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APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES
TO THE STUDY OF MIOCENE DEPOSITS OF BOROD BASIN

MIRELA POPA AND MARIA GABRIELA TRiMBII‘AS

ABSTRACT. In this paper we apply spatial database and structure to render
the paleo-relief of the Borod Basin. The boreholes data are stored in a spatial
database. For the effective surface rendering we use local-Shepard interpola-
tion with variable radius, based on a spatial grid and Delaunay triangulation.
The generated pictures are more realistic compared to picture generated by
mean of other methods.

1. LOCAL SHEPARD INTERPOLATION

The classical Shepard operator (see [19]) defined by
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where |.| denotes the Euclidean norm in R*, and X = {zg,z1,...,2,} C R is a

set of n + 1 pairwise distinct points, requires a large amount of computation. The
volume of computation can be reduced replacing the weight functions given by (2)
with the so called Franke-Little weights:
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(see [14, 12, 13]). In (3), R is a given positive real constant, and the 4+ subscript
denotes the positive part. Thus we obtain the local Shepard-operator:

(4) (Skuf) (@) =Y oy (@) f(ap).
k=0

This operator reproduces the values of f in x; and has the degree of exactness
equal to zero, that is reproduces the constant.

In order to increase the degree of exactness one tries to replace the values
f(xg) with the values of an interpolation operator: Taylor [9, 11, 8, 3, 10, 6],
Lagrange [4, 5, 6], Hermite [1, 5, 6], Birkhoff [2, 5, 6], least square approximation
[18, 16, 17, 21] and even spline[6]. The operators obtained in this way are called
combined Shepard operators.

In this paper we are interested in simple local Shepard operator, given by (4).

2. SPATIAL DATA STRUCTURES

In order to compute the various local Shepard-type interpolants we are in-
terested to report efficiently the point located into the ball B(x, R). The naive
approach (computing dy = |x — x| and checking di < R) needs a time O(n) for
each point . Computational geometry techniques and data structures allow us to
perform this task in polylogarithmic time.

Let P :={p1,...,pn} be aset of point from R* and Reg a region from the same
space. A s-dimensional range searching problem asks for the points from P lying
inside the query region Reg. If the region is a hyperparallelopiped, i.e. Reg =
[x1,2]] X -+ X [xs, )], then we have an orthogonal range-searching problem. If
Reg is a ball from R®, we have a circular range searching problem. Our approach
is to solve a simpler orthogonal range searching problem instead the circular range
searching (since this approach eliminates a large number of points) and then to
check the reported points.

One of the most used data structure for orthogonal range query is the range
tree[7]. A solution based on range tree is given in [20].

Another solution is inspired from a paper of Renka[l18] and presented exten-
sively in [21]. The smallest bounding box containing the interpolation nodes
I, [xﬁlin,xﬁlax] is partitioned into an uniform grid of cells, having NR cells
on each dimension. Each cell points to the list of point indices contained in that
cell. Such an example for the 2D case is given in Figure 1. The algorithm 1
describes the creation of the data structure. If the second argument N R is not
provided, we can initialize it with a default value; Renka suggests in [16]

NR = [(N/3)"/ 4.

The orthogonal range searching is easy to implement using this data structure
(the algorithm 2): first the cell which must be scanned are determined (i.e. the cell
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FIGURE 1. A 2D grid of cell and its representation

which intersects the searching domain), and then the list of points corresponding
to that cell are concatenated. The points from the outer cells which lie outside
the searching range must be eliminated.

Algorithm 1 Creating the cell grid

Input: the set of N points P, the number of cells, NR (optional);
Output: a grid of cell LCELL, each containing the list of points in the cell
set all cells to nil;

{compute the cell sizes}

dey == min(NR, |z}, —xl. | +1);

max min

dCs = mln(NR’ I_xfnax - xfninj =+ 1)’
for K := N downto 1 do
{find the cell}

iy ;= min(NR, [2¥ —zl, | +1);

is = Hlln(NR, \_-Tk xfninJ + 1)’

add K to the list LCELL(iq,...,is);
end for

Now we are able to compute the local Shepard interpolant on a set of points X:

e build the spatial data structure;
e for each point x in X
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— perform the orthogonal range searching into the hypercube centered
in x and with the radius R
— apply formulas (3) and (4).

Algorithm 2 The orthogonal range searching
PTLIST := nil,
{determine the outer cells, i. e. the scan limits}
iming = max(1, |(liminf, —xL ;. )/de1] +1);
imazy := min(NR, | (limsup; — xL;.)/dc1] + 1)

iming 1= max(1, | (liminfs — x3;,)/dcs] +1);
imaxs := min(NR, | (limsups — x5;,)/dcs] + 1)
for i1 := imin; to imax; do

for i, :=iming to imazxrs do
JL:= LCELL(iy,...,is);
if the cell (i1,...,%s) is peripheral then
remove the points which lay cell outside the searching range from JL;
end if
concatenate PTLIST and JL
end for

end for

This approach has a drawback: the accuracy tends to decrease into the areas
where the interpolation nodes are sparse. We can avoid this situation, allowing
the radius R to vary with k: the radii are chosen such that the ball B(z, R)
contains at least N,, nodes. Thus, instead of an orthogonal range searching we
perform a N,-th nearest neighbor search of xz; and x, respectively. This can be
done scanning the grid in a circular fashion starting with the cell containing x. In
order to facilitate the scanning we can associate a Boolean indicator to each cell,
which is true when the cell was already scanned.

3. THE GEOLOGICAL DATA

Borod Depression is located in the western part of the Apuseni Mountains,
being bordered by Plopisului Mountains in the north and by Padurea Craiului in
the south.

This depressionary area was formed about 12-16 million years ago, during the
Badenian, along a fault located on the northern border, in contact with the Plopis
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FIGURE 2. Geological boreholes

Mountains. Subsequently it represented a sedimentary basin where a thick suc-
cession of sediments (200-1000m) was accumulated.

The Neogene deposits representing the filling of the basin were assigned to three
different formations: Borod Formation (Badenian), Cornitel Formation (Sarma-
tian), and Beznea Formation (Pannonian) [15]. Each formation (unit) consists of
banks of rocks with a variable thickness, separated according to well-established
criteria.

This area was investigated during the last three decades by using geological
drilling (Figure 2. Geological studies based on borehole data imply the drawing
of:

e longitudinal and transversal geological profiles

e Isogram maps (isobath and isopachyte)

e 3-D modelling of the paleorelief at various levels (basement and top of
the formations);

For each borehole the database contains the following information:

- The borehole ID;

- The abscissa and the ordinate of the borehole;

- From one to four z-coordinates representing the borehole depth, corre-
sponding to Basement, Badenian, Sarmatian, and Pannonian age.
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The graphical representations offer a suggestive image on the specific features
of the basin formation and on its evolution in time. In the previous decades the
graphs — except for the 3-D — were performed manually. This stage was partly
overcome due to attempts to electronic processing of data, including 3-D modelling.
It is worth to mention that on an international level, computer graphics is currently
a common tool in geological sciences.

Our previous trials to draw 3-D block diagrams by using other types of operators
were not satisfactory. On the contrary, the method presented in the paper clearly
evidences the fractured areas (faults), the space arrangement of the geological
blocks, and the relationships among the various formations. The modelling of the
paleoenvironment at the basement level evidences the fault along the northern
border that shaped the basin formation. In the same time, the sets of faults that
shaped the pre-Neogene deposits (older than 65 million years) are also noticeable.
The graphs obtained for the top of the formations (Borod-yellow, Cornitel-green,
and Beznea-magenta) suggest the presence of some faults that have influenced also
the geological structure of these deposits. Some of these faults represent older,
basement-related ones that were subsequently reactivated; others are younger and
were probably generated by petrographical discontinuities in the deposits that
form the cover (Figures 3, 4).

A “scaled” reconstruction of a sedimentary basin at different stages of its evo-
lution is an extremely useful tool in the geological research. 3-D block diagrams
represent the most suggestive image of a basin at various formation stages if the
method of interpolation of data between different drill locations used was based
on the suitable operators.

The variable radius (range) local Shepard operator based on a rectangular net-
work (grids) as well as the Delaunay triangulation definitely provide a more sug-
gestive image on the spatial relationship between geological blocks.

The graph already presented are build on a rectangular grid. A more useful
and realistic manner is to generate surfaces over a polygonal convex area. This
can be achieved using a triangular grid the Delaunay triangulation (see [7]). The
idea is to consider a polygonal area and a sufficiently large number of points in
this area; we compute the function values on these points and then the Delaunay
triangulation for this set of points. The membership of a point to a region is
easily performed with this data structure. Finally, we render the surface on the
triangular grid computed in this way.

Figures 5 and 6 give such representations for the surfaces given in Figures 3
and 4, respectively.
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FIGURE 3. Representation: Basement — red, Badenian (top of
Borod Formation) — yellow, Sarmatian (top of Cornitel Forma-
tion) — green
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FIGURE 4. Representation: Basement — red, Badenian (top of
Borod Formation)- yellow, Sarmatian (top of Cornitel Formation)
— green, Pannonian (top of Beznea Formation) — magenta

4. CONCLUSIONS

The variable radius Shepard interpolation is a feasible approach for scattered
data interpolation. Using spatial data structures leads us to efficient algorithms
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FIGURE 5. Representation of the surfaces from Figure 3 using
Delaunay triangulation

FIGURE 6. Representation of the surfaces from Figure 4 using
Delaunay triangulation

for computing such interpolation operators and rendering the corresponding oper-
ators.

The method is also suitable from application point of view. It provides a more
suggestive image on the spatial relationship between geological blocks and reveals
some faults which other previous trials cannot reveal.
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