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A WEIGHTED-PATH-FOLLOWING METHOD FOR LINEAR
OPTIMIZATION

ZSOLT DARVAY

Abstract. In a recent paper [4] we introduced a new method for finding
search directions for interior point methods (IPMs) in linear optimization
(LO), and we developed a new polynomial algorithm for solving LO prob-
lems. It is well-known that using the self-dual embedding we can find a
starting feasible solution, and this point will be on the central path. We
proved [3] that this initialization method can be applied for the new algo-
rithm as well. However, practical implementations often don’t use perfectly
centered starting points. Therefore it is worth analysing the case when the
starting point is not on the central path. In this paper we develop a new
weighted-path-following algorithm for solving LO problems. We conclude
that following the central path yields to the best iteration bound in this case
as well.

1. Introduction

In this paper we discuss a generalized form of path-following IPMs. The field of
IPMs is an active research area, since Karmarkar [8] has developed the first IPM
in 1984. For a survey of results see the following books [1, 2, 6, 11, 13, 14]. In
this paper we generalize the algorithm introduced in [4], and we develop a new
weighted-path-following algorithm. It is well known that with every algorithm
which follows the central path we can associate a target sequence on the central
path. This observation led to the concept of target-following methods introduced
by Jansen et al. [7]. A survey of target-following algorithms can be found in
[11] and [6]. Weighted-path-following methods can be viewed as a particular case
of target-following methods. These methods were studied by Ding and Li [5] for
primal-dual linear complementarity problems, and by Roos and den Hertog [10]
for primal problems. In this paper we consider the LO problem in the following
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standard form

min cT x

s.t. Ax = b,(P )
x ≥ 0,

where A ∈ <m×n with rank(A) = m, b ∈ <m and c ∈ <n. The dual of this
problem can be written in the following form

max bT y

s.t. AT y + s = c,(D)
s ≥ 0.

We assume that the interior point condition (IPC) holds for these probelms.
Assumption 1 (Interior point condition). There exist (x0, y0, s0) such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.

Using the self-dual embedding method a larger LO problem can be constructed in
such a way that the IPC holds for that problem. Hence, the IPC can be assumed
without loss of generality. Finding the optimal solutions of both the original
problem and its dual, is equivalent to solving the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1)
xs = 0,

where xs denotes the coordinatewise product of the vectors x and s, hence

xs = [x1s1, x2s2, . . . , xnsn]T .

We mention that in this paper for an arbitrary function f , and an arbitrary vector
x we will use the notation

f(x) = [f(x1), f(x2), . . . , f(xn)]T .

The first and the second equations of system (1) serve for maintaining feasibility,
hence we call them the feasibility conditions. The last relation is the complemen-
tarity condition, which in IPMs is generally replaced by a parameterized equation,
thus we obtain

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2)
xs = µe,

where µ > 0, and e is the n-dimensional all-one vector, hence e = [1, 1, . . . , 1]T . If
the IPC is satisfied, then for a fixed µ > 0 the system (2) has a unique solution.
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This solution is called the µ-center (Sonnevend [12]), and the set of µ-centers for
µ > 0 formes the central path. The target-following approach starts from the
observation that the system (2) can be generalized by replacing the vector µe with
an arbitrary positive vector w2. Thus we obtain the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(3)
xs = w2,

where w > 0. If the IPC holds then the system (3) has a unique solution. This
feature was first proved by Kojima et al. [9]. Hence we can apply Newton’s
method for the system (3) to develop a primal-dual target-following algorithm.
In the following section we present a new method for finding search directions by
applying Newton’s method for an equivalent form of system (3).

2. New Search-Directions

In this section we introduce a new method for constructing search directions by
using the system (3). Let <+ = {x ∈ < | x ≥ 0}, and consider the function

ϕ ∈ C1, ϕ : <+ → <+.

Furthermore, suppose that the inverse function ϕ−1 exists. Then, the system (3)
can be written in the following equivalent form

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(4)
ϕ(xs) = ϕ(w2),

and we can apply Newton’s method for the system (4) to obtain a new class of
search directions. We mention that a direct generalization of the approach defined
in [4] would be the following variant. The system (3) is equivalent to

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(5)

ϕ
( xs

w2

)
= ϕ(e),

and using Newton’s method for the system (5) yields new search directions. For
our purpose it is more convenient the first approach, hence in this paper we use
the system (4). Let us introduce the vectors

v =
√

xs and d =
√

xs−1,

and observe that these notations lead to

(6) d−1x = ds = v.
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Suppose that we have Ax = b, and AT y + s = c for a triple (x, y, s) such that
x > 0 and s > 0, hence x and s are strictly feasible. Applying Newton’s method
for the system (4) we obtain

A∆x = 0,

AT ∆y + ∆s = 0,(7)
sϕ′ (xs) ∆x + xϕ′ (xs) ∆s = ϕ(w2)− ϕ (xs) .

Furthermore, denote
dx = d−1∆x, ds = d∆s,

and observe that we have

(8) v(dx + ds) = s∆x + x∆s,

and

(9) dxds = ∆x∆s.

Hence the linear system (7) can be written in the following equivalent form

Ādx = 0,

ĀT ∆y + ds = 0,(10)
dx + ds = pv,

where

(11) pv =
ϕ(w2)− ϕ(v2)

vϕ′(v2)
,

and Ā = Adiag(d). We also used the notation

diag(ξ) =




ξ1 0 . . . 0
0 ξ2 . . . 0

. . . . . . . . . . . .
0 0 . . . ξn


 ,

for any vector ξ. In the following section we will develop a new primal-dual
weighted-path-following algorithm based on one particular search direction.

3. The Algorithm

In this section we let ϕ(x) =
√

x, and we develop a new primal-dual weighted-
path-following algorithm based on the appropriate search directions. Thus, making
the substitution ϕ(x) =

√
x in (11) we get

(12) pv = 2(w − v).

Now for any positive vector v, we define the folowing proximity measure

(13) σ(v, w) =
‖pv‖

2min(w)
=
‖w − v‖
min(w)

,
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where ‖ · ‖ is the Euclidean norm (l2 norm), and for every vector ξ we denote
min(ξ) = min{ξi | 1 ≤ i ≤ n}. We introduce another measure

σc(w) =
max(w2)
min(w2)

,

where for any vector ξ we denote max(ξ) = max{ξi | 1 ≤ i ≤ n}. Observe that
σc(w) can be used to measure the distance of w2 to the central path. Furthermore,
let us introduce the notation

qv = dx − ds,

observe that from (10) we get dT
x ds = 0, hence the vectors dx and ds are orthogonal,

and thus we find that
‖pv‖ = ‖qv‖.

Consequently, the proximity measure can be written in the following form

(14) σ(v, w) =
‖qv‖

2min(w)
,

thus we obtain
dx =

pv + qv

2
, ds =

pv − qv

2
,

and

(15) dxds =
p2

v − q2
v

4
.

Making the substitution ϕ(x) =
√

x in (7) yields

A∆x = 0,

AT ∆y + ∆s = 0,(16) √
s

x
∆x +

√
x

s
∆s = 2(w −√xs).

Now we can define the algorithm.

Algorithm 3.1 Suppose that for the triple (x0, y0, s0) the interior point condition
holds, and let w0 =

√
x0s0. Let ε > 0 be the accuracy parameter, and 0 < θ < 1

the update parameter (default θ = 1

5
√

σc(w0)n
),

begin
x := x0; y := y0; s := s0;
w := w0;
while xT s > ε do begin

w := (1− θ)w;
Compute (∆x, ∆y, ∆s) from (16)
x := x + ∆x;
y := y + ∆y;
s := s + ∆s;
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end
end.

In the next section we shall prove that this algorithm is well defined for the default
value of θ, and we will also give an upper bound for the number of iterations
performed by the algorithm.

4. Convergence Analysis

In the first lemma of this section we prove that if the proximity measure is
small enough, then the Newton process is strictly feasible. Denote x+ = x + ∆x
and s+ = s + ∆s the vectors obtained by a full Newton step, and let v =

√
xs as

usual.

Lemma 4.1 Let σ = σ(v, w) < 1. Then the full Newton step is strictly feasible,
hence

x+ > 0 and s+ > 0.

Proof: For every 0 ≤ α ≤ 1 let x+(α) = x + α∆x and s+(α) = s + α∆s. Hence

x+(α)s+(α) = xs + α(s∆x + x∆s) + α2∆x∆s

Now using (8) and (9) we find that

x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds,

and from (10) and (15) we obtain

x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2

v

4
− q2

v

4

)
.

Moreover (12) yields

v +
pv

2
= w,

and thus

v2 + vpv = w2 − p2
v

4
.

Consequently

(17) x+(α)s+(α) = (1− α)v2 + α

(
w2 − (1− α)

p2
v

4
− α

q2
v

4

)
,

thus the inequality x+(α)s+(α) > 0 certainly holds if
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞

< min(w2),
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where ‖ · ‖∞ denotes the Chebychev norm (l∞ norm). Using (13) and (14) we get
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
≤ (1− α)

‖p2
v‖∞
4

+ α
‖q2

v‖∞
4

≤

≤ (1− α)
‖pv‖2

4
+ α

‖qv‖2
4

= σ2 min(w2) < min(w2).

Hence, for any 0 ≤ α ≤ 1 we have x+(α)s+(α) > 0. As a consequence we observe
that the linear functions of α, x+(α) and s+(α) do not change sign on the interval
[0, 1]. For α = 0 we have x+(0) = x > 0 and s+(0) = s > 0 thus we obtain
x+(1) = x+ > 0 and s+(1) = s+ > 0, and this implies the lemma.

In the next lemma we prove that the same condition, namely σ < 1 is sufficient
for the quadratic convergence of the Newton process.

Lemma 4.2 Let x+ = x + ∆x and s+ = s + ∆s be the vectors obtaind after a full
Newton step, v =

√
xs and v+ = √

x+s+. Suppose σ = σ(v, w) < 1. Then

σ(v+, w) ≤ σ2

1 +
√

1− σ2
.

Thus σ(v+, w) < σ2, which means quadratic convergence of the Newton step.
Proof: From Lemma 4.1 we get x+ > 0 and s+ > 0. Now substitute α = 1 in
(17) and get

(18) v2
+ = w2 − q2

v

4
.

Using (18) we obtain

min(v2
+) ≥ min(w2)− ‖q2

v‖∞
4

≥ min(w2)− ‖qv‖2
4

= min(w2)(1− σ2),

and this realtion yields

(19) min(v+) ≥ min(w)
√

1− σ2.

Furthermore, from (18) and (19) we get

σ(v+, w) =
1

min(w)

∥∥∥∥
w2 − v2

+

w + v+

∥∥∥∥ ≤
‖w2 − v2

+‖
min(w) (min(w) + min(v+))

≤

≤ ‖q2
v‖

(2min(w))2
(
1 +

√
1− σ2

) ≤ 1
1 +

√
1− σ2

( ‖qv‖
2min(w)

)2

=
σ2

1 +
√

1− σ2
.

Consequently, we have σ(v+, w) < σ2, and this implies the lemma.

In the following lemma we give an upper bound for the duality gap obtained after
a full Newton step.



10 ZSOLT DARVAY

Lemma 4.3 Let σ = σ(v, w). Moreover, let x+ = x+∆x and s+ = s+∆s. Then

(x+)T s+ = ‖w‖2 − ‖qv‖2
4

,

hence (x+)T s+ ≤ ‖w‖2.
Proof: From

x+s+ = w2 − q2
v

4
,

we obtain

(x+)T s+ = eT (x+s+) = eT w2 − eT q2
v

4
= ‖w‖2 − ‖qv‖2

4
,

and this proves the lemma.

In the following lemma we discuss the influence on the proximity measure of the
Newton process followed by a step along the weighted-path. We assume that each
component of the vector w will be reduced by a constant factor 1− θ.

Lemma 4.4 Let σ = σ(v, w) < 1 and w+ = (1− θ)w, where 0 < θ < 1. Then

σ(v+, w+) ≤ θ

1− θ

√
σc(w)n +

1
1− θ

σ(v+, w).

Furthermore, if σ ≤ 1
2 , θ = 1

5
√

σc(w)n
and n ≥ 4 then we get σ(v+, w+) ≤ 1

2 .

Proof: We have

σ(v+, w+) =
1

min(w+)
‖w+ − v+‖ ≤ 1

min(w+)
‖w+ − w‖+

1
min(w+)

‖w − v+‖ =

=
1

(1− θ)min(w)
‖θw‖+

1
1− θ

σ(v+, w) ≤ θ

1− θ

√
σc(w)n +

1
1− θ

σ(v+, w).

Thus the first part of the lemma is proved. Now let θ = 1

5
√

σc(w)n
, observe

that σc(w) ≥ 1, and for n ≥ 4 we obtain θ ≤ 1
10 . Furthermore, if σ ≤ 1

2 then
from Lemma 4.2 we deduce σ(v+, w) ≤ 1

4 . Finally, the above relations yield
σ(v+, w+) ≤ 1

2 . The proof of the lemma is complete.

Observe that σc(w) = σc(w0) for all iterates produced by the algorithm. Thus, an
immediate result of Lemma 4.4 is that for θ = 1

5
√

σc(w0)n
the conditions (x, s) > 0

and σ(v, w) ≤ 1
2 are maintained throughout the algorithm. Hence the algorithm is

well defined. In the next lemma we calculate an upper bound for the total number
of iterations performed by the algorithm.
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Lemma 4.5 Assume that x0 and s0 are strictly feasible, an let w0 =
√

x0s0. More-
over, let xk and sk be the vectors obtained after k iterations. Then the inequality
(xk)T sk ≤ ε is satisfied for

k ≥
⌈

1
2θ

log
(x0)T s0

ε

⌉
.

Proof: After k iterations we get w = (1− θ)kw0. Using Lemma 4.3 we find that

(xk)T sk ≤ ‖w‖2 = (1− θ)2k‖w0‖2 = (1− θ)2k(x0)T s0,

hence (xk)T sk ≤ ε holds if

(1− θ)2k(x0)T s0 ≤ ε.

Taking logarithms, we obtain

2k log(1− θ) + log((x0)T s0) ≤ log ε.

Using the inequality − log(1− θ) ≥ θ we deduce that the above relation holds if

2kθ ≥ log((x0)T s0)− log ε = log
(x0)T s0

ε
.

The proof is complete.

For the default value of θ specified in Algorithm 3.1 we obtain the following theo-
rem.

Theorem 4.6 Suppose that the pair (x0, s0) is strictly feasible, an let w0 =
√

x0s0.
If θ = 1

5
√

σc(w0)n
then Algorithm 3.1 requires at most

⌈
5
2

√
σc(w0)n log

(x0)T s0

ε

⌉

iterations. For the resulting vectors we have xT s ≤ ε.

5. Conclusion

In this paper we have developed a new weighted-path-following algorithm for
solving LO problems. Our approach is a generalization of [4] for weighted-paths.
We have transformed the system (3) in an equivalent form by introducing a func-
tion ϕ. We have defined a new class of search directions by applying Newton’s
method for that form of the weighted-path. Using ϕ(x) =

√
x we have developed a

new primal-dual weighted-path-following algorithm, and we have proved that this
algorithm performs no more than

⌈
5
2

√
σc(w0)n log

(x0)T s0

ε

⌉
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iterations. Observe, that this means that the best bound is obtained by following
the central path. Indeed, we have σc(w0) = 1 in this case, and we get the well-
known iteration bound

O

(√
n log

(x0)T s0

ε

)
.

If the starting point is not perfectly centered, then σc(w0) > 1 and thus the
iteration bound is worse.
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versitatis Babeş-Bolyai, Series Informatica, 47(1):15–26, 2002.

[4] Zs. Darvay. A new class of search directions for linear optimization. In Proceedings of Ab-
stracts, McMaster Optimizations Conference: Theory and Applications held at McMaster
University Hamilton, Ontario, Canada, page 18, August 1-3, 2002. Submitted to European
Journal of Operational Research.

[5] J. Ding and T.Y. Li. An algorithm based on weighted logarithmic barrier functions for linear
complementarity problems. Arabian Journal for Science and Engineering, 15(4):679–685,
1990.

[6] B. Jansen. Interior Point Techniques in Optimization. Complexity, Sensitivity and Algo-
rithms. Kluwer Academic Pubishers, 1997.

[7] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual target-following algorithms for
linear programming. Annals of Operations Research, 62:197–231, 1996.

[8] N.K. Karmarkar. A new polinomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

[9] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, volume 538 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, Germany, 1991.

[10] C. Roos and D. den Hertog. A polinomial method of approximate weighted centers fo linear
programming. Technical Report 89-13, Faculty of Technical Mathematics and Informatics,
TU Delft, NL-2628 BL Delft, The Netherlands, 1994.

[11] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization. An
Interior Approach. John Wiley & Sons, Chichester, UK, 1997.

[12] Gy. Sonnevend. An ”analytic center” for polyhedrons and new classes of global algorithms
for linear (smooth, convex) programming. In A. Prékopa, J. Szelezsán, and B. Strazicky, ed-
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