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MATHEMATICAL MODELS FOR ORGANIZING DATA
COLLECTIONS

ILEANA TĂNASE

Abstract. Mathematical organisation of data collections is based on three
models: vector processing, logical and probabilistic. Vector processing model,
materialised in the SMART system implementation has the best mathemat-
ical basis. In this model entities and queries have a vectorial representation
and some similarities can be established between them based on the com-
parison of attached vectors. The similar entities will have answers for the
same requests and will be searched together. On this observation the cluster
hypothesis of van Rijbergen and Sparck is based. This hypothesis suggests
detecting entities class as a way for increasing the efficiency of the search.
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1. Introduction

Mathematical organisation of data collections is based on three models: vector
processing, logical and probabilistic. Vector processing model [4,5], materialised
in the SMART system implementation has the best mathematical basis. In this
model entities and queries have a vectorial representation and some similarities
can be established between them based on the comparison of attached vectors.
The similar entities will have answers for the same requests and will be searched
together. On this observation the cluster hypothesis of van Rijbergen [7] and
Sparck [6] is based. This hypothesis suggests detecting entities class as a way for
increasing the efficiency of the search.

Consider a data collection X = {x1, x2, . . . , xd}. Each entity xj is identified by
one or more index terms. Each entity xj is represented by a d-dimensional vector:

Xj = (xj
1, x

j
2, . . . , x

j
d),

where the values of xj
i are restricted to 0 and 1 (xj

i equals 0 if the i-th index terms
is not assigned to the entity, and it equals 1 only if it is assigned to the entity).
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For a better performance in retrieval of entities it is useful that entities be clus-
terised according to appropriate criteria. A space of entities could be represented
as in Figure 1.

Figure 1. Collection and prototype representation

One must take into account that entities of the same class centre have sim-
ilar characteristics. Thus, the best retrieval performance must be obtained for
data collections consisting of individual compact classes, but with great distance
between class prototypes.

Splitting a space of entities into classes can be done using several determinist
classifying methods. These methods are mainly optimisation procedures of some
criterion functions. In order to build a criterion function we may consider that each
class is represented by a geometrical prototype. In the vector processing model [4,
5], in which classes have an approximately spherical shape, the prototypes will be
points in the Euclidean Rd space.

2. Similarity measures

Let X be the space of entities to be classified. A similarity measure over X is
a function S : X ×X → R, which satisfies the following axioms:
a) S(x, y) > 0, ∀x, y ∈ X,
b) S(x, y) = S(y, x),∀x, y ∈ X,
c) S(x, x) = S(y, y) > S(x, y), ∀x, y ∈ X, x 6= y.

The most used similarity measure in vector processing model is considered the
angle cossinus between two vectors:

S1 =
< x, y >

‖x‖ · ‖y‖ =
xT y

‖x‖ · ‖y‖
But as shown before, the vectors x, y have binary components. When all the

characteristics are binary, there is a set of well known similarity measures. These
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measures are based on the following values:

s =
d∑

i=1

xi · yi,

which represents the number of index terms that simultaneously exist in x and y,
in the same way:

t =
d∑

i=1

(1− xi)(1− yi),

represents the number of index terms which simultaneously miss from the x and
y entities,

u =
d∑

i=1

xi(1− yi),

represents the number of index terms that exist in x, but they miss from y,

v =
d∑

i=1

yi(1− xi),

represents the number of index terms that exist in y, but they miss from x.
It is easy to show that:

s + t = xT x

and
s + v = yT y

Taking account of the prior features, the meaning of the following similarity
measures is easy to understand [2]:

S2 =
s

s + 1
2 (u + v)

,

S3 =
s

s + 2(u + v)
,

S5 =
st− uv

st + uv
.

3. The criterion function

Let X = {x1, x2, . . . , xp} be the entities set that must be classified. Our aim
is to find the cluster structure of the given set. The cluster structure of the set
X can be done by a partition P = {A1, A2, . . . , An} of X. Each member of the
partition P will correspond to an entity class. Using a similarity measure we can
build a criterion function. The classification problem is reduced to an optimization
problem.
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Each Ai class can be represented by a prototype Li, and denote by L =
{L1, L2, . . . , Ln}. Consider the representation of the P partition. In the vec-
tor processing model the classes have almost spherical shape and a class prototype
will be a point in Rd. This point is the same with the centre of the class, as shown
in Figure 1.

A dissimilarity measure on X is a function D : X ×X → R, that satisfies the
following axioms:
a) D(x, y) > 0, ∀x, y ∈ X,
b) D(x, x) = 0, ∀x ∈ X,
c) D(x, y) = D(y, x), ∀x, y ∈ X.

The criterion function (J) may be defined as [2]:

(1) J(P, L) =
n∑

i=1

∑

x∈Ai

D(x, Li),

where D is a dissimilarity measure (for instance, a distance on Rd).

4. The n-mean algorithm

The n-mean algorithm is a very popular clustering technique. The following
dissimilarity measure is considered:

D(x, y) = ‖x− y‖2.
The dissimilarity between a point x and the Li prototype can be interpreted as

error when the point x is approximated by the class prototype Li. This dissimi-
larity can be written down as follows:

D(x, Li) = ‖x− Li‖2.
The criterion function will be in this case:

(2) J(P,L) =
n∑

i=1

∑

x∈Ai

‖x− Li‖2.

Using the notation:

(3) Aij =
{

i, xj ∈ Ai

0, otherwise,

the criterion function will be:

(4) J(P, L) =
n∑

i=1

p∑

j=1

Aij

∥∥xj − Li

∥∥
2

.

Taking into account that in Euclidian space, the scalar product has the form

〈x, y〉 = xT My,
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where M is a symmetrical and positive defined matrix, the criterion function
becomes:

(5) J(P, L) =
n∑

i=1

p∑

j=1

Aij(xj − Li)T M(xj − Li).

From the minimum condition

(6)
∂J(P, L)

∂P
= 0, i = 1, . . . , n ,

we have

(7) −2
p∑

j=1

AijM(xj − Li) = 0, i = 1, . . . , n .

But the matrix M is nonsingular. Thus we obtain:

(8)
p∑

j=1

Aijx
j −

p∑

j=1

AijLi = 0, i = 1, . . . , n .

From (8) we obtain:

(9) Li =

p∑
j=1

Aijx
j

p∑
j=1

Aij

i = 1, . . . , n.

But pi =
p∑

j=1

Aij represents the number of elements of the class Ai. Li can also

be written as:

(10) Li =
1
p

∑

x∈Ai

x.

We can now see that the prototype Li is the mass centre of the Ai class. The
representation L = {L1, L2, . . . , Ln}, where Li is given by (9) induces a new par-
tition. This partition is obtained using the nearest neighbour (NN) rule.

If

(11)
∥∥xj − Li

∥∥ <
∥∥xj − Lk

∥∥ , k = 1, . . . , n, k 6= i

then xj is assigned to the class Ai.
We may also write:

(12) Aij =
{

1, if
∥∥xj − Li

∥∥ 6
∥∥xj − Lk

∥∥ ,∀k 6= i
0, otherwise

The n-mean algorithm consists of applying iteratively the equalities (9) and
(12), starting from an initial partition of the set X. This partition can be arbitrarily
chosen.
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As a conclusion, we may say that determinist clustering methods allow the
entities arrangement into classes which verify the following conditions:
a) the similarity between entities in a class is high;
b) the average similarity between class centres is low.
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