
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT
AGENTS

GABRIELA ŞERBAN

Abstract. It is well-known that one of the concrete architectures for intelli-
gent agents is the logic one. In our opinion, the symbolic representations for
the intelligent behavior are very important, and the logic approach is elegant
and has a pure semantic. The aim of this paper is to present a new logic ar-
chitecture for intelligent agents (LASG - a Logic Architecture based on Stacks
of Goals). This architecture combines the traditional logic architecture with
a planning architecture [3]. The advantages of the proposed architecture are
shown in the paper.
Keywords: intelligent agents, logic.

1. Introduction

The logic approach is a topic of Symbolic Artificial Intelligence and has its own
importance in the field of intelligent agents, even if it is well-known the contro-
versy between the traditional approach and the intelligent calculus in the field of
Artificial Intelligence.

Moreover, the only intelligence requirement we generally make for the agents is
that [2] they can make an acceptable decision about what action to perform next
in their environment, in time for this decision to be useful. Other requirements
for intelligence will be determined by the domain in which the agent is applied:
not all agents will need to be capable of learning, for example.

In such situations, a logic architecture is very appropriate, and offers, in our
opinion, a simple and elegant representation for the agent’s environment and de-
sired behavior.

According to the traditional approach [2], the symbolic representations are log-
ical formulae, and the syntactic manipulation corresponds to logical deduction, or
theorem proving.

In such a logic approach, the agent could be considered as a theorem prover(if φ
is a theory that explains how an intelligent agent should behave, the system might
generate a sequence of steps - actions - that leads to φ, in fact a proof for φ).

2000 Mathematics Subject Classification. 68T27.
1998 CR Categories and Descriptors. I.2[Computing Methodologies]: Artificial Intel-

ligence – Logic.

13



14 GABRIELA ŞERBAN

However, some disadvantages of the logic approach are:

• the computational complexity of a theorem proving process raises the
problem if the agents represented this way can really operate in time-
restricted environments;

• the process of decision making in such logic architectures is based on
the assumption that the environment does not change its structure, es-
sentially, during the decision process (a decision that is correct at the
beginning of the process, will be correct at the end of it, too);

• the problem of representation and reasoning in complex and dynamic
environments is an open problem, as well.

2. A Logic Architecture Based on Stacks of Goals (LASG)

We will consider, in the following, the case of an agent which goal is to solve a
given problem (to bring the problem from an initial to a final state), based on a
set of operators (rules) that could be applied on a given moment [4].

In a LASG architecture, we will use the declarative representation of the knowl-
edge.

Let L be a set of sentences from the first-order logic, and D = P(L) the set
of L-databases (the set of sets of L-formulae). In the model that we propose, the
internal state of the agent will be given by an element from D (for simplicity, we
will consider it as a formula in a conjunctive normal form).

2.1. Case Study: Searching a maze. In this section we will consider the fol-
lowing problem: we have a maze that has a rectangular form; in some positions
there are obstacles; a robotic agent starts in a given state (the initial state) and
tries to reach a final (goal) state, avoiding the obstacles; in a certain position on
the maze the agent could move in four directions: north, south, east, west (there
are four possible actions). We will assume that the dimensions of the maze are
known: M is the number of rows, N is the number of columns.

In the example that we choose, the environment (the maze) is not dynamic (it
suffers no modifications after the agent’s actions). However, this assumption is
not essential, it has no significant influence on the agent’s behavior.

We consider that:

• a position on the maze is identified by a pair (X, Y) (the line, respectively
the column);

• the left up corner of the maze is marked as the position (1, 1).

The four actions that the robotic agent could execute are the following:

NORTH(X, Y, M, N) - from the position (X, Y) the robot moves in the
north direction. The positions (X, Y) and (X-1, Y) must be into the maze and
must not contain obstacles.



LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 15

EAST(X, Y, M, N) - from the position (X, Y) the robot moves in the east
direction. The positions (X, Y) and (X, Y+1) must be into the maze and must
not contain obstacles.

SOUTH(X, Y, M, N) - from the position (X, Y) the robot moves in the
south direction. The positions (X, Y) and (X+1, Y) must be into the maze and
must not contain obstacles.

WEST(X, Y, M, N) - from the position (X, Y) the robot moves in the west
direction. The positions (X, Y) and (X, Y-1) must be into the maze and must not
contain obstacles.

In order to specify both the conditions in which the operations hold and the
results of executing the operations, we will use the following predicates:

FREE(X, Y) - the position (X, Y) is free (does not contain an obstacle).
IN(X, Y) - the robotic agent is in the position (X, Y).
VALID(X, Y) - the position (X, Y) is valid (is into the maze).
POSSIBLE(X, Y) - the position (X, Y) is free and valid.

We notice that:

(1) POSSIBLE(X, Y ) <=> FREE(X, Y )andV ALID(X, Y )

In such a logic representation, some logic declarations are valid. For example,

(2) not FREE(X, Y )andV ALID(X, Y ) → not IN(X, Y )

(3) not FREE(X, Y ) or not V ALID(X,Y ) → not IN(X,Y )

As in a planning system, in a LASG architecture must be realized the following
functions:

(1) how to detect the best rule to apply, based on the best (possible heuristic)
information available;

(2) how to apply the chosen rule in order to compute the new problem’s
state;

(3) how to detect if a solution was found;
(4) how to detect if the system was blocked, in order to abandon the blocked

paths and the system’s effort to be directed in most interesting directions.

2.2. How to select the rules. The most used technique for choosing the ap-
propriate rules is to determine a set of differences between the desired final state
and the current state, and then to identify the relevant rules for reducing the dif-
ferences. If more rules are identified, a variety of heuristic information could be
exploited, in order to chose the rule to be applied. This technique is based on the
means-end analysis.



16 GABRIELA ŞERBAN

2.3. How to apply the rules. A possibility to apply the rules is to describe for
each possible action the changes that it brings to the state’s description. Moreover,
some declarations are needed, in order to state that the rest of the description
remains the same. A solution for this problem could be to describe a state as a set
of predicates representing the facts that are valid in the given state. Each state is
explicitly represented as an argument of the predicates. For example, we assume
that the current state S is characterized by the following predicate

(4) POSSIBLE(X, Y, S)and IN(X,Y, S)and POSSIBLE(X − 1, Y, S)

and the rule that describes the operator NORTH(X, Y) will be

(5) POSSIBLE(X, Y, S)and IN(X,Y, S)and POSSIBLE(X − 1, Y, S) →
IN(X − 1, Y,DO(NORTH(X, Y ), S))

In the above equation DO is a function which specifies the state that results
after applying a given action in a given state.

For assuring the correctness of the deduction mechanisms, it will be necessary
a set of rules to describe those components of the states that are not affected by
the operators (the so named frame axioms). The advantage of this approach is
that a unique mechanism, the resolution, could realize all the operations needed
to describe the states. However, the disadvantage is the big number of axioms, if
the states’ descriptions are complex.

In the architecture that we propose in this section, the number of explicit frame
axioms that should be used is not so big.

Each operator will be described by a list of new predicates that the operator
makes true and a list of old predicates that the operator makes false. The two lists
are named ADD, respectively DELETE. Moreover, for each operator is specific a
third list, PRECONDITION, which contains all the predicates that must be true
in order to apply the operator. The frame axioms are implicitly specified in LASG.
Each predicate that is not included in the ADD or DELETE lists of an operator,
is not affected by that operator.

The LASG operators that correspond to the operations presented above are
shown in Figure 1. For simplicity, we numbered the four moving possibilities of
the robotic agent from a given position (X, Y) as follows: 1- North, 2 - East, 3 -
South, 4 - West. We also consider two vectors dx = (-1, 0, 1, 0) and dy = (0,
1, 0, -1) which gives the moves relative on line and column corresponding to the
four actions. Thus, the operator corresponding to the k-th move from the position
(X, Y) could be described as below:

The application of an operator O on a state S (given as a logic formula φ)
means that the predicates from the ADD list of the operator should be added in
φ. On the other hand, the return to the state before applying the operator O (the



LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 17

O(X, Y, K)
P: POSSIBLE(X, Y) and IN(X, Y) and POSSIBLE(X+dx[k], Y+ dy[k])

A: IN(X+dx[k], Y+ dy[k])
D: IN(X, Y)

Figure 1. The operators’ description

backtracking) means that the predicates from the DELETE list of the operator
should be deleted from φ.

3. The LASG algorithm

The idea of the algorithm is to use a stack of goals (a unique stack that contains
both goals and operators proposed for solving those goals). The problem solver
is also based on a database that describes the current situation (state) and o set
of operators described by the PRECONDITION, ADD and DELETE lists. For
illustration, we will apply this method on the example shown in Figure 3.

At the beginning of the problem solving process, the stack of goals contains
IN(1, 3)

We have to find an operator which makes true the predicate from the top of the
stack (in other words, the predicate IN(1, 3) must appear in the ADD list of the
operator). We find (by variables’ bounding) two possibilities: the operator O(1,
2, 3) and O(2, 3, 1). We separate the initial stack into two stacks, we place in
the top of the corresponding stack (instead of IN(1, 3)) the operator that was
found and the predicates from it’s PRECONDITION list.

IN(2, 3) IN(1, 2)
FREE(2, 3) FREE(1, 2)
VALID(2, 3) VALID(1, 2)
O(2, 3, 1) O(1, 2, 3)
(1) (2)

For each stack, we repeat the operations described above with the predicate
from the top of the stack. At a given moment, there are four possibilities:

• in the top of the stack is an operator; in this case we remove it from the
top, and we retain the operator as part of the problem’s solution;

• the predicate from the top of the stack is true - in this case we remove
it from the top;

• the predicate from the top of the stack is false - in this case we have to
find operators that make the predicate true; we ramify the stack; we add
the operators (with their preconditions) in the stack;



18 GABRIELA ŞERBAN

• the predicate from the top of the stack can not be satisfied, which means
that the system was blocked; in this case we have to abandon the current
path, because it will not lead to a solution.

The operation is repeated until the stack became empty (a solution of the
problem was found), or until all the possibilities were blocked (in this case the
problem solving fails).

If we continue to apply the algorithm on our example, two solutions will be
reported:

1. O(4, 1, 1) 1. O(4, 1, 1)
2. O(3, 1, 1) 2. O(3, 1, 1)
3. O(2, 1, 2) 3. O(2, 1, 2)
4. O(2, 2, 2) 4. O(2, 2, 1)
5. O(2, 3, 1) 5. O(1, 2, 2)

In fact, the algorithm consists in a process of backward reasoning (we starts
from the final state), method known in the literature as a goal directed reason-
ing.

We assume that are given:

• SI (the initial state for the agent);
• SF(the final state that the agent tries to reach) - there could be a set of

final states;
• a set of operators O = {O1, O2, · · ·Ok} that are available to the problem

solving agent. For each operator Oi the agent knows the three lists:
PRECONDITION, ADD and DELETE.

The agent’s goal is to reach the final state SF, starting from the initial state
SI, keeping a history H of the visited states (H = {S1, S2, · · ·Sm}, where S1 = SI
and Sm = SF ), or of the applied operators (H = {Oi,1, Oi,2, · · ·Oi,m−1}). In the
case that the problem has no solution, H will be empty.

The algorithm which determines a solution of the problem (if exists a solution)
is described in Figure 2.

The non-determinism of the step 4 from the above described algorithm has to
be implemented as a kind of search procedure (a limited depth-first search).

4. Comparison between LASG an the traditional logic architecture

The Logic Architecture based on Stack of Goals improves the traditional logic
architecture for intelligent agents, in the following directions:

• in comparison with the traditional logic architecture, which requires a big
number of frame axioms in order to realize a correct inference, the LASG
architecture reduce this number, and that is why the space complexity
is reduced;



LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 19

(1) • we create a stack of goals S (the solution stack) that initially
contains the predicates that should be satisfied in the final state
SF. In other words, if the final state could be written as a con-
junction of logic sentences SF = φ1andφ2and · · · andφn}, then
S = {φ1, φ2, · · ·φn};

• SC (the current state):= SI (the initial state);
• H:=empty;

(2) If S is empty and the final state SF was reached, then the algorithm
stops and the final solution is reported; else, go to step 3;

(3) 3.1 If the top of the stack contains an operator Oi, on add the operator
in H, on remove the top of stack, on recalculate the current state SC at
which on add the predicates from the A list of the operator Oi; go to
step 2; else, go to step 3.2;

3.2 On choose the predicate from the top of the stack (φ1). If φ1

is satisfied in SC, we remove it from the top of the stack; go to step 2;
else, go to step 4;

(4) We look for the operator Oi (the operators, if are several) that makes φ1

true. If there are several operators Oi,1, Oi,2, · · ·Oi,s, on ramify the solu-
tion (on obtain s stacks) for j=1,s (for each of the s stacks) we
add on the top of the stack Sj the predicates from the PRECONDITION
list of the operator Oi,j ; go to step 3.

Figure 2. The algorithm to determine a solution in a LASG architecture

• because a limited depth-first search is used, the time complexity is, also,
reduced (a disadvantage of the traditional logic architecture is that the
computational complexity is big);

• the representation is very simple and elegant.

5. Experiment

Because the above described architecture is based on logic and because the
algorithm described in Figure 2 needs backtracking for finding all solutions, the
implementation was made in Visual Prolog. It is well-known that the declarative
programming languages (as Prolog) have a built-in control mechanism which allows
finding all the solutions of a problem.

We have to say that the stack (stacks) of goals that we have to create for
applying the algorithm (Figure 2) are retained implicitly by the control strategy
of Prolog (a mechanism which allows backtracking).

For applying the algorithm we consider the environment shown in Figure 3.
The positions filled with black on the maze contains obstacles.



20 GABRIELA ŞERBAN

Figure 3. The agent’s environment

5.1. The program. We implemented a Prolog program (Figure 4), which basic
non-deterministic predicate is path(Xi, Yi, Xf, Yf, M, N, L), having the flux
model (i, i, i, i, i, i, o), and the following signification for the arguments:

• Xi, Yi - the coordinates (line and column) of the initial position (the
starting position for the agent);

• Xf, Yf - the coordinates (line and column) of the final position (the
position that the agent tries to reach);

• M, N - number of lines and respectively columns of the maze;
• L - the list of positions visited by the agent for reaching SF starting

from SI (if the problem has no solution, the list will be empty).
For solving the problem, we considered a LASG architecture, we applied the

algorithm described in Figure 2, using the following auxiliary predicates:
• the non-deterministic predicate candidat(Xf, Yf, X, Y, M, N) (i,

i, o, o, i, i) generates a possible candidate to the solution at a given
moment: a state (X, Y) from which the agent could reach the current
state (Xf, Yf);

• the non-deterministic predicate solution(Xi, Yi, L1, L, M, N) (i, i, i,
o, i) collects the elements of a solution in L (L1 is the former generated
list).

The goal has the form
goal: path(4, 1, 1, 3, 4, 3, L)

and the solutions are two:
L=[[4, 1], [3, 1], [2, 1], [2, 2], [2, 3], [1, 3]]



LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 21

Figure 4. The Prolog program

L=[[4, 1], [3, 1], [2, 1], [2, 2], [1, 2], [1, 3]]

6. Conclusions and further work

In a logic based architecture, the intelligent behavior is generated by a symbolic
representation of the environment and the agent’s behavior, and by a symbolic
manipulation of this representation.

In the logic based approach, the process of decisions’ applying is, in fact a
deduction, so the program part of the agent (the strategy of decisions’ applying)
is codified as a logic theory. That is why this approach is very elegant and has a
pure (logic) semantic.

Further work is planned to be done in the following directions:

• in which way some heuristic information could be used in order to reduce
the time complexity of the deduction process;

• in which way we can combine the traditional logic architecture with other
planning architecture (TWEAK, hierarchical planning architectures).



22 GABRIELA ŞERBAN

References

[1] Weiss, G. “Multiagent systems – A Modern Approach to Distributed Artificial Intelli-
gence”, The MIT Press, Cambridge, Massachusetts, London, 1999

[2] Wooldridge, M., “Agent-Based Software Engineering”, Mitsubishi Electric Digital Library
Group, London, 1997

[3] Rich, E., Knight, K. “Artificial Intelligence”, Mc Graw Hill, New York, 1991
[4] Winston, P., “Artificial Intelligence”, Addison Wesley, Reading, MA, 1984, 2nd ed

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro


