thus the reunion of the sub-set sets is equal to the reunion of all
sets. Denying both of the first rule parts, we obtain:
¬(A1 =′ Z ′) ⇒ ¬(A2 ≤ 0) ∨ ¬(A3 = 2)

Thus, for the clause 1), we have the following problem: given a set collection
which satisfy ¬(A2 ≤ 0) ∨ ¬(A3 = 2) find the minimum number of sets which
satisfy ¬(A1 =′ Z ′). If we suppose that the minimum set of the sets which covers
¬(A1 =′ Z ′) is ¬(A2 ≤ 0), then, in this case we can also eliminate ¬(A3 = 2) from
the rule and, after the clause denying, we obtain: (A2 ≤ 0) ⇒ A1 =′ Z ′

4. Alternative query learning

In this sequence, we present an inductive learning method of the alternative
queries with reduced cost. In the figure 1, it was given an example with only
one predicate, but, usually, the deductive databases consist in more predicates
(the basic databases as well as the derived ones), and the queries structure often
implies relations of the join type. The inductive learning model described is able
to learn conjunctive queries at reduced cost from the deductive databases with
more predicates.

Before describing the model, we have to introduce two terms that describe the
queries obtained, such as: internal disjunctions (constraints over one attribute
value), join constraints (they specify a constraint over one or several attributes
from different predicates) [4].

The learning model is an extension of the greedy algorithm which learns internal
disjunctions from one database created with one table, algorithm proposed by
Haussler [3]. This algorithm starts from an empty hypothesis of the concept to
be learned, then continues by constructing a set of candidate constraints which
respect all the positive instances, in order to choose the most promising constraints
by using one heuristic function such gain/cost, which is added to the hypothesis.
This process is repeated until negative instance doesn’t satisfy the hypothesis.

The algorithm has as entrance the Q query and the predicates from the deduc-
tive database. We call the base relation the relation that must be accessed for
the initial queries. If the output attributes of the query are connected to different
predicates, then the base relation is the relation resulted from the join of these
relations. For example, if, in our case, we consider the query What towns have as
main objective the beauty the base relation would be given by the predicate ob-
jectives, the tuples of this relation (the ones marked by + are those who satisfy
the query):
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Objectives
CAREI TOURISM
CAREI BEAUTY +
TURDA POLLUTION
CLUJ BUSINESS
CLUJ BEAUTY +
DEJ POLLUTION

Initially, the system determines the base relation of the entrance query, then it
marks its instances as being positive or negative (an instance will be marked as
positive if it satisfies the query, and as negative on the contrary)

Algorithm Learning alternative queries
Input: Q- entrance query, DDB - deductive database
Output: AQ - alternative query
Let r = base relation for Q
Let AQ = ® - alternative query
Let C = ® - candidate constraints set

It builds candidate constraints for r and added to C
Repeat

Evaluates the rapport gain/cost of the constraints from C
Let c = the constraint with the lowest value for gain/cost from C
if gain(c)>0 then
add c to AQ
C = C - c
if AQ⇔Q then return AQ
else
if c is a constraint of the join type on the new relation r’ then
build candidate constraints for r’ and it is added to C

end if
end if

end if
until gain(c) = 0

return failure - because it wasn’t found AQ equivalent to Q
end algorithm

In this algorithm we still have to explain how the constraints were built and
how the calculus of the heuristic function gain/cost was made.

5. Building the candidate constraints

For every attribute from the base relation, the system can build an internal dis-
junction, as well as a candidate constraint, by generalizing the positive instances
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attributes value. For the query given as example for the first attribute from the
base relation we have the following values: Carei, Cluj, and, if we consider the
second attribute, we have the value beauty. Similarly, the system can also consider
the constraints of join type as well as the candidate constraints if it consists in all
the positive instances. If, for example, we have join between objectives and fra-
ternity, we’ll obtain the relation (we marked with + the instances which satisfy
the query)

Objectives⊗Fraternity
CAREI TOURISM CAREI DEJ
CAREI BEAUTY CAREI DEJ +
TURDA POLLUTION TURDA CLUJ
CLUJ BUSINESS CLUJ DEJ
CLUJ BEAUTY CLUJ DEJ +

We can notice that this kind of relation can help us finding a candidate con-
straint, for example for the second attribute of the predicate fraternity, we have,
for all the positive instances the value DEJ (we have to consider, of course, the
cost as well, but in most of the cases, the cost of one join is lower then the cost of
traversal of one relation of the join [6]).

6. The evaluation of the candidate constraints

Once built the set of the candidate constraints, we will have to establish which is
the most promising one and to add it to the hypothesis (see the algorithm). To do
it, we’ll have to evaluate the gain/cost value for each constraint, where by gain we
mean the number of excluded negative instances. For the basic predicates there is
one set of algorithms that approximate the cost function of their physical structure
[5],[6]); in the case of derived predicates, their cost estimation is more difficult.
We’ll present as follows an estimation method for the cost of these predicates (the
costs also depend, of course, on the basic predicates access).

The cost estimation method is a rewriting method. Consequently, we add a
new basic predicate estimated cost(predicate, cost) whose argument is the
predicate, that is the estimated cost of the given predicate. The algorithm con-
sists in the modification of the tuples corresponding to the relation function of the
introduced relations (thus, as it is no longer necessary to access these predicates
when calculating, but only to consult the relation corresponding to the predicate
estimated cost). Initially, for each derived predicate, will exist a corresponding
tuple with the initial value is 1. For our example, we will have:

estimated cost
objectives 1
type objective 1
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The next step consists in rewriting the rules so that they can evaluate the ap-
proximated cost of a predicate. To do this, we’ll have to add another attribute
to every derived predicate and that will represent the cost. Thus, this cost will
increase at every call of the clause function of the dimensions of the relations cor-
responding to the other predicates and function of the dimension of the relations
corresponding to the basic predicates (here we can optimize by introducing other
parameters such as indexes [5]) which compose the respective clause. Thus, for
our example, we’ll have the following intensional database (after rewriting):

objectives(Locality, Objective, Cost objectives) :-
town(Locality, Component),

type objective(Component, Type component, Cost type objective),
descriptions(Type component, Objective).

Cost objectives=dim town * Cost type objective * dim description.
type objective(Component, Type Component, Cost type objective) :-

integration(Component, Type Component),
Cost type objective=dim integration.

type objective(Component, Type Component, Cost type objective) :-
integration(Component, Type Component1),

type objective(Type Component1, Type Component,
Cost type objective intermediary),

Cost type objective = dim integration *Cost type objective intermediary.
Where dim town, dim description, dim integration are some variables repre-

senting the cost of the access to the relations: Objective, Description, and Integra-
tion. All that remains to do is to memorize the results in the relation corresponding
to the predicate estimated cost, which can be realized by using an update pred-
icate (by updating one predicate value cost we’ll understand the change with the
cost biggest value) of the tuples at the call of each predicate. This is not recom-
mended because there can exist internal predicates which are not called explicitly
by the query, but called only by other predicates whose cost is not evaluated. That
is why, we have chosen (for now - in the future, we are counting on finding a better
solution) to integrate this update predicate in every clause, corresponding to the
heading predicate. Thus, for the previous example, we have (supposing that the
update predicate is named cost update(predicate, cost)):
objectives(Locality, Objective, Cost objectives) :-

town(Locality, Component),
type objective(Component, Type Component, Cost type objective),

description(Type Component, Objective),
Cost objectives=dim town * Cost type objective * dim description,

Cost update(objectives, Cost objectives).
type objective(Component, Type Component, Cost type objective) :-
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integration(Component,Type Component),
Cost type objective= dim integration,

Cost update(type objective, Cost type objective).

type objective(Component, Type Component, Cost type objective) :-
integration(Component,Type Component1),

type objective(Type Component1, Type Component, Cost type objective inter),
Cost type objective = dim integration * cost type objective inter,

Cost update(type objective, Cost type objective).

The predicate Cost update/2, as we have specified, will change the predicate
(the first parameter) cost value (the second parameter) in the relation correspond-
ing to the predicate estimated cost/2, only if the cost value given by the second
parameter is bigger then the value found in the relation.

This algorithm works very good for the systems whose evaluation is bottom-
up (it ignores the parameters link); in the top-down case, there are differences
between the cost of a predicate which has no linked parameter and the cost of
a predicate which has all the parameters linked. That is why, for the top-down
evaluation systems, we change the previous algorithm so that this evaluation still
makes the difference between the parameters different ways of linking. The modi-
fication consists in adding a new attribute to the relation estimated cost/3 that
tells us for what link type the cost is calculated. Consequently, in our example,
the relation contains initially:

estimated cost
objectives bb 1
objectives bf 1
objectives fb 1
objectives ff 1
type objective bb 1
type objective bf 1
type objective fb 1
type objective ff 1

We can notice that we only considered the parameters that entered in the initial
relation. The clauses will be also modified, meaning that we will add one parameter
from the list type to each derived predicate. This parameter will tell us about the
way that the link is realised for the predicate, at that moment; thus, the way of a
variable link also depends on the way that the previous predicate was evaluated.
Our intensional base will be as follows:

objectives(Locality, Objective, Cost objectives, Link Objectives) :-
town(Locality, Component),

type objective(Component, Type Component, Cost type objective, [b,f]),
descriptions(Type Component, Objective),
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Cost objectives=dim town * Cost type objective * dim descriptions,
Cost update(objectives, Cost objectives, Link Objectives).

type objective(Component, Type Component, Cost type obj, Link type obj) :-
integrare(Component, Type Component),

Cost type obj= dim integrare,
Cost update(type objective, Cost type obj, Link type obj).

type objective(Component, Type Component, Cost type obj, Link type obj):-
integration(Component,Type Component1),

value(2,Link type obj,L),
type objective(Type Component1,Type Component,Cost type obj inter,[b,L]),

Cost type obj = dim integration*cost type obj inter,
Cost update(type obj, Cost type obj,Link type obj).

We used the value/3 predicate that indicates the way of link of the parameter
given by number by the first argument from the link list given as the second
argument, and the third argument will make us return to the respective value.
For example, the predicate value/3 description will be:
value(1,[A| ],A).
value(N,[ |T],A):- succ(N1,N), value(N1,T,A).

At every derived predicate call, we’ll also have to precise the way of parameters
linking (for instance, the query What are the towns that have as principal objective
beauty is described as follows: ?:- objectives(Town, beauty, Cost, [f,b]) ).

We notice that, in this case, the cost update predicate has three arguments
(was also added the link list - a tuple from estimated cost is once identified by
the predicate name and by the way of the parameters linking).

In this algorithm constants were used for the cost of the relations corresponding
to the main predicates, these constants are calculated according to the formula
described by [6].

After this modification of the database, the cost calculus for the candidate
constraints is no longer an issue, because we have already calculated these costs
in the estimated cost relation; thus, using one traversal of this relation, we can
determine every derived predicate that belongs to a candidate constraint.

7. The search in the candidate constraints domain

When a join type constraint is chosen, a new relation is introduced in the
candidate constraints domain. The system can choose to add new constraints on
the account of the new relation from the hypothesis or to consider the attributes
of the old relation. When a join type constraint is added, the domain is devised in
two levels, if to the new introduced relation constraints a new join type constraint
is added; then, the domain will be devised in three levels and so on. The exhaustive
evaluation of the gain/cost for all the candidate constraints is not at all practical
when we deal with a big and complex database. The system introduce by [2] prefers
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the model that favors the candidate constraints of the new introduced relation.
Thus, when a join type constraint is selected, the system will consider only those
candidate constraints from the new level, until the system builds a hypothesis
that covers all the positive instances and no negative instance (that means that
it achieved its purpose), or until it can not find other constraints that have a
positive cost on that level. In the last case, the system returns to the previous
level, continuing searching. This evaluation method was chosen because a join
type constraint is less probable chosen from the rest of the constraints (usually,
the join constraints have a bigger cost); if this constraint was chosen, it means
that the rest of the constraints have a very high cost or a negative gain.

8. Conclusion

In this article we have shown that the knowledge required for semantic query
optimization can be learned under the guidance of the input queries. We have de-
scribed a method to approximate the query execution cost in deductive databases.
We can use this method in the inductive learning algorithm described by [2] for
semantic query optimization in deductive databases. A limitation of this semantic
query optimization approach is that there is no mechanism to deal with changes
in the deductive database. This problem can be solved as follows: when the de-
ductive database is changed, a maintenance system will be used to update the rule
bank so that there will remain only those rules which respects the updates made
to the deductive database.
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