
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

SCHEDULING OPTIMALITY FOR THE PARALLEL
EXECUTION OF LOGIC PROGRAMS

MONICA VANCEA AND ALEXANDRU VANCEA

Abstract. Logic programming is the most widespread programming para-
digm used in artificial intelligence, a domain which needs intensive computing
resources. Parallel execution of logic programs is the most effective speedup
factor which can be applied for obtaining reasonable execution time in some
cases. Parallelizing compilers have the task to exploit the inherent parallelism
from the sequential programs having as the ultimate goal their efficient exe-
cution by means of building a time optimal schedule. These tools focus on the
inherent parallelism available at the level of the logic languages operational
semantics. Besides particular techniques for achieving optimal execution for
specific classes of logic programs, one question arises naturally: given an arbi-
trary logic program and a machine model which assumes sufficient but finite
resources, is it always possible to build a time optimal schedule ? This paper
defines the notion of time optimality and proves that in the general case, no
time optimal schedule can be built for a logic program, because there are
classes of logic programs which require infinite resources for accepting time
optimal schedules.

1. Preliminaries

Logic programming is the most popular programming model used in the area of
artificial intelligence. When using huge knowledge based systems, acceptable run
time for receiving the output results can be obtained only by implementing parallel
execution among the tasks generated by the corresponding goals. So, parallel
logic programming is sometimes the only possibility to deal with the complexity
of some artificial intelligence problems and on the other hand can be an adequate
solution for many significant run time optimizations even for the actual solutions
[2, 4, 6, 10].

Parallelizing compilers try to automatically and efficiently exploit the paral-
lelism available in a given program, transforming the programs into their parallel

Received by the editors: January 15, 2003.
2000 Mathematics Subject Classification. 68M20, 68N17, 68Q10.
1998 CR Categories and Descriptors. D.1.6. [Software]: Programming Techniques –

Logic Programming; D.1.3. [Software]: Programming Techniques – Parallel Programming;
D.2.9. [Software]: Software Engineering – Cost Estimation; D.4.1. [Software]: Operating
Systems – Scheduling.

15

16 MONICA VANCEA AND ALEXANDRU VANCEA

versions taking into account the existing data dependences [5, 7]. Naturally, this
transformations must assure that the semantics are the same.

Definition. Two program codes are said to be semantic equivalent if one of
them can be obtained from the other by applying a sequence of data dependence
preserving transformations.

The vast majority of studies upon optimality assume that the machine model
has sufficient but limited resources, meaning that the architecture can run any
program for which the number of resources needed is bounded by some arbitrary
integer [1, 8, 9]. We will denote it further as R and we make some standard
assumptions about the operations to be scheduled: for simplicity, we assume,
without loss of generality, that any resolution step of an elementary clause takes
one machine cycle.

Informally, through optimal parallelization of a program code, we understand
obtaining a semantically equivalent (SE) version of it which manages at every
moment t to schedule in parallel the execution of all its independent operations.
That’s why we will characterize such a program code as time optimal. Thus, the
parallelization process is optimal if we obtain a SE time optimal program code.

Formally, we give below three alternative definitions of this concept.
Definition. A program code P is said to be time optimal if any of the

following statements is true:

a) for every operation w executed at moment t, there exists a dependence chain
of length t which ends at w;

b) every execution E of P is running in the shortest possible time with regard to
the P ’s data dependences;

c) the length of any execution E (interpreted as an execution path in the data
dependence graph of P) is the length of the longest data dependence chain
from P .

2. Forward execution

When dealing with conditional predicates at the level of some loopings (recur-
sive calls for example), static scheduling alone cannot assure processors workload
balance, due to possible strongly different execution times required by the different
branches of such a decision structure. In general, these tests can not be evaluated
at compile time, so a scheduler has no information on which can decide a proper
load balance for obtaining a reasonable efficiency.

That is why in branch intensive programs time optimality cannot be achieved
without forward execution of branches, that is executing everything it can be
executed (as the time optimality definition requires) on every branch in advance,
independently of the results of decision testing. This assures that no processor will
be idle and that after evaluating the decision, the results will already be there,
computed, thus contributing to a significant speedup.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 17

predicates
p(integer,integer,integer).
q(integer,integer,integer,integer).

clauses
p(X_init,Y_init,0) :- !. % starting values for the iterative loop
p(X,Y,N) :- N1 is N-1, p(X1,Y1,N1), q(X,Y,X1,Y1).
q(X,Y,X1,Y1) :- X1>Y1, Z is f(X1), X is g(Z), Y is e(X). (A)
q(X,Y,X1,Y1) :- X1<=Y1, X is h(X1), Y is e(X). (B)

Figure 1. Code sequence illustrating the use of forward execution

We can define forward execution as follows:
Definition. Let S be a clause which is resolution dependent on a test clause T

in a logic program code. During the execution of the program code, the clause S
is said to be forward executed if it will be scheduled before or concurrent with
the resolution of T .

This means that the system will do useless work for obtaining better results.
Thus, there will be execution histories for which S will execute but its result will
not contribute to the program’s final output in any way.

We illustrate below the potential benefits of applying forward execution for the
component clauses of a looping (recursive) predicate which has conditional clauses.
Let’s consider the code sequence from Figure 1, which illustrates a conditional
iterative process (the input-output flow patterns are p(o, o, i) and q(o, o, i, i) and
f , g, h and e are numeric functions).

The sequential execution of the N calls requires between 3N (if all calls will
choose the B branch) and 4N (if all calls will choose the A branch) machine
cycles (remember that we assumed for simplicity that every elementary clause
resolution takes one cycle). With forward execution 2N + 3 cycles are needed
(evident from table 1, where we reduced the 4 sequential iteration steps to a
compact 2 resolution steps iteration), so for large N values the method will improve
the runtime execution by a factor of 2. Obviously, the operations scheduled in a
time step are executed in parallel. In Table 1 we illustrate what we can call the
execution model of the looping predicate, in which a call requires two units of
time.

Let’s notice that, by forward execution, we compute z := f(xB) in advance on
the false branch (variant B, even if maybe the next iteration won’t take the true
branch path so no z value will be needed) and together with the test evaluation
we also compute in advance xA := g(z). However, if the test output is false we
do not need this values at all. So, time optimality is achieved by adding an extra
resources cost.

18 MONICA VANCEA AND ALEXANDRU VANCEA

Time step Scheduled operations
True branch False branch

1 test(x > y); z := f(x); xB := h(x);
2 xA := g(z) y := e(xB)
3 y := e(xA); z := f(xA)

4, 6, . . . , 2k xA := g(z) test(x > y) xB := h(xB)
5, 7, . . . , 2k + 1 y := e(xA); z := f(xA) y := e(xB); z := f(xB)

Recursive call on the Recursive call on the
(A) branch (True) (B) branch (False)

Table 1. Time optimal schedule with forward execution for the
code in Figure 1

Ideally, making abstraction of the real execution conditions, which may vary a
lot from case to case, the amount of parallelism which can be exploited is limited
only by the data dependences between the program’s statements (this defines the so
called inherent parallelism). Hardware resource constraints, such as processors
and memory, may be eliminated, at least in theory, because we always may add
extra technical components to overcome the lack of resources. That is why the
most widespread execution models assume as we mentioned finite but unlimited
resources.

3. Time optimality for logic programs containing conditional
clauses

We approached forward execution in section 2 because it is evident that for
obtaining a time optimal schedule we have to apply it. Anyway, we will show that
there are cases when a time optimal schedule cannot be built with finite resources.
This can happen because of the conditionals which are part of the body of a
recursive predicate, when one branch can prevent the forward execution of some
activities belonging to the other branch. Then, it can be the case that time optimal
scheduling (based on its definition) forces at some moment t the parallel execution
of much more statements than the R resources can afford so we will conclude that
no time optimal schedule can be built for general logic programs. Intuitively, we
observe that conditional predicates combined with data dependence restrictions
prevent the load balancing of the activities which have to be scheduled in parallel,
by means of forward execution and obbeying the definition of time optimality. This
makes the finite but unlimited R resources of our machine model to be insufficient
for building a time optimal schedule in the general case. This is because the
number of resources needed becomes a function of time t, an unbounded value,
even if we accept that any program run on our machine model will eventually finish
its execution. So, general practical optimal scheduling is an intractable problem.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 19

predicates
p(integer,integer,integer).
q(integer,integer,integer,integer,integer,integer,integer).

clauses
p(X_init,Y_init,Z_init,0) :- !. % start values for iterative loop
p(X,Y,Z,N) :- N1 is N-1, p(X1,Y1,Z1,N1), q(X,Y,Z,X1,Y1,Z1,N1).
q(X,Y,Z,X1,Y1,Z1,N1) :- Z1>Y1, Z is f(X1,N1), Y is e(X1,Z). (A)
q(X,Y,Z,X1,Y1,Z1,N1) :- Z1<=Y1, X is h(X1), Y is e(X,Z1). (B)

Figure 2. Code sequence illustrating a conditional iterative process

We will ellaborate more formally on this intuitive observations in the following,
taking a suitable example to illustrate our point of view.

Theorem 1. A general logic program has no time optimal schedule.
Proof. Let’s notice that if we find only one class of logic programs and only

one particular execution history for which no time optimal schedule can be built
then our result holds. Recall that we assumed that any resolution step requires
exactly one time unit and that the definition of a time optimal schedule requires
any operation to be executed immediately after its input data become available
(without any supplimentary resource access restriction). So, we can consider for
example the program code in Figure 2.

There, the input-output flow patterns are p(o, o, o, i) and q(o, o, o, i, i, i, i). Pred-
icate p is a iterative recursive predicate which associates at any iteration current
values for the variables X, Y and Z by calling the q predicate. Current X, Y and
Z values are computed using the X, Y and Z values from the previous iteration
(these previous values are identified in the above code by variables X1, Y 1 and
Z1 and they are passed as parameters from one iteration to the next by means of
the recursive call of the p predicate). We will identify some particular predicates
from the above code as follows:

S0 ≡ p(X,Y,Z,N); S1 ≡ Z is f(X1,N1); S2 ≡ X is h(X1);
S3 ≡ Y is e(X1,Z); S4 ≡ Y is e(X,Z1); T1 ≡ Z1>Y1; T2 ≡ Z1<=Y1;
Using these notations we can identify the following dependences:
S0 → S0 (recursive self-dependence for accomplishing the iterative pro-

cess);
S2 → S4 (output X from S2 is used as input in S4);
S1 → S3 (output Z from S1 is used as input in S3);
S2 → S1 (X1 used as input in S1 is in fact the output X from the S2

previous iteration);
S2 → S3 (X1 used as input in S3 is in fact the output X from the S2

previous iteration);

20 MONICA VANCEA AND ALEXANDRU VANCEA

S2 → S2 (iteration carried self-dependence – X1 used as an input parameter
for function h is in fact the output X from the previous iteration of the same
clause);

S1 → T1,T2 (the output Z from S1 is used as input in the tests T1 and T2);
S3, S4 → T1,T2 (the output Y from S3 or S4 is used as input in the tests T1

and T2);
We will refer further to a particular execution history, namely the one that takes

the (A) branch for the first n1 iterations (T1 evaluated to false and T2 evaluated
to true) and the (B) branch for the remaining n2 ones (T2 evaluated to false and
T1 evaluated to true), with n2 6 n1. So, N = n1 + n2. Taking into account
the identified dependences and considering that the R resources of our machine
model do not add any other execution restrictions, any time optimal execution
of our program code will need n1 + 3 time units (remember that we assume that
every execution step requires exactly one machine cycle – or time unit – and that
the definition of a time optimal schedule requires that any operation takes place
as soon as the inputs are available, with no resource constraints). This becomes
evident looking at Table 2 where we show which operations are executing at each
time step. It is easy to see the pattern for the first n1 iterations (recursive calls):
for each k, 2 6 k 6 n1, iteration k executes the clause xk := h(xk−1) (S2) at time
step k and the clause yk := E(xk, z) (S4) together with the test T2 at the time
step k + 1.

We must notice that in the meantime no statement is available for the forward
execution on the (A) branch, due to the fact that the first execution of S1 must
wait on the final value of X issued by the self dependent predicate S2 after the
n1 iterations on the (B) branch. This value for X will not change further at all
(we said that the next n2 iterations all will go on the (A) branch). So, we have
now the function f and the last value of X available (from the n1 time step),
making theoretically possible that all the bindings to the Z variables to be made
simultaneously (in the same time unit). This can be done if we apply scalar
expansion [3] for being able to retain every instance of Z in a separate memory
cell (remember that we have finite but sufficient resources). So, for a time optimal
execution we must have at the time step n1+1, n2+2 operations: the n2 bindings
for Z’s together with the last test of the first n1 iterations (T2) and the binding
yn1 := E(xn1, z). After we have all the Z values, the same reasons force us to
compute all the data dependent Y values of S3 in the next time step. We can do
this applying again scalar expansion for the Y values and knowing that we have
enough resources for this. So, for a time optimal execution we must have at the
time step n1 + 2, n2 + 1 operations: the n2 bindings for the Y instances and the
evaluation of the test T1. After that, the only remaining operations are the n2
tests T1 which all can be evaluated in the time step n1 + 3, because the values
being compared are now all available.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 21

Time step Scheduled operations
1 z > y0 x1 := h(x0)
2 y1 := E(x1, z) x2 := h(x1)
3 z > y1 y2 := E(x2, z) x3 := h(x2)
4 z > y2 y3 := E(x3, z) x4 := h(x3)

.
n2
.

n1− 1 z > yn1−3 yn1−2 := E(xn1−2, z) xn1−1 := h(xn1−2)
n1 z > yn1−2 yn1−1 := E(xn1−1, z) xn1 := h(xn1−1);

iteration i = n1
z1 := f1(xn1),

n1 + 1 z > yn1−1 yn1 := E(xn1, z) z2 := f2(xn1),
. . . , zn2 := fn2(xn1)

n1 + 2 z > yn1 yn1+1 := E(xn1, z1) yn1+n2 := E(xn1, zn2)
n1 + 3 z > yn1+1 z2 > yn1+2 zn2 > yn1+n2

Table 2. Time optimal schedule for the code sequence in Figure 2

So, our analysis reveals that any time optimal execution of the above program
code will need n1 + 3 time units. Also, we need

• n2 + 2 resources in the n1 + 1 time step;
• n2 + 1 resources in the n1 + 2 time step;
• n2 resources in the n1 + 3 time step.

The problem in this case is that the number of resources (processors) needed at
a time step is a function of that time step (Resources(n1+1) = n2+2 = N−n1+2).
But if we have N >> R with n1, n2 >> R also, this means that even with the
finite but sufficient resources that we considered in our machine model (the
largest assumption we can made anyway for practical purposes) we have not
enough resources available to schedule the required operations for an
optimal execution . So, no optimal schedule exists for the execution of the
above logic program code.

We conclude then, that in the general case, no time optimal schedule is guar-
anteed to be found for a given program considering finite resources. ¥

4. Conclusions and future work

We showed in section 3 that a time optimal schedule cannot be built with
finite resources for a general logic program. We informally characterized one class
of logic programs (namely those containing conditional predicates) that has no
time optimal schedule and explained why it is so. This was sufficient for proving

22 MONICA VANCEA AND ALEXANDRU VANCEA

that no time optimal schedule exists for a logic program in the general case. A
thorough analysis of logic program features which determine the conditions under
time optimal schedules exists is what we intend to do as future research.

References

[1] F.E.Allen, Program optimization , in Annual Review in Automatic Programming 5, In-
ternational Tracts in Computer Science and Technology and their Applications, vol.13,
Pergamon Press, Oxford, England, 1969, 239–307.

[2] K.A.M. Ali, R. Karlsson, OR-Parallel Speedups in a Knowledge Based System: on
Muse and Aurora, in FGCS’92, Tokyo, 1992.

[3] D.Bacon, S.Graham and O.Sharp, Compiler Transformations for High-
Performance Computing, in ACM Computing Surveys, vol.26, no.4, December 1994, 345–
420.

[4] R. Bahgat and S. Gregory, Pandora: Non-deterministic Parallel Logic Program-
ming , in G.Levi and M.Martelli, editors, Proc. of the 6th International Conference on Logic
Porgramming. MIT Press, 1990.

[5] Utpal Banerjee, Dependence Analysis, Kluwer Academic Publishers, 1997.
[6] K.L. Clark, S. Gregory, PARLOG: Parallel Programming in Logic, in A.C.M.

TOPLAS, Vol. 8, No.1, Jan. 1986.
[7] Grigor Moldovan, Alexandru Vancea, Monica Vancea, Data dependence testing

for automatic parallelization , Studia Univ. Babeş-Bolyai, Informatica, vol.II, no.1, 1997,
3–18.

[8] D. Padua and M. Wolfe, Advanced compiler optimizations for supercomputers, in
Communications of ACM, 29, 1986, 1184–1201.

[9] Alexandru Vancea and Monica Vancea, Efficient Parallel Code Generation for
nested for-loops, Seminar on Computer Science, Preprint no.2, 1997, 179–188.

[10] Monica Vancea, Executia paralela a programelor logice, Sesiunea de Comunicări
Ştiinţifice Economia României la orizontul anului 2000, 14-15 noiembrie 1998, Cluj-Napoca,
in Studii şi Cercetări Economice, vol. XXVIII–XXIX, 1988, 985–995.

Faculty of Economic Science, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: vancea@econ.ubbcluj.ro

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca,
Romania

E-mail address: vancea@cs.ubbcluj.ro

