
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

A COST MODEL FOR THE AND-PARALLEL EXECUTION OF
LOGIC PROGRAMS

MONICA VANCEA AND ALEXANDRU VANCEA

Abstract. Almost all the results regarding the automatic parallelization of

logic programs assume ideal execution environments, focusing only on im-

plicit parallelism detection and not taking into account practical computing

system overheads. Trying to overcome such a drawback, we propose in this

paper a cost model for the AND-parallel execution of logic programs, which

is able to insert at compile time some cost functions which will estimate at

run time the parallel execution costs involved. The cost functions are de-

fined based on the particular computing system properties combined with

the parallelization process features. If the conditions evaluated by these cost

functions are met, the program is allowed to proceed in parallel. If not, it

means that parallel execution may even require extra time compared with the

sequential execution, so the code will be executed sequentially. We believe

that our model is of a very practical importance allowing the run time envi-

ronment to take the adequate decision with respect to the possibility of AND

parallel execution of the (implicit) parallelism present in the logic programs.

1. Preliminaries

Automatic parallelization is the most suitable technique at the moment for
exploiting the inherent parallelism from programs written in logic programming
languages [Sehr92].

Among the parallel execution models employed at the level of logic programming
languages, the AND parallel model raises the most complex problems [Chass84,
Herm89, Lin88]. That is because this model is confronted with data dependence re-
lations that appear frequently between the subgoals of a clause [Chang85, Shen92].
That is why, even if from a technically point of view we succeed to solve the ac-
tual automatic parallelization problem, the practical costs assumed by such an
action (involving intensive data dependence testing followed by the generation of
the equivalent parallel code) could be prohibitive.

2000 Mathematics Subject Classification. 68Q17, 68Q10, 68M20.
1998 CR Categories and Descriptors. D.1.6. [Software]: Programming Techniques –

Logic Programming; D.1.3. [Software]: Programming Techniques – Parallel Programming;

D.2.9. [Software]: Software Engineering – Cost Estimation; H.3.4. [Information Systems]:

Information Storage and Retrieval – Performance evaluation.

67

68 MONICA VANCEA AND ALEXANDRU VANCEA

When developing and analyzing parallel logic execution models we assume in
general an ideal execution environment, making abstraction of a significant number
of supplimentary practical costs (overheads). As examples of such overheads we
mention here the task creation overhead, the time cost of task switching between
processors, communication costs etc. The drawbacks implied by such practical
execution factors may lead not only to the diminishing of the parallel execution
performance, but even to a parallel execution time much greater than the cor-
responding sequential one! If such a situation is met, then parallel processing
becomes an inappropriate decision for the program’s execution.

In logic programming these issues are much more present in the case of AND
parallelism where the possible data dependencies and their management may imply
significant costs compared to other types of logic parallelism (like OR parallelism
for example where such issues are not so critical [Chass94, Lusk90]).

These are the reason for which we propose in this paper a cost model for the
AND parallelization of a sequential logic program. By applying this model we can
estimate if the implied parallelization effort and the envisioned execution costs
may keep also in practice the theoretical advantages of the parallel execution on
the sequential one.

More exactly, we will propose a cost model for deriving sufficient con-
ditions for deciding if the AND parallel execution of a particular logic
program is an appropriate decision .

Execution costs control can’t be performed entirely as a compile time activity
because in the general case these costs depend on the input data. On the other
hand, a cost analysis performed entirely at run time risks to conclude non parallel
execution in a great number of practical cases, taking into account a too large run
time overhead. So, our strategy will be to divide in a reasonable way the workload
between compile time and run time phases.

We will define and generate some cost functions at compile-time. Their mission
will be to estimate at run time the total cost of parallel execution relatively to the
particular size and nature of the input data, information which will be known at
that moment, so possible of be practically taken into account.

2. Definitions and notations

Let S be the goal which we want to be analyzed and let suppose that it is
composed of the (sub)goals (s1, . . . , sn) so S = (s1, . . . , sn). For the goal S we
denote by:

• Cseq – the cost of its sequential execution;
• Cpar – the cost of its parallel execution.

And we denote by Ci the execution cost for the si goal.

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 69

The sequential execution of the goal S may be performed only in one way,
implying only obbeying the sequential execution order of goals s1, . . . , sn for the
constituent subgoals. The parallel execution however, may be performed in many
ways, its particular history and development depending on many influences, among
these being the number of available processors, the implemented scheduling and
memory allocation techniques etc. So when we refer to the cost of the sequential
execution it is obvious what we mean, because this is a unique value at the level of
a particular computing system. But we cannot refer to a single well defined value
when we refer to the cost of the parallel execution, because it can follow diverse
paths, one particular execution being selected upon some dynamic criteria.

For this reason and for our analysis to be enough general we will denote by
Cpar the maximum cost of all possible parallel execution alternatives, that is, the
cost of the most costly parallel execution possibility for goal S.

Our analysis intends to establish if the subgoals s1, . . . , sn justify their parallel
execution. More exactly, from the viewpoint of the parallel execution opportunity,
the cost analysis has to verify if the relation Cpar 6 Cseq holds or not.

Because of the way in which a parallel execution proceeds (as mentioned above
based first of all on dynamic decisions) we cannot really compute the value Cpar,
but we have to estimate and/or approximate it (the notion of execution time itself
assumes that the exact relation between Cpar and Cseq can be established only
after the execution of goal S).

We must decide further the approximation technique to be used. Let Csup
par be

an upper limit for the parallel execution cost (in fact we already assumed that
Cpar = Csup

par) and let C inf
seqbe a lower limit for the sequential execution (the cost of

the fastest possible sequential execution of the goal S).
Let’s notice that if we succeed to prove for S that Csup

par 6 C inf
seq then the same

relation holds trivially between the actual execution times also, so running in
parallel the subgoals s1,. . . ,sn is a correct decision. Mathematically, the relation
Csup

par 6 C inf
seq becomes a sufficient condition for having Cpar 6 Cseq, so Csup

par 6
C inf

seq is a sufficient condition for the decision to run in (AND) parallel
the subgoals of a given goal.

70 MONICA VANCEA AND ALEXANDRU VANCEA

3. Model description

We assume that we have k processors available for the execution of the n sub-
goals of the S goal.

Definition 3.1. We define the processor’s average computing load as
beeing the value ==

mddn/ke, i.e. the number of subgoals that a processor must
solve on the average.

Definition 3.2. We define as an upper bound of the total cost of the parallel
execution

C
sup
par = <sup

c +T
sup
par

where <sup
c is an upper bound for the creation cost of the tasks associated with

the clause’s subgoals (we will call it the task creation overhead) and T sup
par is an

upper bound for the parallel execution time taken by the goal S.

<sup
c is an architecture dependent value which can be experimentally determined.

In general, such a value is a constant or a function depending on some parameters
such as the number or size of the input data, the number of manageable tasks etc.
We want in the following to approximate the value T sup

par .
Let T

sup
i be an upper limit for the execution time of the goal si and let T sup

max =
max (T sup

1 , . . . T sup
n). Obviously, we have then

T
sup
par 6 m T

sup
max

Also, for every subgoal we have

T
sup
i = P

sup
i + C

sup
i

where P
sup
i represents the scheduling overhead for the goal si (the time passed

between the corresponding task creation and the actual starting of its execution)
and C

sup
i denotes the effective run-time cost for the goal si, without taking into

consideration task creation overhead or the scheduling overhead.
Regarding the T inf

seq value, this can be approximated as follows:

T
inf
seq = T

inf
s1

+ . . . + T
inf
sn

,

where T inf
seq(si)

denotes a lower bound for the cost of si‘s sequential execution (the
best sequential execution for this subgoal).

All the above reasoning can be resumed by the following lemma.

Lemma 3.3. If the following relation holds

P
sup + C

sup
par 6 T

inf
s1

+ . . . + T
inf
sn

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 71

then we have also Csup
par 6 C inf

seq.

This result can be further relaxed as we will show in the theorem 3.5.

Definition 3.4. By goal execution overhead we denote the total time taken
by the corresponding task creation plus the time taken by the scheduling overhead
for a particular goal, that is

<e = <c +<P

where the goal scheduling overhead is approximated by <P = =md ·P sup
i .

The main result of this section is presented in theorem 3.5. and it establishes
some sufficient conditions for the AND parallel execution of a logic program’s
clauses.

Theorem 3.5. Let (s1,. . . ,sn) be the S goal’s subgoals and let m = =md. If
among these subgoals there exists at least m+1 goals such as ∀i = 1,. . . , m+1,
<e 6 T inf

si
, then we have Cpar 6 Cseq.

Proof . If we have at least m+1 subgoals such that ∀i = 1,. . . , m+1, <e 6 T inf
si

then it follows that we have at least one subgoal sj , j = m+1,. . . , n, such that
<e 6 T inf

sj
, from where we conclude that even more it holds

<e 6 T
inf
sm+1

+ . . . + T
inf
sn

6 Tsm+1 + . . . + Tsn

By adding to the both members the running time for the goals 1. . .m we obtain

(1) <e + Ts1 + . . . + Tsm 6 Ts1 + . . . + Tsm +Tsm+1 + . . . + Tsn

Let’s recall that m = =md (the average computation load for a processor)
indicates the average number of subgoals that will be sequentially processed by a
processor during the parallel execution of the initial goal.

Because relation (1) holds for any m subgoals for which the execution time is
present as a term in the left hand side, it holds in particular also for the case in
which those m subgoals are those with the longest execution time. In this latter
case, the left hand side of the inequality (1) obviously represents an upper bound
for the parallel execution time of the initial goal S (because the parallel execution
will take maximum the time taken by the sequential execution of the longest m
subgoals at a processor plus the goal execution overhead for the entire S goal). It
follows that we have

C
sup
par 6 Ts1 + . . . + Tsm + Tsm+1 + . . . + Tsn

72 MONICA VANCEA AND ALEXANDRU VANCEA

but the right hand side is nothing else than the sequential execution cost of the
goal S, so we have

C
sup
par 6 C

inf
seq

which shows that the conditions which we gave as hypothesis are truly sufficient
conditions for the AND parallel execution of logic programs.

Example 3.6. Let’s consider the following program code sequence:

q([], []).
q([H|T], [X|Y]) :-

X is H + 1,
q(T,Y).

r([], []).
r([X|RX], [X2|RX1]) :-

X1 is X * 2,
X2 is X1 + 7,
r(RX,RX1).

We will consider as an estimation of the execution cost (or more precisely as a
unit of measure for this cost) of a goal the number of resolution steps required for
proving it. Then the execution costs for the predicated q and r may be estimated
upon the following cost functions:

Cost q(n) = 2n + 1
Cost r(n) = 3n + 1

We consider the AND parallel goal . . . q(X,Y) & r(X). . . expressed as in [Herm91]
in which the argument list represents the set of the input arguments and not the
arity of those predicates.

Based on the results of the theorem 3.5 the initial code sequence can be trans-
lated to

. . . length(X, LX), cost q is LX2=1, cost r is LX3+1,
(cost q > Re(q), cost r > Re(r) → q(X,Y) & r(X); q(X,Y), r(X)),. . .

where Re(q) and Re(r) denote respectively the parallel goal execution overhead
and cost q and cost r represent the sequential execution costs for goals q and r
respectively. The adnotation of the initial code sequence with such a condition
allows in this moment to decide at run time whether or not to AND parallel execute
the goals that follow the tested condition.

To conclude: the practical usefullness of our results from theorem 3.5 resides
in the possibility to apply source code transformations at compile time which will
insert the necessary tests to be performed at run time. These tests will decide
upon the adequacy of running in AND parallel the adnotated sequence of goals.

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 73

4. Conclusions

Ideal execution environments are assumed when methods for automatic paral-
lelization of logic programs are studied. In developing such methods, the focus
is directed towards implicit parallelism detection and only very few models are
taking into account the costs implied by practical computing system overheads.
Estimating such costs are nevertheless of a critical importance because we can
meet situations in practice for which parallel execution would be more time con-
suming than the equivalent sequential one. That is why we proposed in this paper
a cost model for the AND-parallel execution of logic programs, which using adno-
tations capabilities inserts at compile time some cost functions which will perform
at run time a good estimation of the parallel execution costs involved. The cost
functions are defined and generated based on the computing system properties
and on parallelization process features. If at run time the conditions evaluated
by these cost functions are met, the program is allowed to proceed in parallel. If
not, it means that parallel execution will not provide the expected speedup, so the
code will be executed sequentially. We believe that our model is a very practical
one, allowing the run time environment to take the adequate decision with respect
to the possibility of AND parallel execution of the (implicit) parallelism present
in the logic programs.

References

[Chang85] J-H. Chang, A.M. Despain, D. DeGroot, And-Parallelism of Logic Pro-
grams based on Static Data Dependency Analysis, in Digest of Papers of
COMPCON, Spring 1985, pp. 218–225.

[Chass94] J. Chassin de Kergommeaux, P. Codognet, Parallel Logic Programming
Systems, in ACM Computing Survey, vol.26, no.3, Sept.94, pp. 295–336.

[Herm89] M.V. Hermenegildo, F. Rossi, On the Corectness and Efficiency of Inde-
pendent AND-Parallelism in Logic Programs, in Proc. of the 1989 North
American Conf. on Logic Programming, 1989, pp. 369–389.

[Herm91] M.V. Hermenegildo and L.Greene, The &-prolog System: Exploiting In-
dependent And Parallelism, New Generation Computing, 9 (3, 4), 1991
pp. 233–257.

[Lin88] Y. J. Lin, V. Kumar, AND-parallel execution of Logic Programs on a
shared Memory Multiprocessor: A Summary of Results, in Fifth Inter-
national Logic Programming Conference, Seatle, WA, 1988, pp. 1106–
1120.

74 MONICA VANCEA AND ALEXANDRU VANCEA

[Lusk90] E. Lusk, S. Haridi, D.H.D. Warren et. al., The Aurora OR-Prolog Sys-
tem, New Generation Computing, vol.7, no.2,3, 1990 pp. 243–273.

[Sehr92] D.C. Sehr, Automatic Parallelization of Prolog Programs, Ph.D. disser-
tation, Univ.of Illinois at Urbana-Champaign, 1992.

[Shen92] K. Shen, Exploiting Dependent And-Parallelism in Prolog: The Dy-
namic, Dependent And-Parallel Scheme, in Proc. Joint Int’l. Conf.
and Symp. On Logic Prog. MIT Press, 1992, pp. 717–731.

Faculty of Economic Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: vancea@econ.ubbcluj.ro

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca,

Romania

E-mail address: vancea@cs.ubbcluj.ro

