
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE

CLARA IONESCU

Abstract. In our everyday life we have to deal with different problems that,

in most cases, need new data structures. At first sight, these structures do

not look like any known data structure. This paper presents a data structure

wehave called “fringed-quadtree”. This structure is a tree with nodes that

may be roots or leaves. A root-node may have at most four leaves. These trees

may be built considering some rules that are presented in the paper. Due

to the specific queries, the pointers will be ascending for the root-nodes and

descending for the leaves. The time complexity of the described algorithms

is logarithmic or linear and the memory space needed has the order O(n).

1. Introduction

Data from database management systems are processed using special software
programs. These have a lot of tools, but, in order to retrieve data, the users
often need to create data structures, which will maintain the hierarchy between
the elements and will perform searching as quick as possible. For example, the
well-known multilevel marketing systems (MLM) are working on basis of various
rules. These systems need to be able to retrieve records based on some hierarchy,
(which are not stored explicitly in the database) in order to calculate the financial
rights of persons from the system.

In this paper we present the fringed-quadtree, designed in order to have a
suitable data structure for such a database. The quadtree, in a conventional
approach, is a tree structure where every node may have at most four descendents.
It was introduced for spatial data by Finkel and Bentley [Fink74].

This paper is organized as follows. We first define (section 2) the requirements
of the model and the issues that must be considered in choosing a representation.
This depends on the nature of the queries involving them, and on the type of
operations that must be performed to answer them. Section 3 describes the man-
ner of the building of such quadtrees. We discuss the implementation issues of
the building in the subsection 4.0.1. For implementation we propose appropriate

2000 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; H.2.1 [Information

Systems]: Database Management – Logical Design.

85

86 CLARA IONESCU

search structures, for example balanced binary search trees [Adel62], [Knut73],
[Wirt76] or B-trees [Come79]. Section 4 describes possible query types, and sub-
section 4.0.2 presents their implementations. Section 5 evaluates the performances
of the algorithms (the storage and execution time requirements).

2. Problem Description

We will build a data structure having the following properties:
(1) Based on some specific rules, the elements are grouped in buckets. A

bucket consists of at most five elements.
(2) The data associated to the nodes follows a hierarchy depending on the

time-factor (the insertion time) and the parent-node.
(3) The structure contains two types of links (pointers) between its elements.

The first link type specifies the parent of a given element. Obviously,
each node has a single such pointer. The second link type is used for
pointing to the descendents of a node; this is a child -type link. There will
be four such pointers for each node, because they are used for retrieving
the elements in the bucket corresponding to a parent-node.

(4) The structure contains two types of nodes: roots and leaves. We define
a root as a node that is referred as parent by at least one node, and a
leaf as a node that is not referred as parent by any node in the structure.
The proper tree-structure consists of root-nodes, where each root is the
nucleus of its own bucket. Such abucket may contain at most four other
nodes that are leaves. These leaves are “hanged on the root like some
fringes”.

(5) The dynamics used for building the structure leads to a quad-tree spanned
(using the pointers) from its bottom part to its upper part, because only
the parent pointers may be linked between the root-type nodes of the
tree.

(6) When a new element is inserted, its parent must be given. This way, the
hierarchical position of the new node is specified. The insertion of a new
element may cause some changes in the bucket of its parent, as follows:
(a) If the parent is a leaf, then the new node becomes a leaf and takes

the place of its own parent. After this “replacement”, the parent
pointers do not change, but the parent of the inserted node is no
longer the child of a node (a leaf), but it becomes a root; hence, it
is now a node in the quad-tree.

(b) If the element is not the first leaf of its parent, it becomes one of
the children (leaves) of the parent.

It follows that we have a quad-tree that is built based on ascending pointers
and each node may have at most four descending pointers. We may notice that

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 87

a node may be referred as parent by five nodes, but the first such node “leaves”
the parent’s bucket. The specificity of the dynamic used for building the buckets
consists in the fact that the first child Z of a leaf Y becomes a child of the node
X that referred Y as its child. Hence, the parent of a leaf may be the node that
contains the leaf in its bucket, or another root on the parent pointers path.

3. Building Fringed-Quadtrees

Initially, the structure consists of a single element, denoted by A. By convention,
A is the only node predefined having root-type from the beginning. The bucket
of the first element is built in a slightly different manner than the other buckets
because the first element of the tree does not have a parent. Hence, it will be
directly referred as parent by at most four nodes.

We suppose that, at each moment of time, only one node referring a certain
parent may be inserted. Due to the fact that each existing node may be specified
as parent, at a certain moment of time, the number of insertions may be equal to
the number of nodes in the tree that do not have complete buckets.

Let we see the way a bucket is built. After building the first bucket, no more
leaves having as direct parent the root of the bucket may be inserted. The structure
of the buckets may change because when new insertions are performed, the existent
leaves are replaced by their own new leaves.

We denote by X0 the first node that refers X as its parent and by Xi, i = 1 . . . 4
the other nodes that refer X as their parent. The first child X0 of X became child
of the parent of X, and because A has no parent, A0 does not exist. We denote
the first child of Xi by Xi0, the others four children by Xij , j = 1 . . . 4. For a
better view of the notes we will rename the nodes wich became of root-type.

(1) The root A becomes the parent of the first leaf A1.

A A1

Figure 1: The first two nodes

(2) A is referred as the parent of the new node A2. A1 has a leaf, so it is
referred as the parent of A10; at this moment A1 gains its independence
and leaves the bucket of A, becoming a root (B). A10, its first child,
becomes a leaf of A.

(3) A refers to A3 as its child; B (formerly A1) is referred as parent by B1

and A2 is referred as parent by A20; A2 gains its independence and leaves
the bucket of A becoming a root (C); A20 becomes a leaf of A. A10 is

88 CLARA IONESCU

A2 B A A10

Figure 2: A1 becomes a root (B)

referred as parent by A100; A10 also gains independence and leaves the
bucket of A becoming a root (D); its first child, A100, becomes a leaf of
A.

A20 B A A100

A3

B1 C D

Figure 3: The structure has eight nodes; the bucket of A contains three

leaves and the bucket of B contains one leaf; C and D do not yet have any

leaf. A, B, C and D are root-nodes.

(4) A4 is the new child of A, B2 is the new child of B, C1 is the new child of
C and D1 is the new child of D; then, A100 is referred as parent by A1000

and leaves the bucket of A, becoming a root (E), and A1000 becomes a
leaf of A. A20 is referred as the parent by A200; A20 becomes the root F
and A200 becomes a leaf of A. A3 is referred as parent by A30; it becomes
a root (G) and A30 becomes a leaf of A; B1 is referred as parent by B10,
so it becomes a root (H) and B10 becomes a leaf of B.

The first loop ends here (the bucket of A is complete). One should
not substitute “complete” with “finalized”, because this term refers only
to the number and it does not refer to the content of the bucket. A may
not be referred as parent by any new node, but the content of its bucket
changes due to the leaves of the leaves of A.

(5) We suppose that, in the next step, all nodes (except A, because its bucket
is complete), roots and leaves, are referred as parents by new elements.

Figure 5 shows the bucket of A has the same number of elements,
but A1000 was replaced by A10000, A200 was replaced by A2000, A30 was
replaced by A300 and A4 was replaced by A40. Simultaneously, the sizes
of the buckets of B, C, D, E, F , G, H increase and the leaves that
became roots are I, J , K, L, M , N , P , O.

One may notice that at each step the number of nodes is increased by the
number of root type nodes not having complete buckets and the leaves.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 89

A200 B A A1000

A30

B10 C

D

A4

B2 C1

D1 E F G H

Figure 4: The links between the nodes after the fourth step of the inser-

tions. There are eight roots (A, B, C, D, E, F , G, H) and eight leaves

(A1000, A200, A30, A4, B10, B2, C1, D1).

A2000
B

A

A10000

A300
B100

C D

A40

B20

C10 D10

E F1

B3

C2 D2

E1 F G G1 H H1

I L J K M N P O

Figure 5: The leaves I, J , K, L, M , N , P , O became roots

The place (position) of an inserted node depends only on the node referred as
parent by the node.

Obviously, the order in which the insertions are performed is not necessarily
the same as in the example. It is possible to have some nodes referred as parents
at most five times in a row and others to stay leaves for a long time.

90 CLARA IONESCU

4. Possible Queries

First of all, the problem of building such a structure must be considered.
Without reducing the generality, we may suppose that the information corre-

sponding to a node is contained in a field called name. When designing such a
data structure it is obvious that the possible queries that may be performed on
the database modelled using this structure have to be considered. It is known
that searching queries must be supported by such a database. We suppose that
all queries, except for insertions, are performed on a single name. The insertion
is performed using a search (we look for a node that has as field name the value
specified as the parent of the new node); hence, two names will be given (for the
new node and for the parent).

There are many types of queries, such as:

(1) Given a name, check whether it exists or not in the database.
(2) Given a name, find the name of its parent.
(3) Given a name, check whether it corresponds to a root or to a leaf; if it

corresponds to a leaf, find the content of its bucket (the names of the
leaves).

(4) Given a name, find all nodes that are ancestors of a node specified by
its name. The ancestors of a node are the parent of the parent (the
grandparent), the parent of the grandparent, etc., until the first inserted
node is reached.

(5) Given a name, find all the names of the nodes for which the node corre-
sponding to the name is an ancestor.

At first sight, the structure may be viewed as groups of five elements where we
should know the root of each group. We might keep the roots in an alphabetically
sorted list and keep trace of the children. In this way, the hierarchy hidden in the
model is lost. From a logical point of view, this hierarchy is due to the fact that
each node is inserted in the structure as a child of another node. But, here there
are no “bosses” and no “subordinates”.

In addition, the first child Z of a node Y is “given” to the node X that referred
to Y as one of its children. From the logical point of view, X is on a superior
level with respect to Y , hence Z and Y become “siblings”, even if it looks like Z
should be a descendent of Y . Hence, an implementation that uses tree-like data
structures in which child-type pointers are used, does not correspond to the real
situation from a logical point of view.

We propose an implementation that allows the buckets to be part of the struc-
ture (the content of the buckets is changeable) and also allows the hierarchy to be
saved.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 91

The root-nodes are maintained in a tree-like structure in which each node rep-
resents a bucket consisting in at least one and at most five nodes. For a node,
we have the information field (name) and six pointers. One of them points to
the parent specified when the node was inserted. The other five are child-type
pointers. The first of them points to the node that was replaced at the insertion
time. The other four point to the leaves (the other nodes in the bucket).

The tree-like structure is a quad-tree because each bucket consists in five nodes,
one of them being the root of the bucket; hence, each node has at most four
“descendents”.

4.0.1. Building Fringed-Quadtrees. Implementation. We describe the way the quad-
tree is built based on a sequence of insertions. The following figures show the
insertions presented in the example from section 3.

At the first step A1 is inserted as child of A. For the node A the parent pointer
is nil and child [1] will point to A1. The other child-type pointers are nil. For the
node A1, parent points to A and the other pointers are nil. We use the following
convention: the pointer corresponding to the first child of A points to A, in order
to have a value different than nil.

 A

A1

Figure 6: The first step

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A1 nil nil nil
A1 A nil nil nil nil nil

For the node A the second child-type reference appears: child [2] points to A2.
The node A2 is created in the same way as the node A1 at the previous step. Due
to the fact that A1 refers to A10 as its first child, the pointer from the node A to
A1 is replaced by a pointer to A10. Obviously, parent of the node A10 points to
A1. The node A1 remains unchanged because its parent remains A. Its child-type
pointers are nil because there are no leaves in its bucket.

92 CLARA IONESCU

A2 B

A

A10

Former A1

Figure 7: The second step

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A10 A2 nil nil

B (formerly A1) A A10 nil nil nil nil
A2 A nil nil nil nil nil
A10 B nil nil nil nil nil

A3 is inserted as a leaf of A, so child [3] of the node A points to A3. B (formerly
A1) receives its first leaf B1 (the first node that referred it as parent became a leaf
of A at the previous step), hence child [1] of the node B points to B1. The pointer
parent of the node B1 points to B (the former A1). A20, the first descendent of A2

is inserted so, child [2] of the node A points to A20. The node A2 (now C) remains
unchanged, its parent field still points to A. A child of A10 (A100) is inserted,
hence the field child [1] from A is changed; now, it points to A100. The node A100

is created in such a way that its parent field points to A10 (now D).

A20 B

A

A100 A3

B1

C

D

Former A1
Former A2

Former A10 (its parent is A1= B)

Figure 8: There are four root-type nodes and four leaves

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 93

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A100 A20 A3 nil

B (formerly A1) A D B1 nil nil nil
C (formerly A2) A A20 nil nil nil nil
D (formerly A10) B A100 nil nil nil nil

A3 A nil nil nil nil nil
B1 B nil nil nil nil nil
A20 C nil nil nil nil nil
A100 D nil nil nil nil nil

At the next step, we suppose that each of the eight nodes in the structure is
referred as parent by a new node that must be inserted. The tree has the pointers
presented in the following table:

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A1000 A200 A30 A4

B A D B10 B2 nil nil
C A G C1 nil nil nil
D B H D1 nil nil nil

E (formerly A3) A A30 nil nil nil nil
F (formerly B1) B B10 nil nil nil nil
G (formerly A20) C A200 nil nil nil nil
H (formerly A100) D A1000 nil nil nil nil

A4 A nil nil nil nil nil
B2 B nil nil nil nil nil
C1 C nil nil nil nil nil
D1 D nil nil nil nil nil
A30 E nil nil nil nil nil
B10 F nil nil nil nil nil
A200 G nil nil nil nil nil
A1000 H nil nil nil nil nil

One may notice that the bucket of A is complete, that is A cannot have any
more leaves that refer it as parent. But, when elements referring as parents the
leaves of A are inserted, the new elements replace the leaves of A, becoming part
of the bucket.

In order to clarify the way the fringed quad-tree is built, the next table presents
an extra optional step.

94 CLARA IONESCU

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A10000 A2000 A300 A40

B A D B100 B20 B3 nil
C A G C10 C2 nil nil
D B H D10 D2 nil nil

E (formerly A3) A M E1 nil nil nil
F (formerly B1) B N F1 nil nil nil
G (formerly A20) C P G1 nil nil nil
H (formerly A100) D Q H1 nil nil nil
I (formerly A4) A A40 nil nil nil nil
J (formerly B2) B B20 nil nil nil nil
K (formerly C1) C C10 nil nil nil nil
L (formerly D1) D C10 nil nil nil nil

M (formerly A30) E A300 nil nil nil nil
N (formerly B10) F B100 nil nil nil nil
P (formerly A200) G A2000 nil nil nil nil
Q (formerly A1000) H A10000 nil nil nil nil

B3 B nil nil nil nil nil
C2 C nil nil nil nil nil
D2 D nil nil nil nil nil
E1 E nil nil nil nil nil
F1 F nil nil nil nil nil
G1 G nil nil nil nil nil
H1 H nil nil nil nil nil
A40 I nil nil nil nil nil
B20 J nil nil nil nil nil
C10 K nil nil nil nil nil
D10 L nil nil nil nil nil
A300 M nil nil nil nil nil
B100 N nil nil nil nil nil
A2000 P nil nil nil nil nil
A10000 Q nil nil nil nil nil

We recall that in this example we considered all possible insertions that may be
performed at each moment of time even if this is not compulsory.

We now present an image of the fringed-quadtree described in the previous
table. For a better view, the parent pointers of the leaves were removed.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 95

N

A

A10000 A2000 A300 A40

B

B100 B20 B3

C

C10 C2

E

E1

I

D

D10 D2

F

F1

J G

G1

K

H

H1

L

M

N N

Figure 9: The fringed-quadtree

Due to the hierarchy established by the parent pointers, the spanning must be
performed from the bottom side to the upper-side of the quad-tree. The spanning
may be optimised if data is inserted in a search structure such as a balanced binary
searching tree or a B-tree [Ione91]. This means that the memory space needed to
store a node increases due to the new pointers that refer to the search structure
and other needed fields (for example, the factor of balance).

4.0.2. Queries implementation. We suppose that we have as searching key the
field name of the nodes.

(1) For the first type of query we must check whether a given name is con-
tained in the database. A search for this name will be performed in the
search structure.

(2) For the second type of query we must retrieve the parent of a given node.
If the node is in the search structure, than the name field of the node
referred by the pointer parent is returned.

(3) For the third type of query we must establish whether a node is a root
or a leaf. If, for that node, we have child [0] = nil, it follows that the

96 CLARA IONESCU

node is a leaf; otherwise, the node is a root. This type of query also
asks the children of a root (the bucket content) to be retrieved. For
a leaf, the algorithm halts here. For a root, the names of the nodes
referred by the pointers child [i], i = 1 . . . 4 are returned. Obviously, it is
not compulsory to have acomplete bucket, so will be returned the nodes
pointed by child [i] 6= nil.

(4) For the fourth type of query we must retrieve all the ancestors of a given
node identified by its name.
(a) We retrieve the given node (query of first type).
(b) After finding the node we “climb” the tree until we reach the node

having the value nil for the parent pointer. All the names of the
nodes on the “way-up” are returned.

(5) For the fifth type of query we must retrieve all the nodes having as one
of the ancestors a node identified by its name. Apparently, this is the
inverse of the previous query where all the ancestors of a node had to
be found. A closer look leads to the conclusion that, in fact, this is not
an inverse, but a generalization. We must find paths that link a node
(not the “oldest” ancestor) to certain nodes for which we do not know
the names.
(a) At the first step we retrieve the node corresponding to the name

and return it.
(b) If the pointer child [0] has the value nil, the node is a leaf and the

algorithm halts.
(c) Otherwise, we return all the nodes that refer (directly or not) the

node child [0] as parent, which means we recursively call the algo-
rithm for the node referred by child [0]. For the pointers child [i],
we “climb”, using the parent pointers, until we reach a pointer to a
child of the current node. At the next step we apply the spanning
algorithm for this node.

1: procedure Spanning(r)
2: write rˆ.name
3: if rˆ.child [0] 6= nil then
4: Spanning(rˆ.child [0])
5: for i = 1, 4, 1 do
6: if rˆ.child [i] 6= nil then
7: p ← rˆ.child [i]
8: while pˆ.parent 6= r do
9: p ← pˆ.parent

10: end while

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 97

11: Spanning(p);
12: end if
13: end for
14: end if
15: end procedure

5. Complexity Analysis

The memory space needed has the order of magnitude O(n) because for each
element we need a node. For the implementation we do not necessarly have to
use dynamic memory allocation. We might build a database in which the records
contain (apart from the corresponding information) six pointers. For the actual
implementation we should find an efficient way to store the leaves (the nodes
having all child-type pointers set to nil). This is not a waste of time because in
a fringed quad-tree there may be 4n/5 leaves.

Analysing the algorithms for the first three types of queries, it follows that the
first step has a time complexity of O(log n), the time needed for a search in a
structure similar to a balanced binary search tree [Ione91].

For the fourth query we have an algorithm running in O(log n+h) time, where
h is the number of nodes returned. For the last query the algorithm runs in
O(log n + m) time, where m is the number of nodes having the given node as
ancestor. It follows that the algorithms for the fourth and fifths type of query
have the order of magnitude O(n) for the worst case.

For the fourth type of query the worst case is finding the ancestors of the only
leaf in a fringed-quadtree in which all nodes (except for the leaf) have exactly one
child (all the nodes of the fringed-quadtree must be returned).

For the fifth type of query the worst case is finding all the nodes having the
fringed-quadtree root as ancestor (all the other nodes in the fringed-quadtree must
be returned).

6. Further work

In this paper we described operations such insertion, search and several types of
queries. Since deletion of a leaf-type node is trivial and the deletion of a root-type
node is not allowed in the real model, we did not consider for the moment this
operation. Obviously, we must be able to delete records from any kind of data-
base, so the next issue will be to find a way of records deletion from a database
implemented with fringed-quadtrees, without loosing the hierarchy. While devel-
oping the application, we will try to optimize as much as possible all the details
regarding the implementation of the fringed-quadtrees.

98 CLARA IONESCU

References

[Adel62] Adelson-Velskii, G.M., Landis, E.M.: An algorithm for the organisation of in-

formation, Soviet Mathematics Doklady, 3:1259-1263, 1962.

[Come79] Comer, D.: The ubiquitous B-tree, ACM Computing Surveys 11, 2 (June 1979),

121–137.

[Fink74] Finkel, R.A., i Bentley, J.L.: Quad trees: A data structure for retrieval on com-

posite keys, Acta Informatica, 4:1-9, 1974.

[Ione91] Ionescu, C., Zsakó, I. Structuri arborescente cu aplicaţiile lor, Editura Tehnică,

Bucureşti 1991.

[Knut73] Knuth, D.E.: The Art of Computer Programming, vol.I, Fundamental Algorithms,

Second Edition, Addison-Wesley, Reading, MA, 1973.

[Wirt76] Wirth, N.: Algorithms + Data Structures = Programs, Prentice Hall, 1976.

Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: clara@cs.ubbcluj.ro

