
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

DIAGRAM DESIGN IN OCL EVALUATOR

HORIA CHIOREAN

Abstract. OCL Evaluator is a tool developed by the Computer Research
Laboratory of the Babes-Bolyai University (LCI), designed for checking UML
models stored in XMI format. The main purpose of this software is that of
checking (verifying). The general use case scenario is: the user designs his
application using a case tool like Rational Rose, Together, etc. Once this
design faze is finished, the user has a model for the problem. This model
is exported using the same case tool or some other program into an XMI
document. The XMI document is inputted into our tool and verified. These
verifications are done according to certain rules, that can be very complex
and are grouped into several categories.

On the other hand, once errors are reported for a model, it’s natural
to allow the user to correct these errors. This is where the diagrams “kick
in”. Diagrams can simplify very much the process of error correcting, because
they can provide a visual representation for a model.

The problem was to implement these diagrams in OCL Evaluator, using
the Java programming language.

1. Achievements regarding OCL

The Object Constraint Language (or OCL) first appeared in 1997 as part of
UML’s 1.1 specification. OCL is a formal language used to express constraints.
These typically specify invariant conditions that must be satisfied by the system
being modeled.

Although it has been developed some years ago, very little support has been
given to OCL in the sense that there are very few software tools that give the
user the possibility to check his/hers model using the object constraint language.
Well known CASE tools, such as Rational Rose, have plugins that allow certain
verifications to be done using OCL, but these plugins are by no means enough in
order to use OCL’s the full power.

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; D.2.7 [Software] : Software Engineering – Distribution, Maintenance
and Enhancements .

89



90 HORIA CHIOREAN

2. The importance of UML diagrams

A diagram (in general) could be considered a graphical representation of certain
elements together with their relations. The reason why diagrams are so important
is because they provide a graphical representation for a system (or for a part of
the system). Having such a representation, makes it a lot easier to understand
how that system works.

The Unified Modeling Language (or UML) is, as its name states, a modeling
language. In other words, it is a language that is used to design models for
problems. (by problems, we mean software problems, that can be solved using an
Object Oriented approach) It is natural for such a language to have diagrams in
its specification and therefore UML (in the 1.4 specification), defines the following
kinds of diagrams:

(1) Static Structure Diagrams – class diagram and object diagram.
(2) Use Case Diagrams – the use case diagram.
(3) Interaction Diagrams – collaboration diagram and sequence diagram.
(4) State Charts Diagrams – the state chart diagram.
(5) Activity Diagrams – the activity diagram.
(6) Implementation diagrams – the component diagram and the deployment

diagram.

Each of these diagrams contains several elements and relations, according to
their type, that are abstract elements defined in UML’s specification. (elements
like classes, actors, use cases, messages, objects, associations, etc) Each and every
one of those, has a graphical notation like: rectangles for classes, lines for associ-
ations, ovals for use cases, etc, graphical notations that are used in a diagram.

The diagrams should give the user the possibility of representing only parts of
the model or the model in it’s entirety. This means that a diagram should have
the following features:

(1) To allow one or more elements to be represented in more then one di-
agram. In other words, an element can be represented in multiple dia-
grams.

(2) Deleting one/more elements from a diagram, without affecting the model.
(3) Undo/Redo functionalities.
(4) Element filtering – this is a very important feature, because it allows

the user to see only the part of that element that he is interested in.
Plus it can simplify a great deal the situation when you have very large
diagrams.

Most of the well known CASE tools: Rational Rose, Together, Use, etc. support
diagrams, but each has their drawbacks.



DIAGRAM DESIGN IN OCL EVALUATOR 91

3. Our solution: UML diagram design in OCL Evaluator using
JGraph

We developed the only tool, OCL Evaluator, that is based on the object con-
straint language, with the sole purpose of providing efficient support for model
checking. Although there are several OCL compilers out there (like the Dresden
OCL Compiler or IBM’s OCL Compiler), none provide an adequate user interface
and are therefore very difficult to use. OCL Evaluator is based on our own OCL
compiler, but also has an extensive user interface that facilitates the process of
checking. Moreover, the user not only has the possibility of checking a system,
but also to correct that system based on eventual errors.

In this context, it was decided that to include a graphical representation of
a system, by means of diagrams, was very important because firstly, it would
facilitate the checking process a great deal by giving a visual representation and
secondly, no other OCL software had this facility.

Although only class diagrams and use case diagrams have been implemented,
most of these diagrams have a thing in common: they can be looked at similar to
a graph. In other words, the structure of a diagram is similar to that of a graph
where the objects are vertices (cells) and the relations between them are edges.

Therefore, when it was decided to include diagrams in the OCL Evaluator,
there were 2 options: either to implement a graphical library from scratch or to
use an existing graph library and to modify it so that it would fulfill the need of
representing a good UML diagram. The later was chosen in the end and the graph
library chosen was JGraph (http://www.jgraph.com) .

JGraph is a freeware, Java based library, used to represent graphs. The inten-
tion behind it, is to provide a freely available and fully Swing compliant implemen-
tation of a graph component. As a Swing component for graphs, JGraph is based
on the mathematical theory of networks, called graph theory, and the Swing user
interface library, which defines the architecture. By combining these two, JGraph
becomes a Swing user interface component used for visualizing graphs.

The design of the JGraph is similar to that of a Swing component. In other
words, besides the fact that JGraph is a Swing component (because it subclasses
JComponent), its architecture is based on Swing Model View Controller (or MVC).

Figure 1 shows, according to [1], the diagram of a JComponent (JTree), which
shows the way in which the MVC pattern is applied.

On the diagram, you clearly see all the participants (except the controller):
the component itself - JTree, its UI (which has the responsibility of rendering
the component) - TreeUI, and its model which encapsulates all the information –
DefaultTreeModel. The control in Swing MVC is encapsulated in the UI-delegate,
which is in charge of rendering the component in platform-specific manner, and
mapping the events from the user interface to transactions, that are executed on
the model.



92 HORIA CHIOREAN

Figure 1. JTree MVC architecture

The JGraph component inherits this basic setup from the JComponent class
and its UIdelegate, which implements the ComponentUI abstract class.

As in the case of text components, the split between platform-dependent and
non-platform Design and Implementation of JGraph dependent attributes, is im-
plemented using the concept of views, which are independent from the elements
that appear in the model.

In Swing’s text components, the elements of the model implement the Element
interface, and for each of these elements, there exists exactly one view. These
views, which implement the View interface, are either accessed through a mapping
between the elements and the views, or through an entry point called root view,
which is referenced from the text component’s UIdelegate.

JGraph has an analogous setup, with the only difference that a graph view is
referenced by the JGraph instance. The cells of the graph model implement the
GraphCell interface, which is JGraph’s analogy to the Element interface. The
cell views implement the CellView interface, in analogy to Swing’s View interface.
The cell views are either accessed through the CellMapper mechanism, or through
the graph view, which is an instance of the GraphView class. However, since the
GraphView class works together with other classes, the analogy with Swing’s text
components is more helpful to understand the separation between the cell and the
view.

In contrast to text components, where the geometric attributes are stored in
the model only, JGraph allows to store such attributes separately in each view,
thus allowing a graph model to have multiple graphic configurations, namely one
for each attached view.

Figure 2 shows JGraphs’s model view controller diagram, according to [1].
The key elements in a JGraph are the GraphCells. These cells are inserted into

the GraphModel and using the GraphUI they are given a visual representation.
There a 3 kinds of GraphCells: Vertexes, Edges and Ports. While vertexes and



DIAGRAM DESIGN IN OCL EVALUATOR 93

Figure 2. JGraph MVC

edges are the common elements of a graph, the port is new concept. In JGraph,
a port is connection point for an edge. Ports are added as children to vertexes,
providing a way for an edge to connect to a vertex. The graphical representation
of a GraphCell is achieved using CellView. CellView is the base class for all the
special views such as: VertexView, PortView and EdgeView.

The graph cell has 2 very important attributes: it holds a reference to an Object
(referred to as the user object) and it has a corresponding View. This view is in
fact an instance of the JGraph’s CellView interface and it also holds a reference
to a Renderer (which normally is a subclass of JComponent). This renderer is
responsible for the painting. For each cell in the graph model, there exists exactly
one cell view in each graph view, which has its own internal representation of the
graph model. The renderers are instantiated and referenced by the cell views.

Renderers are based on the idea of the TreeCellRenderer class from Swing, and
on the Flyweight design pattern. The basic idea behind this pattern is to “use
sharing to support large numbers of fine-grained objects efficiently.”

Because having a separate component for each CellView-instance would be ex-
pensive, the component is shared among all cell views of a certain class. A cell
view therefore only stores the state of the component (such as the color, size etc.),
whereas the renderer holds the component’s painting code (for example a JLabel
instance – in the case of Vertex).

The CellViews are painted by configuring the renderer, and painting the latter
to a CellRendererPane , which may be used to paint components without the
need to add them, as in the case of a container. The renderers in JGraph are
used in analogy to the renderer in JTree, just that JGraph provides more than
one renderer, namely one for each type of cell. Thus, JGraph provides a renderer
for vertices, one for edges, and one for ports. For each subtype of the CellView



94 HORIA CHIOREAN

interface, by overriding the getRenderer method, you may associate a new renderer.
The renderer should be static to allow it to be shared among multiple instances of
a class.

The renderer itself is typically an instance of the JComponent class, with an
overridden paint method that paints the cell, based on the attributes of the passed-
in cell view. The renderer also implements the CellViewRenderer interface,
which provides the getRendererComponent method to configure the renderer. Ac-
cording to [1], Figure 3 shows the architecture of the renderers.

Figure 3. JGraph’s renderers

The three default implementations of the CellViewRenderer interface are the
VertexRenderer, EdgeRenderer and PortRenderer classes.

4. Our solution

There were 2 main challenges in using this library: firstly fixing some bugs that
were present in the implementation of JGraph (the most important of which being
an annoying flicker when dragging cells) and secondly, adapting JGraph so that it
could be used for UML diagrams.

There were two main bugs in JGraph 1.0:
(1) When dragging a cell or an edge, or when changing the size of a cell,

there would be a visible and annoying flicker on the screen.
(2) When trying to bend an edge, the connection point would not be inserted

correctly. (bending edge is achieved by adding connection points to an
edge and dragging those points).

Fixes:
(1) The overlay() method in the BasicGraphUI class did not use Swing’s

double buffering technique, this begin the reason for the flicker. The
method was modified so that the painting would be done in an off-screen
buffer and only after that displayed on screen.

(2) The OnMouseClick() method in the EdgeHandler class did not make
correctly the calculations about the location of the control point.



DIAGRAM DESIGN IN OCL EVALUATOR 95

In the current implementation of the Evaluator, the diagrams were implemented
graphically by using the JDektopPane and JInterFrame Swing classes. This meant
that a diagram would contain an instance of a JGraph and this instance would
actually work as a canvas for JInternalFrame. This design allows (and so in should)
the existence of multiple diagrams.

Figure 4 shows what the diagrams look like (when they are empty).

Figure 4. Diagram Overview in OCL Evaluator

Each element in a diagram, would have to be a cell in a graph. However, because
JGraph’s support for cells was limited to only one kind of cell - the Vertex, which
is a rectangle with an optional text in the center, the cells implemented by us
were: Class Cell, Package Cell, Actor Cell and UseCase cell.

Because JGraph uses the Factory method to create views for each type of cell,
(this is achieved trough a method called createView in the JGraph class), we
sub-classed JGraph and created our own DiagramGraph. This class represents
the graph behind the diagram and it’s responsible for creating the correct views
for each kind of cell. We didn’t implement a new GraphModel because the one
provided by the library (DefaultGraphModel) was general enough for what we
needed.

Therefore, we implemented only the necessary types of cells. Each one of Class
Cell, Use Case Cell, Package Cell and Actor Cell represents the graph cell, and
holds the user object.

Every custom cell, also has a corresponding view related to it, as shown in
Figure 6:

Every renderer, has an appropriate paint() method. This method will be in-
voked by BasicGraphUI, when the rendering mechanism takes place. This is the
place where we wrote the code that displays each cells according to its abstract
counterpart from UML 1.4. The cell class holds a reference to an object for the
model (the object which it represents). So when the paint() method is invoked by



96 HORIA CHIOREAN

Figure 5. Diagram Cells implemented for OCL Evaluator

the view, the user object is accessed, and the painting is done according to the in-
formation extracted from this object. For example, in order to draw a class, before
drawing it’s outline (the rectangle), we take the name of the class, its attributes
and methods from the object (which must be an instanceof Classifier), and draw
them using the drawString() and drawImage() methods from java.awt.Graphics.
This painting mechanism is used for every kind of cell, the only difference being
the user object and the shape of the cell (shape which conforms to the UML 1.4
specification).

In addition to the having a view, we implemented two other classes for our
cells. The first one called GProperty and encapsulates the graphical property for
that cell – meaning the fill color, the outline color, the title font size, the body
font size, etc. The second one is called AbstractFilter and represents a filter. This
filter has been only implemented for ClassCell, and it allows the filtering of classes
according to the visibility of the attributes and methods.

Holding a model element as a user object, provides greater flexibility in the sense
that when this user object, which is always an instance of the Element interface
from UML1.4, is modified, a simple repaint is enough to visualize the change in
all the corresponding diagrams.

As far as the relations between elements are concerned, in any kind of UML
diagram, these relations are represented by straight lines with possible decorations



DIAGRAM DESIGN IN OCL EVALUATOR 97

Figure 6. Custom Views and Renderers

Figure 7. A class diagram

at the extremities. Already JGraph already had the support for this, there were
two important issues that were solved:



98 HORIA CHIOREAN

(1) An Association in UML, besides being represented as a straight line, also
has several additional text labels that indicate the role names and the
multiplicity of that association. Therefore we implemented text labels
that could be set at the end of the edge. Although these labels are not
tied to the edge, by double clicking an edge, they will gather around that
edge.

(2) See Figure 8.

Figure 8. Diagram with an Association Class

An Association Class in UML is represented with a dashed line that connects a
class with an association. This meant that we had to connect a cell with an edge
using a second edge. We stated previously that the key to connecting edges are
the ports. These ports act as a sort of “glue” in the sense that they keep edges
connected. However, in the JGraph library the only cells that are allowed to have
ports are the vertexes.

So, we needed some sort of hybrid edge that allowed the addition of ports
as children on one hand, but would still have the capability to connect to ver-
texes together. We solved this problem by creating 2 special classes (with their
corresponding views): SpecialEdge and SpecialPort, which extend DefaultEdge
respectively DefaultPort. However, SpecialEdge’s view class - SpecialEdgeView is
similar to the view of a vertex making SpecialEdge therefore both an edge and a
vertex. Figure 9 illustrates this.

The OCL evaluator is divided in 5 major parts, as shown in Figure 10.
You can create a diagram by right-clicking in the browser on the desired parent

for the diagram (a package usually), and from the pop-menu selecting New. In
order to add elements to the diagram, you can achieve this in 2 ways:



DIAGRAM DESIGN IN OCL EVALUATOR 99

Figure 9. The Special Cells

Figure 10. OCL Evaluator Overview

(1) Dragging and dropping an element from the browser onto the diagram,
in which case the element will be represented graphically according to
its information.

(2) Using the toolbar to create new elements/relations.



100 HORIA CHIOREAN

5. Conclusions and future work

OCL Evaluator is not yet in a release version. It’s still in beta version. How-
ever, several extensions of our project are possible such as: using OCL to verify
components and using OCL for checking XMI documents.

Of course that the two types of diagrams that were implemented, although they
are the most “fundamental diagrams”, are not enough for a competitive tool. New
diagrams will be implemented as the project extends. However, because JGraph’s
extensibility is limited, a decision will have to be taken whether to continue using
this library, or to implement a new one.

References

[1] Alder. The JGraph Paper. http://jgraph.sourceforge.net/paper.pdf
[2] Alder. The JGraph 1.0 API Specification. http://api.jgraph.com
[3] Gamma, Helm, Johnson, Vlissides. Design Patterns. Addison-Wesley, Reading MA, 1995.
[4] Geary. Graphic Java 2, Volume II: Swing (3rd Edition). Sun Microsystems, Palo Alto CA,

1999.
[5] OMG Unified Modeling Language Specification, Version 1.4 draft, February 2001

Babeş-Bolyai University, Computer Science Research Laboratory, RO 3400 Cluj-
Napoca, Str. Kogălniceanu 1, Romania


