
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

THE CURVES ENCODING

VASILE PREJMEREAN AND SIMONA MOTOGNA

Abstract. In this paper we present an image description model that uses
picture description language, and Bezier interpolation. We study 3-type im-
ages (represented by closed curves that conserve the critical points), giving
modelling techniques, and also the coresponding algorithm. Our goal is to
obtain a minimal description Πl-word of the smooth curves that aproximate
the initial given curves.

1. Introduction

In this paper we present a method of encoding the 3-type images (according to
the classification given in [7]) using Πl -words to describe a set of critical points
to which a Bezier interpolation is applied ([3,6,9]).

A 3-type image, described using a finite numbers of lines and curves, can be
approximated through a 4-type image, described through a finite number of points
in a cartesian rectangular system. The approximation consists of connecting the
closest points to a curve c ⊂ R2, points with integer coordinates, obtaining [5]:

MPc(c) = {Apr(P)|P ∈ c}, Apr : R2 → Z2

These points can also be described by Πl-words.
Decoding means the operation of obtaining the curve closed to the initial one,

and will be performed through interpolation, namely Bezier interpolation ([3,6,9]),
of the points described by the Πl-words.

Bezier interpolation has been chosen because the resulting curves will be smooth,
based on the two basic properties of these curves: they cross the initial and final
points and are tangent to the initial and final segments determined by the first,
respectively the last two points [7].

The curve we want to encode (and approximate) is divided in several curves,
each of them initially described by a string of critical points, of length at most
7, according to the lemma 2.2 from [8]. In order to mark the breaking points
of the curve, we will extend the description language Π∗ (where the alphabet

2000 Mathematics Subject Classification. 68Q45, 68T10.
1998 CR Categories and Descriptors. I.5.2 [Computing Methodologies]: Pattern

Recognition – Design Methodology.

57

58 VASILE PREJMEREAN AND SIMONA MOTOGNA

Figure 1. The transformations for the two image types

Π = {r, u, l, d} stands for the commands right, up, left, down) to the language
Π∗| , where Π| = Π ∪ {|}, the command “|” representing the cut of the curve.
These strings of length bigger than 7 will be reduced, eliminating some of them
such that the curve resulted from interpolating the remaining points will preserve
the critical points, thus approximating in an accurate way the given curve. The
algorithm 2.1 tries to reduce the number of points such that it won’t exceed 6.
Since after elimination some points may no longer be neighbours, the description
cannot be done through Π|, and the language Πl = Π| ∪ {↑, ↓} will be needed,
allowing points selection from a path traversed on the 4 directions.

2. The Set of Critical Points and Bezier Aproximation

From now on we will focus on 3-type images formed from closed curves, for
example a system of level curves on a map as in Figure 2. The encoding of this
image will be obtained by processing each curve; we will follow the process for the
exterior curve, and the others will be treated similarly.

We will apply a rectangular network to the curve under study, such that every
point from the curve (pixel from the image) will have two coordinates (x, y).

The string containing the centers of the squares that are crossed by the given
curve will form the string of critical points (marked by small circles in Figure 3).
The string of critical poits may start from anywhere, but it is more convenient
to choose a starting point S such that together with its neighbouring points, they
will be colinear. The explanation lies in the fact that S will also be the final point
and the curve will be smooth, since a bezier curve is tangent to the starting and
ending segments.

If this desirable situation is not possible, namely there aren’t any three neigh-
bour colinear points, then we will use a smoother network, halving the distance
between horizontal and vertical lines and choosing one of the following situations:

THE CURVES ENCODING 59

Figure 2. An example of a 3-type image

Figure 3. The string of critical points corresponding to a curve

a: re-compute the set of critical points and search a new starting point S;
b: insert a new point between any two neighbour points, at the middle

distance between them; in this way any three succesive points will be
colinear, and any point can be selected as start;

With this string of critical points we may approximate the given curve through
a Bezier interpolation curve. The resulting curve (see Figure 4) will not be exactly
what we’ve expected, since it does not approximate too well the initial curve. It
does not preserve the critical points as shown in Figure 4.

60 VASILE PREJMEREAN AND SIMONA MOTOGNA

Figure 4. Initial curve and the one obtained through interpolation

Applying a new approximation we will get further to the initial curve C0, al-
though it will be desirable to obtain the same CB , constant from now on.

Remark 2.1 : One may notice that if from the set MPC
of critical points we

obtain the curve CB applying a transformation T , and from the curve CB we obtain
the same set MPC of critical points applying a transformation T1, then these two
transformations represent each others inverses (T1 = T−1 and T = T−1

1):

C0 → MPC

T→ CB
T−1

→ MPC

T→ CB ...

The possibility of reducing the number of critical points is studied for each
subcurve (the example from Figure 5 studies the curve between S4 and S1). In
figure 6 you may notice that removing the 4 critical points denoted by ”x” we
obtain a Bezier approximation curve that satisfies the two proposed properties.

In order to obtain the desired approximation curve we will apply Bezier al-
gorithm for each subsequence, and the resulting curve is obtained unifying the s
curves (in Figure 5 we have 4 curves divided by the points S1, ..., S4 determined
by these subsequences: CB(P) = Bezier(P 1

1 , ..., P 1
n1) ∪ Bezier(P 2

1 , ..., P 2
n2) ∪ ... ∪

Bezier(P s
1 , ..., P s

ns), where Mk
PC

= {P k
1 , ..., P k

nk} is the set of critical points ob-
tained for the curve k applying algorithms similar to the ones we will describe
below.

The result can be further improved if we can reduce even more the number of
points, even if we choose other points, not just removing the initial ones. In the
following, we will study this posiibility, trying to reduce the number of remaining
points (the nine points from figure 6 can be reduced to the five points from figure

THE CURVES ENCODING 61

Figure 5. Dividing the curve

Figure 6. Reducing the number of critical points

7, denoted P1, P2, ..., P5. On this specific example, the curve description can be
obtained using only five interpolation points.

There are some remarks to be made analyzing figure 7: the initial point P1

and the final point P5 must be preserved, the second point P2 and the penulti-
mate point P4 must be on the same direction with the old points (in order to
satisfy the smoothness property). The point P3 had been choosen such that the
obtained curve preserves the critical points (meaning also that be obtain a valid
approximation of the given curve).

62 VASILE PREJMEREAN AND SIMONA MOTOGNA

Figure 7. Approximation using 5 points

Algorithm 2.1
The following algorithm tries to find the points P1, ..., Pn that describe the

Bezier approximation curve corresponding to the given critical points Q1, ..., Qm,
starting from 2, 3,..., 6 points. If we don’t succeed, the curve must be divided
again (recommended to).

Begin
Input Q1, Q2, ..., Qm;

if (Q1, Qm) can describe the curve then n:=2;
Output Q1, Qm

else
if exists a point R such that (Q1, R,Qm) can describe the curve

then n:=3;
Output Q1, R, Qm

else
if exist 2 points R,S such that (Q1, R, S, Qm) can describe the curve

then n:=4;
Output Q1, R, S,Qm

else
n:=5;

P1 := Q1;Pn := Qm;
Find (P2 on direction Q1 → Q2) and (Pn−1 on direction Qm → Qm−1) and

Find (P3 in the domain (P1, Pn) depending on (P2, Pn−1));
if Ok(Q1, Q2, ..., Qm, P1, P2, ..., Pn)) then Output P1, ..., Pn

else
n:=6;

P1 := Q1;Pn := Qm;
Find (P2 on direction Q1 → Q2) and (Pn−1 on direction Qm → Qm−1) and

Find (P3 and P4 in the domain (P1, Pn) depending on (P2, Pn−1));
if Ok(Q1, Q2, ..., Qm, P1, P2, ..., Pn)) then Output P1, ..., Pn

THE CURVES ENCODING 63

else write(’The curve must be divided‘)
End.

We present an analysis of the performed steps:
a) For n = 2 - it is very simple, because it is easy to verify if the segment Q1Qm

is horizontal or vertical and traverse the critical point.
b) For n = 3 - we must verify if the triangle Q1RQm is rectangular or not, and the

critical points are preserved (there are two possibilities R(x1, ym) or R(xm, y1)
).

c) For n = 4 - is not dificult to find the points R(= P2) and S(= P3), because R
must have the coordinates (x1, y) or (x, y1) and S must have the coordinates
(xm, y) or (x, ym), where x ∈ (x1, xm) and y ∈ (y1, ym). There are the four
possibilities presented in figure 8.

Figure 8. The 4 cases using 4 approximation points

d) For n = 5 - one can easy see that if we use only the four points P1, P2, P4, P5

to approximate the curve from figure 7 we obtain a curve like the one from
figure 8 c). Then, we need a point (like P3, from figure 7) to ”drag” the curve.
Finally, the points P1, P2, P3, P4, P5 approximate correctly the given curve.
If we consider the case c) from figure 8, finding P2(x1, y) on direction Q1 → Q2

means to find a value y < y1, because Q1 have the coordinates (x1, y1) and
Q2 have the coordinates (x2 = x1, y2) and analogues, finding Pn−1(x, ym) on
direction Qm → Qm−1 means to find a value x > xm, because Qm have the
coordinates (xm, ym) and Qm−1 have the coordinates (xm−1, ym−1 = ym). The
search of the desired points P1 and Pn−1 is performed alternatively increasing
(or decreasing) the coordinate y starting from the initial value y1 ± 1, and
the coordinate x starting from xm ± 1 until the desired points are obtained
or an imposed maximum value is overflow (i.e., x1, respectively ym). Finding
P3(x, y) in the domain (P1(x1, y1), Pn(xm, ym)) means to find a value x such

64 VASILE PREJMEREAN AND SIMONA MOTOGNA

that xm < x < x1 and a value y such that ym < y < y1 (for our case c) from
figure 8).

e) For n = 6 - the points P1, P2, P5, P6 will be constructed like P1, P2, P4, P5 (see
case n=5) and after that we need two points P3(x, y) and P4(x′, y′) in the
domain (P1(x1, y1), Pn(xm, ym)) with the same properties like above (like P3

for n=5).
f) For n > 6 - it is more efficient to cut the curve and to apply this procedure on

each of the parts.
The number of curves in which the initial curve is decomposed can be reduced

in the following way (as in Figure 9):
• eliminating some cutting points: existing colinear points that would solve

the problem correctly;
• searching certain critical points even outside the domain (less points).

Figure 9. The curves obtained with 6 points

As shown in Figure 9a, if during interpolation we consider all points, then the
obtain curve does not preserve the critical points (the three colinear points from
the bottom), but the six points from Figure 9b preserve the curve.

The two interpolation pointsfrom the bottom are needed in order to ”drag“ the
curve through the uncovered critical points. The point P3 is inside the domain
and is needed in order to cover the critical point that remained uncoverd by the
curve from figure 9a.

Searching the points P2, P3, P4, P5 is quite a difficult problem, if we take into
account the eficiency of the algorithm, because the points P2 and P5 must be
searched in the form: P2(x1, y1 + Dy), P5(xm −Dx, y1) and the points P3(x3, y3)
and P4(x4, y4) must be searched in the domain:

(min(X),max(X))× (min(Y),max(Y)),

where X = {x1, x2, x5, x6} and Y = {y1, y2, y5, y6}
Then, the searching algorithm has the following structure:

THE CURVES ENCODING 65

Algorithm 2.2
(1) for Dx := 1 to LimX do
(2) for Dy :=1 to LimY do
(3) for x3 := min(X) to max(X) do
(4) for y3 := min(Y) to max(Y) do
(5) for x4 := min(X) to max(X) do
(6) for y4 := min(Y) to max(Y) do
(7) if Ok(P,Q) then output P

where P = (P1, P2, ..., P6),Q = (Q1, Q2, ...Qm)
This algorithm determines all solutions, but is inefficient due to the six loops.

The optimizing of this algorithm can take into consideration that we may be
satisfied with only some of the solutions or even with one solution in exachang to
a more efficient search.

A first direction for optimization is to unify the loops from lines 3 and 4, respec-
tively from lines 5 and 6. In this way, the search of the points P3, P4 is restricted
on the directions in which the critical points haven’t been covered (in our example,
to the rigth, respectively upwards). Now, the lines 3 to 6 will be replaced with:

For Dr:=1 To Lr Do
For Du:=1 To Lu Do

In this situation, in our example, the points P3 and P4 will be search in the
form P3(x2 + Dr, y1), respectively P4(x5, y5 − Du). Of course, applying such a
strategy does not assure that all solutions will be obtained. This example will
generate two solutions: the one in figure 9b and from figure 10a. The other three
solutions from figure 10 (b,c,d) are not on that direction and we have to extend
the search to a neighbourhood (inside the domain) of the points P3 and P4, if we
haven’t obtained any solution.

Figure 10. Other curves obtained with 6 points

In order to appreciate how close a Bezier curve Bezier(P) is to the set of critical
points Q, we define the distance δ(P, Q) as:

δ(P, Q) = Nr.Minus + Nr.P lus

where:
• Nr.Minus represents the number of critical points uncovered by the

approximation curve Bezier(P)

66 VASILE PREJMEREAN AND SIMONA MOTOGNA

• Nr.P lus represents the number of extra points covered by the approxi-
mation curve (/∈ Q)

Then, the distance δ(P, Q) is the cardinal of the simetric difference (∆) between
the set of representative points for the Bezier curve (CB) corresponding to the
determined points P) and the set of given critical points (MPC

= Q):

δ(P, Q) = |{Apr(B)|B ∈ Bezier(P)} ∆ Q|
For example, if we consider the approximation from figure 11, obtained for

Dx = 4(P5(7, 7)), Dy = 5(P2(5, 4)), Dr = 2(P3(7, 4)) and Du = 1(P4(7, 8)), the
distance is δ(P,Q) = 2 + 1 = 3, since the points (5,5) and (7,5) are not covered,
and the point (6,6) should not be included.

Figure 11. An example of approximation

If we study the minimal values obtained for the pairs (Dy, Dx) from table
2.1 we can notice that for (Dy,Dx) ∈ {(6, 3), (6, 4), (6, 5)} there exist solutions,
because the minimal values for the distance δ are zero. These minimal values are
obtained choosing P3 in the neighbourhood of P2, respectively choosing P4 in the
neighbourhood of P5. Another remark is that these values are grouped in a zone,
to which if we get farther, then the values increase.

This remark gives the possibility to limit the values LimX and LimY from the
loops (1) and (2), since the more we get farther from the zero positions, the more
the values of distances increase.

Even more, if we re not interesting in obtaining all solutions and one soltuion
is enough (as the approximation problem was initially stated), for example the

THE CURVES ENCODING 67

Min(δ) Dx: 1 2 3 4 5 6
Dy: 1 12 10 10 8 8 8

2 8 8 8 6 6 6
3 6 6 6 6 6 6
4 4 4 4 4 5 5
5 6 4 3 2 3 4
6 2 2 0 0 0 4
7 8 3 2 1 1 3

Table 1. The distances obtained for the given curve

position (6,3), then the search should not parse the entire matrix, but the domain
(1, 1) × (6, 3), so LimX = 3 and LimY = 6. The search can be performed
succesively adding square matrixes, in the order given in table 2.2. One may
notice that in the fifth column (or even earlier) the values of δ increases upwards,
so it is possible to quit searching the solution in that zone and move to the next
line.

Searching order Dx: 1 2 3 4 5 6
Dy: 1 1 4 9 16 25 -

2 2 3 8 15 24 -
3 5 6 7 14 23 -
4 10 11 12 13 22 -
5 17 18 19 20 21 -
6 26 27 28 -
7 - - - - - -

Table 2. The searching order - first version

Of course, a Branch and Bound algorithm will be more suitable, especially
since we have already defined a distance δ to the solution (if δ(P, Q) =) then P
is a solution). We will characterize a state through the components Dx, Dy, d1

and d2. The ditance d1 represents the computation step, and d2 = δ(Dx, Dy).
The initial state will be (1, 1, 1, δ(1, 1)), and the final state will be characterized
by δ = 0(d2 = 0).

From a current state (choosen from the set of active states, where the minimum
of the sum d1 +d2 is obtained) we will generate two active states (Dx+1, Dy, d1 +
1, δ(Dx + 1, Dy)) and (Dx, Dy + 1, d1 + 1, δ(Dx,Dy + 1)), and this current state
will become pasive. The steps to be performed can be studied in table 2.3, and
it is also easy to remark that the solution will be obtained in 8 steps. If the set
of active states become empty, such that no new selection of a current state can

68 VASILE PREJMEREAN AND SIMONA MOTOGNA

be performed, then the problem has no solution. In order to end the algorithm in
such a case we must specify a limit LimX for Dx and a limit LimY for Dy.

Searching order Dx: 1 2 3 4 5 6
Dy: 1 1+12 2+10 10 8 8 8

2 2+8 3+8 8 6 6 6
3 3+6 4+6 6 6 6 6
4 4+4 5+4 6+4 4 5 5
5 5+6 6+4 7+3 2 3 4
6 2 7+2 8+0 0 0 4
7 8 8+3 2 1 1 3

Table 3. The searching order - Branch and Bound approach

A last remark is that in the case in which there are more than one active state
with the same minimal value for d1 + d2, we will choose the one for which d2 is
minimal. As shown in table 2.3, at the step 7 we have ”preferred“ the state (2,5,6,4)
(or (3,4,6,4)) although the state (2,3,4,6) has the same value for d1+d2 = 10, since
is closer to the solution (d2 approximates the distance between a state and the
final state). Even if we would have choosen the other state, the algorithm gives
the desired solution, but an extra step would have been performed, and then come
back and choose the ”preferred” state.

3. Using Π-words to describe pictures of 3-type

In this section, we present a model of approximating a curve using a picture
description language. At the beginning, we will use the alphabet Π = {r, u, l, d} to
describe the movement of the pen on the four directions, then we will extend the
commands alphabet to Π| = Π∪{|} (where | denotes an interuption of the sequence
ofcritical points) in order to define the cuts of a curve; eventually, this alphabet
will be enhanced with two more commands pen-up and pen-down Πl = Π|∪{↑, ↓},
in order to avoid (eliminate) certain points, reducing the number of critical points
that will be interpolated obtaining an approximation curve.

If we consider the example from figure 5, then the Π-word w ∈ Π∗ is:
w = lluulullluu uurruururr rrdrdrrrdrdrdrd dldlllldldll

The insertion positions, corresponding to the possible interuption points (points
between two colinear points), can be anywhere between two identical commands(characters).
If this is not possible or is not convenient, then the word w can be easily modi-
fied doubleing each character. In this manner, the curve can be described starting
from any point and can be interrupted at any moment, since any three consecutive
points are colinear. The description word becomes:

w′ = l4u2(u2l2)2l4u8r4u2(u2r2)2r6(d2r2)2r4(d2r2)3d4l2d2l8(d2l2)2l2.

THE CURVES ENCODING 69

Since our example doesn’t need any network or command word doubleing, we
will work from now on with the word w (not w’).

Since the command sequence is circular [1], we can execute it from any position,
and then come back to the beginnign of the string and execute the remaining
commands. The start command will be a character that has a predecessor (left
neighbour) equal to it (the points must be colinear).

Even more, for a selected string, marked with interruption commands, denoted
| and that will cut the string into substrings, corresponding to the curves that
forms the given closed curve; for example, the Π|-word that describe the curve
from figure 5 is

w = lluulullluu|uurruururr|rrdrdrrxrdrdrdrd|dldlllldldll
we can introduce avoiding commands (eliminating critical points), that will

preserve the quality of the curve. (the smoothness and the critical points).
We can use the alphabet Πl that allows the construction of Πl-words (contain-

ing two more symbols ↑= pen− up and ↓= pen− down) : Πl = {r, u, l, d, |, ↑, ↓}.
These words will describe a sequence of points that determines a curve by Bezier
interpolation. This means that a set of Πl-words describes curves that compose
a 3-type image. The Πl-word for the curve from figure 6 is d ↑ l ↓ dl ↑ l ↓ ll ↑
d ↓ ld ↑ l ↓ l, and for the curve from figure 7 the Π-word is ↑ d2 ↓ d ↑ l7u ↓
u ↑ d3r ↓ r ↑ l2 ↓ l. An even simpler description convention can be used, if the
points are rare, as in our example, if we remove the sequence that denote a point
of the form ↓ τ ↑ (where τ ∈ Π) and replace it with a single command character
(for example ↓), that attach the current point to the sequence of interpolation
points. This means that, implicitely, the movement of the pen is done ”without
drawing“, and when a ↓ command is met, the current point will be stored. We
could also consider that these characters are present at the beginning and at the
end of the description word. In the example from figure 7, the description word
may be ↓ d3 ↓ l7u2 ↓ d3r2 ↓ l2 ↓ l3 ↓ or if we give up the first and last character,
we obtain a reduced description: w = d3 ↓ l7u2 ↓ d3r2 ↓ l2 ↓ l3.

Reducing the number of critical points also implies the preserving of the initial
points, so the fixed point problem for a new approximation (curves convergence)
is solved.

REFERENCES

1. F.J. Brandemburg, M.P. Chytil, On Picture Languages : Cycles and Syntax
- Directed Transformations, Technische Berichte der Fakultat fur Mathematik
und Informatik Universitat Passau, MIP-9020, 1990.

2. J. Dassow, F. Hinz, Decision problems and regular chain code picture languages,
Discrete Applied Mathematics, no.45, 1993, pp. 29-49.

3. J.D. Foley, A.V. Dam, Fundamentals of Interactive Computer Graphics, Addi-
son Wesley, London, 1982.

70 VASILE PREJMEREAN AND SIMONA MOTOGNA

4. H.A. Maurer, G. Rozenberg, E. Welzl, Using String Languages to Describe
Picture Languages, Information and Control, Vol.54, Nr.3, 1982, pp.115-185.

5. S.Motogna, V.Cioban, V.Prejmerean, Picture Approximation, Studia Univ.
Babes-Bolyai, Vol.XLIII, Nr.2, 1998, pp.43-55.

6. T. Pavlidis, Algorithms for Graphics and Image Processing, Springer-Verlag,
Berlin-Heidelberg, 1982.

7. A. Rosenfeld, Picture Processing by Computer, Academic Press, London, 1969.
8. I.H. Sudborough, E. Welzl, Complexity and Decidability for Chain Code Picture

Languages, Universitat Graz, F125, 1983.
9. A. Watt, 3D Computer Graphics, Addison-Wesley, Great Britain, 1993.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO 3400
Cluj-Napoca, Str. Kogălniceanu 1, Romania

E-mail address: per|motogna@cs.ubbcluj.ro

