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DARR – A THEOREM PROVER FOR CONSTRAINED AND
RATIONAL DEFAULT LOGICS

MIHAIELA LUPEA

Abstract. Default logics represent an important class of the nonmonotonic
formalisms. Using simple by powerful inference rules, called defaults, these
logic systems model reasoning patterns of the form ”in the absence of infor-
mation to the contrary of. . . ”, and thus formalize the default reasoning, a
special type of nonmonotonic reasoning. In this paper we propose an auto-
mated system, called DARR, with two components: a propositional theorem
prover and a theorem prover for constrained and rational propositional default
logics. A modified version of semantic tableaux method is used to implement
the propositional prover. Also, this theorem proving method is adapted for
computing extensions because one of its purpose is to produce models, and
extensions are models of the world described by default theories.

1. Introduction

One of the first formalizations of nonmonotonic reasoning was classical default
logic, proposed by Reiter [6]. This logic system is based on first-order logic and
introduces a new kind of inference rules called defaults. Defaults are used to
draw conclusions by making implicit assumptions in the absence of information.
Default logic is nonmonotonic because conclusions derived can be later invalidated
by adding new information.

A default theory (D,W) consists of W, which is a set of consistent formulas of
first-order logic (the facts) and a set of default rules D. The formulas of W are the
axioms of the theory and a default rule has the form1:d = α:β

γ , where α, β, γare
formulas of first order logic,α is the prerequisite (Precond(d)) of the default d, β
is the justification (Justif(d)) of the default d and γ is the consequent (Conseq(d))
of the default d.

In the paper we will use the notations: Justif(D)=
⋃

d∈D Justif(d), Prereq(D)=⋃
d∈D Prereq(d), Concl(D)=

⋃
d∈D Concl(d).
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Informally, an extension for a default theory is a set of formulas derived from
W using the standard inference rules of classical logic and the defaults. Formulas
belonging to an extension are called nonmonotonic theorems, that means default
conclusions of the default theory, which are not necessarily true, only plausible. A
default theory may have zero, one or more classical extensions. The set of defaults
used in the construction of an extension is called the set of generating defaults for
the considered extension.

A default d = α:β
γ can be applied and thus derive γ if α is believed and it is

consistent to assumed β.
Different variants (justified, constrained, rational) of default logic try to provide

an appropriate definition of consistency condition for the justifications of the de-
faults, and thus to obtain many interesting and useful formal properties for these
logic systems.

There are three computational problems specific to default logics:

Search problem: finding the extensions of a default theory.
Decision problems:

(1) deciding whether a formula belongs to at least one extension of a
default theory (credulous perspective of the default reasoning);

(2) deciding whether a formula belongs to all extensions of a default
theory (skeptical perspective of the default reasoning).

Automated theorem proving for default logics has began with solving the de-
cision and searching problems for particular default theories: normal [6], ordered
seminormal, and then was extended to general theories. The well known classi-
cal theorem proving methods: resolution, semantic tableaux method, connection
method, were incorporated and adapted in the automated systems for default
logics to solve specific tasks.

We will enumerate some of the automated reasoning system for default logics:

• DeReS [2] computes classical extensions for stratified default theories,
using a semantic tableaux propositional prover.

• Exten [1] is based on an operational approach for computing classical,
justified and constrained extensions.

• GADEL [5] uses the principles of genetic algorithms for computing
classical extensions.

• Xray [9] represents an approach of the query-answering problem in con-
strained and cumulative default logics.

The aim of this paper is to introduce theoretical aspects regarding theorem
proving in constrained and rational default logics and to describe an automated
system implemented in C++, called DARR, for these variants of default logic.
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2. Constrained and rational default logics

Constrained default logic was introduced by Schaub [7]. The consistency con-
dition is a global one and it is based on the observation that in commonsense
reasoning we assume facts, we memorize our assumptions and we verify that they
do not contradict each other. The actual extension is embedded in a consistent
context where are retained all the assumptions (justifications) used in the reasoning
process.

Due to the global consistency condition, the constrained logic is strong regular,
semi-monotonic, strongly commits to assumptions and guarantees the existence of
extensions.

Theorem 2.1 [8]: Let (D,W) be a default theory and let E, C be sets of
formulas. (E=actual extension,C=context) is a constrained extension of (D,W) if
and only if:

E=Th(W ∪ Conseq(D’)) and C=Th(W ∪Justif(D’) ∪ Conseq(D’))
for a maximal set D’⊆D such that D’ is grounded in W and W∪Justif(D’)∪Conseq(D’)
is consistent.

This theorem states that the reasoning process formalized by constrained default
logic is guided by a consistent context generated by a strong regular set of defaults.
We observe that a default theory has always a constrained extension because D’=∅
is grounded in W, W is consistent and thus ∅ can be a set of generating defaults.

Rational default logic was developed in [4] as a version of classical default logic
for solve the problem of handling disjunctive information. The property of rational
default logic is that defaults with mutually inconsistent justifications are never used
together in constructing an extension of a default theory.

This logic system is strongly regular but does not guarantee the existence of
extensions, is not semi-monotonic and does not commit to assumptions.

Theorem 2.2: Let (D,W) be a default theory and let E and C be sets of
formulas. (E=actual extension, C=context) is a rational extension of (D,W) if
and only if:

E=Th(W ∪ Conseq(D’)) and C=Th(W ∪ Justif(D’) ∪ Conseq(D’))
for a maximal D’⊆D such that D’ is grounded in W and are satisfied the following
conditions:

(i) W ∪ Concl(D’) ∪ Justif(D’) is consistent
(ii)∀d ∈ D\D’ we have: W ∪ Concl(D’) ∪ {¬Precond(d)} is consistent or
W ∪ Concl(D’) ∪ Justif(D’ ∪{d}) is inconsistent
This theorem provides a necessary and sufficient criteria for the existence of a

set of generating defaults of a rational extension. If condition (i) is satisfied by a
set D’, but condition (ii) is not satisfied, D’ cannot be a set of generating defaults
for a rational extension.

Proof: For proving theorem 2.2 we will use the original definition of a rational
extension.
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Definition 2.1 [4]: Let (D,W) be a default theory, let X be a subset of the set
D of defaults and let S be a set of formulas.

1. We define XS =
{

α
γ |α:β1,...,βn

γ ∈ X, S ∪ {¬βi} is inconsistent, 1 6 i 6 n
}

.
2. A set X of defaults is active with respect to W and S if it satisfies the

conditions:
(i) Justif(X)=∅ or Justif(X)∪ S is consistent;
(ii) Prereq(X)⊆ ThXS (W),

where ThXS (W) is the deductive closure of W using classical inference rules and
the monotonic rules fromXS .

We denote by A(D,W,S) the set of all subsets of the defaults in D which are
active with respect to W and S. ∅ ⊆ A(D,W,S). MA(D,W,S) is defined as the set
of all maximal elements in A(D,W,S).

The set E of formulas is a rational extension for the theory (D,W) if E=ThXE (W),
where X∈ MA(D,W,E).

We observe that X is the set of generating defaults in this original definition of
rational extensions.

The proof of this theorem consists in showing the following:

• Condition (i) from definition 2.1 and condition (i) from theorem 2.2 are
equivalent, with the meaning: the reasoning context is consistent.

• Condition (ii) from definition 2.1 is equivalent with the condition of
groundness for the set of generating defaults.

• Condition (ii) from theorem 2.2 is equivalent with the necessity to be
maximal-active (from definition 2.1) for the set of generating defaults.

The proofs of these equivalencies are immediate.
The set D’ from the theorems above is the set of generating defaults for the

extension (E,C). Thus, both types of extensions are deductive closures of the set
W (explicit content) and the consequents of D’.

The relationships between constrained and rational extensions are as follows:

• the set of rational extensions coincide with the set of constrained ex-
tensions for the class of seminormal theories (all defaults have the form
d = α:β∧γ

γ );
• every rational extension is a constrained extension of the same theory.

3. A theorem prover for propositional logic, based on a modified
semantic tableaux method

The aim of the proposed propositional theorem prover is to verify the consis-
tency/inconsistency of a propositional formula/set of formulas and to provide a
model in the case of consistency. We will use at implementation level the symbols
for the logical operations: ∼ (¬), &(∧), |(∨), > (→), −(↔).
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This theorem prover is based on a modified version of the semantic tableaux
method. We will use the same representation for a tableau, like the function TP
[Schw90], as a set of sets of literals, but the construction of the tableau is different.

The semantic tableau ∪n
i=1{∪ni

k=1{aik}} has n branches and corresponds to
the disjunction of its branches. The i-branch of the tableau is a set of literals:
∪ni

k=1{aik}and represents the conjunction of its literals. The tableau corresponds
to a formula with the disjunctive normal form ∨n

i=1 ∧ni

k=1 aik. If a branch contains
a literal and its negation, we say that the branch is closed, otherwise the branch
is open. If all the branches of a tableau are closed, the tableau is closed, otherwise
the tableau is open.

All the open subtableaux of a semantic tableau T are called the openings of T.
The new idea is to construct the semantic tableau of a formula from its postfix

form. Traversing the postfix form from left to right, using a stack mechanism
to memorize partial semantic tableaux (corresponding to the subformulas of the
formula), and applying operations to the tableaux, the construction of the semantic
tableau is very simple and efficient.

Definition 3.1: Let denote by Tsem(F) the semantic tableau attached to
formula F. We compute Tsem(F) as follows:

Tsem(a) = {{a}}, where ‘a’ is a propositional literal;
Tsem(∼F) = ∼Tsem(F), ‘∼’ is negation
Tsem(F & G) = Tsem(F) & Tsem(G), ‘&’ is conjunction
Tsem(F | G) = Tsem(F) | Tsem(G), ‘|’ is disjunction
Tsem(F > G) = Tsem(F) > Tsem(G), ‘>’ is logical implication
Tsem(F – G) = Tsem(F) - Tsem(G), ‘-‘ is logical equivalence
Definition 3.1 can be extended for computing the semantic tableau of a set of for-

mulas as follows: Tsem({F1,F2,. . . ,Fn}) = Tsem(F1)*Tsem(F2)*. . . *Tsem(Fn),
where T1*T2 =T1&T2.

Definition 3.2: Let T1 = ∪n
i=1{∪ni

k=1{aik}}and T2 = ∪m
j=1{∪mj

k=1{bjk}} be two
semantic tableaux. We define the operations ∼, &, |, >, - for semantic tableaux
as follows:
∼T1={{∼ x1, ...,∼ xn} | xi ∈ ∪ni

k=1{aik}, i = 1, ..., n}
T1 | T2 ={∪ni

k=1{aik} | i=1,. . . ,n} ∪ {∪mi

k=1{bik}| i=1,. . . ,m}
T1 & T2={∪ni

k=1{aik} ∪ ∪mj

k=1{bjk} | i=1,2,. . . ,n, j=1,. . . ,m}
T1 > T2 = ∼T1 | T2 and T1 – T2 = (T1 > T2 ) & (T2 > T1)
Example 3.1: Formula F=∼(a&b)|c&∼d has the postfix form ab&∼cd∼&|.

Its semantic tableau, Tsem(F), is calculated step by step traversing the postfix
form from left to right:
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symbol partial semantic tableaux stack
‘a’: T1=Tsem(a)={{a}}, st tab=(T1)
‘b’: T2=Tsem(b)={{b}}, st tab=(T2,T1)
‘&’: T3=T1 & T2={{a}}&{{b}}={{a, b}}, st tab=(T3)
‘∼’: T4=∼T3=∼{a&b}}={{∼a },{∼b}}, st tab=(T4)
‘c’: T5=Tsem(c)={{c}}, st tab=(T5,T4)
‘d’: T6=Tsem(d)={{d}}, st tab=(T6,T5,T4)
‘∼’: T7=∼T6=∼{{d}}={{∼d}}, st tab=(T7,T5,T4)
‘&’: T8=T5 & T7={{c}}&{{∼d}}={{c,∼d}}, st tab=(T8,T4)
‘|’: T9=T4 |T8={{∼a},{∼b}} | {{c,∼d}}=

= {{∼a},{∼b},{c,∼d}}, st tab=(T9)

Tsem(F)=T9={{∼a},{∼b},{c,∼d}}
The semantic tableaux method is a refutation method:

• formula F is valid (tautology) ⇐⇒ formula ∼ F is inconsistent ⇐⇒
Tsem(∼ F ) is a closed tableau;

• formula F is consistent ⇐⇒ Tsem( F ) is an open tableau;
• formula G is deductible from the set {F1,. . . ,Fn} ⇐⇒ {F1,. . . ,Fn,∼ G}

is inconsistent ⇐⇒ Tsem(F1)*. . . * Tsem(Fn) * Tsem(∼ G) is a closed
tableau.

The main data structures used to implement the concepts: formula, set of for-
mulas, semantic tableau, branch of a tableau are: stiva, lista, formula, mult formula,
ramura and tabela.

4. Implementation of DARR – a theorem prover for propositional
constrained and rational default logic

We will consider in this paper only the case of propositional language as the
underlying language for the default theories.

For easy access to the connection between the literals and the default where
they belong, in the construction of a tableau all the literals are indexed as follows:

• the superior index is: f (literal from W) or j (literal from justifications)
or c (literal from consequents).

• the inferior index is the number of the default where it belongs or is 0 if
the literal belongs to the set of facts.

Adding indices to the literals from a semantic tableau we obtain an indexed
semantic tableau, and we denote it by Tsem ind.

The basic idea in computing constrained/rational extensions is to consider a
maximal set X of formulas, X = W ∪ Concl(D) ∪ Justif(D), that characterize
the reasoning process (the facts, the consequents of the defaults and the justifica-
tions of the defaults) and then to supress the literals from defaults responsible for
contradictions.
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The candidates for the sets of generating defaults for extensions correspond to
the openings in W of the indexed semantic tableau Tsem ind(X).

All variants of default logic have in common the following property: the sets of
generating defaults for extensions are grounded in the set of facts.

Definition 4.1: Let W be a set of formulas and let D be a set of closed defaults.
We define the sequence of sets (Ri)i>0 as follows: R0 = ∅ and

Ri+1 = Ri ∪
{

d =
α : β

γ
|d ∈ D and W ∪ Concl(Ri)| = α

}
, i > 0.

The set D is grounded in W, if and only if D =
∞⋃

i=0

Ri.

D baza =
∞⋃

i=0

Ri is the maximal subset of D, grounded in W and can be cal-

culated using algorithm Submult max baza(W,D,D baza), which implements the
above definition.

Using theorems 2.1 and 2.2 we can develop the following algorithm for comput-
ing all constrained and rational extensions of the default theory (D,W ).

Algorithm 4.1:
Calcul ext restrictii rationale(D,W)

begin
We construct the semantic indexed tableau:

T= Tsem ind(W) *Tsem ind(Justif(D))* Tsem ind(Concl(D)).
We compute all the subsets S1, ..., Sn of D, such that the semantic tableaux:

Tsem ind(W)* Tsem ind(Concl(Si))*Tsem ind(Justif(Si)), i=1,. . . , n
are open.
We eliminate from S1, ..., Sn the sets that are not maximal and we obtain
the sets R1, ..., Rn′ of defaults.
for i=1,. . . ,n’ do

Submult max baza(W,Ri,R′i)
endfor
print “(Th(W∪Concl(R′i)),Th(W∪Concl(R′i)∪Justif(′Ri))) i=1,. . . ,n’ are
all constrained extensions, R′i are the set of generating defaults”
if the theory (D,W) is semi-normal

then print “(Th(W∪Concl(R′i)),Th(W∪Concl(R′i)∪Justif(R′i))) i=1,. . . ,n’
are all rational extensions, R′i are the set of generating defaults”

else
for i=1,. . . ,n’ do

// we verify if R′i is maximal active with respect to W and Th(W∪Concl(R′i))
ind=0
while (ind==0 and not alld ∈ D\R′i are chosen) do

We chose a new d ∈ D\R′i
if (Tsem(W) *Tsem(Concl(R′i))*Tsem(Justif(R′i∪{d}) is open
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and Tsem(W) *Tsem(Concl(R′i))*Tsem({∼Precond(d)) is closed)
then ind=1

endif
endwhile
if ind==1

then print “R′i cannot generate a rational extension ”
else print “(Th(W∪Concl(R′i)),Th(W∪Concl(D′

i)∪Justif(R′i))) is
a rational extension and R′i is its set of generating defaults”.

endif
endfor

endif
end

Accepting alternative possibilities for extending a default theory characterizes
the credulous reasoning. The commonsense reasoning is the human model of rea-
soning, by making default assumptions for overcoming the lack of information.
This type of reasoning belongs to the credulous perspective of the reasoning.

Skeptical reasoning is imposed in prediction problems because the nonmono-
tonic consequences cannot be later modified, which means that derived formulas
does not depend on the alternative assumptions made during the reasoning pro-
cess. It is considered irrational to have the possibility to chose one belief or another
one if they are contradictory.

The specific of the problem will decide the appropriate perspective for the non-
monotonic reasoning used to solve the problem.

According to theorem 3.1 from [3] the skeptical nonmonotonic theorems of
the theory (D,W) belong to the set: Thn

D,∩(W)=Th(W∪{∨k
i=1 ∧ni

j=1 ci
j}) where

Concl(Ri)={ci
1, c

i
2, ..., c

i
ni
}, i=1,. . . ,k, and R1, ..., Rk are all the sets of generating

defaults for the extensions of type n=res (constrained) or n=rat (rational).
If all extensions are calculated, the problem of membership to all extensions is

reduced to a derivability problem in classical logic.
Algorithm 4.2:
Verif consec sceptica (f, D, W, mult reg gen)

begin
// mult reg gen={R1, ..., Rk} from algorithm 4.1, Concl(Ri)={ci

1, c
i
2, ..., c

i
ni
},

i = 1, .., k
if Tsem(W) *Tsem({∨k

i=1 ∧ni
j=1 ci

j})* Tsem({∼f}) is closed
then print “f is a skeptical nonmonotonic consequence of the theory

(D,W)”
else print “f is not a skeptical nonmonotonic consequence of the theory

(D,W)”
endif

end
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The theorem prover for constrained and rational default logics is obtained by
implementing the concepts: indexed tableau, default, default theory and the algo-
rithms proposed above.

5. Conclusions

In this paper we have proposed a theorem for global characterization of rational
extensions using the set of generating defaults and we have developed algorithms
for solving the theorem proving problems specific for constrained and rational
default logics.

The tight relationship between constrained and rational default logics was the
reason to implement an automated theorem prover, called DARR, for both of these
logic systems. The theorem prover proposed for propositional logic creates and
manipulates in a very efficient and elegant way the semantic tableaux, using oper-
ators. A modified version of semantic tableaux method was adapted for computing
constrained and rational extensions of a default theory.
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