
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

MINIMUM COST PATH IN A HUGE GRAPH

ION COZAC

Abstract. Suppose we have a weighted graph G = (V, E, c), where V is the

set of vertices, E is the set of arcs, and c : E → R+ is the cost function.

Determining a minimum cost path between two given nodes of this graph

can take O(m log n) time, where n = |V | and m = |E|. If this graph is huge,

say n ≈ 700000 and m ≈ 2000000, determining a minimum cost path can be

a serious time consuming task. So we must develop an algorithm that quickly

determines a path having the cost near the optimum one.

Keywords: minimum cost path, huge graph, strongly connected com-

ponent

1. Introduction

If we develop a route planning application, it is very important to use efficient
algorithms that determine a path between two distinct nodes. But what if the
application manages a huge graph? This is the case of a complete roads map of a
medium country, like Romania. In this case we simply ask to find a path that has
the cost near the optimum one, but this path must be found very quickly. A fast
algorithm is very important if the application is running on a server, and must
satisfy the requests that come from many users by Internet.

To develop the algorithm proposed in this paper, we need some remarks, such
as:

(i) each link (arc) can be either a main road or a secondary road;
(ii) the number of main roads (class MR) is very small as compared to the

secondary ones (class SR); suppose the cardinality of MR is 8-10% of the
cardinality of MR ∪ SR;

(iii) the number of vertices that belong to a main road (class MV) is very small as
compared to the number of vertices that belongs to a secondary road (class
SV); suppose the cardinality of MV is 8-10% of the cardinality of MV ∪SV ;

(iv) the main roads are uniformly scattered among the secondary ones.

2000 Mathematics Subject Classification. 05C40.
1998 CR Categories and Descriptors. G.2.2 [Mathematics of Computing]: Discrete

Mathematics – Graph Theory.

23

24 ION COZAC

We need to exploit the following idea (see figure 1). Given two distinct vertices
s and t, each of them being of SV type, we first determine a minimum cost path
from s to the nearest vertex s1 that is of MV type. We also determine a minimum
cost path from t to the nearest vertex t1 (reversing!) that is of MV type. Next
we determine a minimum cost path from s1 to t1, using only the main roads. The
solution of the problem is the union of these three paths. This algorithm is very
fast because:

• the paths from s to s1 and from t1 to t can be quickly determined: see
remark (iv);

• the path from s1 to t1 can also be quickly determined: see remarks (ii)
and (iii).

Figure 1. Examples of paths determined using the
NearOptimumPath algorithm. From A to C: A - B - C,
from C to D: C - I - D, from B to F : B - C - I - D - E - F

In order to use the algorithm sketched above, we have to prepare two supple-
mentary structures.

We scan the original graph to find all the vertices of MV type. Using these
nodes we build a partial subgraph that has only nodes of MV type and arcs of
MR type. Let this partial subgraph be Gs = (V s, Es). We also build the graph
Gi = (V, Ei) - the inverse graph of G, where the set Ei is defined as follows:

MINIMUM COST PATH IN A HUGE GRAPH 25

if (x, y) ∈ E then (y, x) ∈ Ei, id est, for each arc (x, y) from E we insert the
inverse arc (y, x) to Ei.

We describe below the proposed algorithm.
Algorithm NearOptimumPath;
Input. The original graph G, the inverse graph Gi, the partial subgraph Gs; two
distinct nodes s and t.
Output. Near optimum path from s to t.
begin

* if (s is not of MV type) then
determine, in graph G, using the algorithm of Dijkstra and selection trees,
a minimum cost path D1 from s to the nearest node s1 of MV type;
if (t is detected before reaching a node of MV type) then

stop: we found the searched path;
else (s is of MV type)

let s1 := s; D1 := ∅;
* if (t is not of MV type) then

determine, in graph Gi, using the algorithm of Dijkstra and selection trees,
a minimum cost path D2 from t to the nearest node t1 of MV type;

else (t is of MV type)
let t1 := t; D2 := ∅;

* determine, in graph Gs, using the algorithm of Dijkstra and selection trees,
a minimum cost path D3 from s1 to t1;

* report the union of these three paths: D := D1∪ reverse (D2) ∪D3;
end (algorithm).

When can we use this algorithm? The following theorem below answer this
question.

Theorem 1. The algorithm NearOptimumPath can find a path between any two
distinct vertices of the graph G if and only if G and Gs are both strongly connected.

Proof. These two conditions are obviously sufficient, and the graph G must also
be strongly connected. We have to prove that the graph Gs must also be strongly
connected. Indeed, suppose that the graph Gs is not strongly connected. It is
possible that the algorithm wrongly reports that there is no path between two
given nodes, even if such a path exists - the graph G is strongly connected. Let
examine the figure 2:

• one can find two distinct nodes s and t, each of them being of MV type,
but there is no path from s to t having only arcs of MR type;

• one can find two distinct nodes s and t, at least one being of SV type,
and the algorithm find two nodes s1 and t1, but there is no path from
s1 to t1 having only arcs of MR type. ¤

26 ION COZAC

Figure 2. The algorithm can not find any path from A to D or
from A to E, because the partial subgraph engendered by the arcs
(F, A) and (B,D) is not strongly connected

How quickly can we determine a path using this algorithm? The running time of
an implementation that uses this algorithm, as compared to the original Dijkstra’s
algorithm, is proportional to the percentage of the number of the main roads and
main vertices.

We saw that this method needs to arrange the information into an organized
structure to accelerate searching. This preprocessing phase is necessary because
queries will be performed repeatedly on the same graph; these are so called
repetitive-mode queries. How much time is needed to arrange the data for search-
ing? To answer this question we present below an algorithm that determines the
strongly connected components of a directed graph. This presentation is a review
of the algorithm presented in [3].
Algorithm StronglyConnectedComponents;
Input. A directed graph G = (V,E).
Output. An array C : the strongly connected components, each vertex being
marked with the component number that contains it.
begin

for (each vertex x ∈ V) do
Mk[x] := False;

Md := 0;
for (each vertex x ∈ V) do

MINIMUM COST PATH IN A HUGE GRAPH 27

if (Mk[x] = False) then
ScanMark(x);

Sort D on decreasing order, storing for each mark the associated vertex in X;
for (each vertex x ∈ V) do

C[x] := False;
Build the inverse graph G′ corresponding to the graph G;
nc := 0;
Warning ! The procedure ScanCnx manages the graph G′;

for (each vertex x ∈ X) do
if (C[x] = 0) then begin

nc := nc + 1; ScanCnx(x);
end

end (algorithm).
Procedure ScanMark(vertex x);
begin

Mk[x] := True;
for (each vertex y, successor of x) do
if (Mk[y] = 0) then ScanMark(y);

Md := Md + 1; D[x] := Md;
end (procedure).
Procedure ParcCnx (vertex x);
begin

C[x] := nc;
for (each vertex y, successor of x) do
if (C[y] = 0) then

ScanCnx(y);
end (procedure).

The determination of the strongly connected components of a directed graph
needs O(n log n + m) time, and building the inverse graph Gi and the partial
subgraph Gs takes O(m) time. So we have

Theorem 2. The supplementary structures used by the algorithm NearOptimumPath
are determined in O(n log n + m) preprocessing time.

We can use the following technique for a parallel architecture. The searching
process starts two execution threads: the first thread uses the algorithm NearOp-
timumPath, and the second thread uses the original Dijkstra’s algorithm. If one
of these two threads finds a path (which may be optimal or not), it must stop the
other thread. In this case we don’t need to impose a very restrictive condition: it
is not necessary that the partial subgraph Gs be strongly connected.

28 ION COZAC

References

[1] Michel Gondran, Michel Minoux, Graphes et algorithmes, Editions Eyrolles, Paris 1979.

[2] Harry R Lewis, Larry Denenberg, Data Structures and Their Algorithms, Harper Collins

Publishers, 1991.

[3] Dumitru Dan Burdescu, Analiza complexităţii algoritmilor, Editura Albastră, 1998.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald R. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, Massachusetts, 1998.

“Petru Maior” University of Tg. Mureş

E-mail address: cozac@uttgm.ro

