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A MODIFICATION OF THE CRAMER-SHOUP DIGITAL
SIGNATURE SCHEME

CONSTANTIN POPESCU

ABSTRACT. Digital signatures have been used in Internet applications to pro-
vide data authentication and non-repudiation services. Digital signatures will
keep on playing an important role in future Internet applications. In this pa-
per we propose a secure digital signature scheme based on the Strong RSA
Assumption. Compared with the recent signature scheme by Cramer and
Shoup, public keys in our scheme are a bit smaller but the two schemes have
about the same computational efficiency.
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1. INTRODUCTION

In 1976 Diffie and Hellman [4] devised the concept of public key cryptography
and showed that secret communication is possible without a prior exchange of a
secret key, as was necessary previously. Their ingenious idea was to use two dif-
ferent keys, a public key for encryption and a private key for decryption. Based
on this asymmetry, they further devised the concept of digital signatures. There
are two most well-known public key cryptosystems, the RSA scheme and the El-
Gamal scheme, which can provide both digital signature and data encryption. In
the following years, others realizations of digital signature schemes were proposed
[2], 3], [9], [15], [17]. The RSA scheme [16] can be used to provide both digital
signatures and public key encryption. Its security relies on the difficulty of fac-
torizing a modulus which is the product of two large primes. The algorithms of
ElGamal [5] can also provide digital signatures and public key encryption. These
rely on the difficulty of finding discrete logarithms in the field of integers modulo
a large prime p. Subsequent refinements have been made to the original ElGamal
schemes, particularly to the signature scheme. For example, the Digital Signature
Standard (DSS) algorithm [6] combines ElGamal signatures with a idea of Schnorr
[17] to increase efficiency and provide short signatures. More recently, the Elliptic
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Curve Cryptosystems (ECC) [11], [12], [13], in which the difficulty of breaking the
system is based on the difficulty of computing a discrete logarithm over an elliptic
curve, has also been considered to become a standard in the IEEE P1363 project.

Since digital signature has one of the unique features associated with the public
key cryptography, digital signature has been used in security services to provide
non-repudiation services. For example, digital signature has been used in the Se-
cure Electronic Transactions (SET) standard [18] to provide security of electronic
transfers of credit and payment information over the Internet. Digital signature
has been adopted by many security protocols, such as SSL [19], to provide data
authentication and non-repudiation services.

In this paper we propose a digital signature scheme which is provably secure
against adaptive chosen message attacks [9]. This improves on recent results by
Gennaro et al. [8] in that we do not require that the involved hash function is
division intractable. Compared with the recent signature scheme by Cramer and
Shoup [3], public keys in our scheme are a bit smaller but the two schemes have
about the same computational efficiency.

2. THE MODEL OF A SIGNATURE SCHEME

A user’s signature on a message m is a string which depends on m, on public
and secret data specific to the user and, possibly on randomly chosen data, in
such a way that anyone can check the validity of the signature by using public
data only. The user’s public data are called the public key, whereas his secret
data are called the secret key. Obviously we would like to prevent the forgery of
a user’s signature without knowledge of his secret key. In this section we give a
more precise definition of signature schemes and of the possible attacks against
them.

Definition 1. A digital signature scheme consists of three algorithms:

Gen: On input of a security parameter 1' this probabilistic algorithm output
the signer’s secret and public keys, x and y, respectively.

Sign: On input of the signer’s secret and public keys and a message m € {0,1}"
this algorithm outputs a signature o on m.

Verify: On input of a message m, a signature o and the public key y of a
signer, the algorithm Verify outputs true or false.

A signature scheme must satisfy the following properties:

(1) Correctness: Signatures produced by the signer with Sign must be
accepted by Verify.

(2) Unforgeability: A signature scheme must be existentially unforgeable
under an chosen message attack. That is, we require that every attacker
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has a negligible probability of success in the following game. The at-
tacker is allowed to sequentially obtain signature on polynomially many
messages of his choosing (i.e., messages are allowed to depend on sig-
natures that the adversary has seen). He is then required to produce
as output a message m for which he did not receive a signature and a
second string o. If Verify(m, o,y) = true then the attacker is successful
and, hence, the signature scheme is vulnerable to existential forgery.

There are two specific kinds of attacks against signature schemes: the no-
message attack and the known-message attack. In the first scenario the attacker
only knows the public key of the signer. In the second one the attacker has access
to a list of message-signature pairs. According to the way this list was created, we
distinguish four subclasses of known-message attacks:

(1) The plain known-message attack: the attacker has access to a list of
signed messages, but he has not chosen them.

(2) The generic chosen-message attack: the attacker can choose the list
of messages to be signed. However, this choice must be made before
accessing the public key of the signer. We call attack generic because
the choice is independent of the signer.

(3) The oriented chosen-message attack: as above, the attacker chooses the
list of messages to be signed, but the choice is made once the public key
of the signer has been obtained. This attack is oriented against a specific
signer.

(4) The adaptively chosen-message attack: having knowledge of the public
key of the signer, the attacker can ask the signer to sign any message
that he wants. He can then adapt his queries according to previous
message-signature pairs.

We now classify the expected results of an attack:

e Disclosing the secret key of the signer. It is the most serious attack.
This attack is termed total break.

e Constructing an efficient algorithm which is able to sign any message.
This is called universal forgery.

e Providing a new message-signature pair. This is called existential
forgery. In many cases this attack is not dangerous, because the output
message is likely to be meaningless. Nevertheless, a signature scheme
which is not existentially unforgeable does not guarantee by itself the
identity of the signer. For example, it cannot be used to certify ran-
domly looking elements, such as keys.
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Definition 2. A signature scheme is secure if an existential forgery is computa-
tionally impossible, even under an adaptively chosen-message attack.

The first secure signature scheme was proposed by Goldwasser et al. [10] in
1984.

3. NUMBER THEORETIC ASSUMPTIONS

This section reviews some cryptographic assumptions necessary in the subse-
quent design of our signature scheme.

The Strong RSA Assumption was independently introduced by Baric and Pfitz-
mann [1] and by Fujisaki and Okamoto [7]. It strengthens the widely accepted RSA
assumption that finding e*?-roots modulo n, where e is the public and thus fixed
exponent, is hard to the assumption that finding an e*-roots modulo n for any
e > 1 is hard.

Definition 3 (Strong RSA Problem). Let n = pg be an RSA-like modulus and
let G be a cyclic subgroup of Zy, of order l,. Given n and z € G, the Strong RSA
Problem consists of finding u € G and e € Z~1 satisfying z = u€(mod n).

Assumption 1 (Strong RSA Assumption). There exists a probabilistic polyno-
mial time algorithm K which on input 1's outputs a pair (n,z) such that for all
probabilistic polynomial-time algorithms P, the probability that P can solve the
Strong RSA Problem is negligible.

Consequently, if n is a safe RSA-modulus (i.e., n = pg with p = 2p’ + 1,
qg=2¢ + 1 and p,q,p’,q all prime), it is more cautions to work in the subgroup
of quadratic residues modulo n, that is, in the cyclic subgroup QR (n) generated
by an element of order p’¢q’.

The next corollary shows that it is easy to find a generator g of QR (n): it
suffices to choose an element a € Z satisfying ged (a = 1,n) = 1 and then to take
g = a® mod n. We then have QR (n) =< g >.

Proposition 1. Let n = pq, where p # q¢p = 20 + 1, ¢ = 2¢ + 1
and p,q,p',q" all prime. The order of the elements in Z are one of the set
{1,2,p',¢,20',2¢',0'q’, 2p'¢'}.  Moreover, the order of a € 72 is equal to p'q
or 2p'q if and only if ged (a +1,n) = 1.

Corollary 1. Let n = pq, where p # q,p =2p' +1, ¢ =2¢' +1 and p,q,p’,q" all
prime. Then, for any a € Z7, such that ged (a £ 1,n) =1, < a®? >C Z? is a cyclic
subgroup of order p'q’.

The security of our digital signature scheme is based on the Strong RSA As-
sumption.
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4. OUR SECURE DIGITAL SIGNATURE SCHEME

This section describes a secure digital signature scheme based on the Strong
RSA Assumption. Let € > 1 be a security parameter and let I,,, Iy, > Ix,,ly, > 1,
denote lengths. Define the integral ranges A = [2“1 —2ba 20 4 21*2] and I' =
[2ln — 202 2l 4 202] such that for all (z,e) € A x I', we have 0 < z + 22» <ee.
Finally, let H : {0,1}" — A be a collision-resistant hash function [14].

4.1. Key Generation. To generate his public and secret key, a signer runs the
following algorithm (Gen):

(1) Select random secret l,-bit primes p’, ¢’ such that both p = 2p’ 4+ 1 and
q = 2q¢' + 1 are also prime. Set the modulus n = pq.

(2) Chose two random elements a, ag € QR(n).

(3) The public key consists of the tuple (n,a,ag, H) .

(4) The corresponding secret key consists of (p’, ¢).

4.2. Signature Generation. To sign a message m € {0,1}" a signer uses the
following algorithm (Sign):

(1) Choose a prime e € I' that was not used before.

(2) Choose a random integer r € A.

(3) Compute z = H (m | e || r) and u = (a®ao)”’* ( mod n).

(4) Output the signature (u,e,r).

4.3. Signature Verification. Checking whether a tuple (u,e,r) is a valid signa-
ture on a message m € {0,1}" with respect to the public key n can be done as
follow (the algorithm Verify):

(1) Check whether (u,e,r) € ZX x T x A.

(2) Compute 2’ = H (m || e| r).

(3) Check whether u¢ = a® ag ( mod n).

(4) Output the signature true if none of the checks failed.

5. EFFICIENCY AND SECURITY ANALYSIS

The cost of the Sign algorithm can be broken down into three components:

(1) Generation of a random prime e from the interval
[2n — 202 2bn 4 2],

(2) Computation of its inverse e .

(3) Computation of u which requires 2 exponentiations: one full with e~!
and one small with x.
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The cost of the last step can be reduced by amending Gen to generate ag as
a power of a, i.e., choose a random r’ € A and compute ag = a”’. The value 7/
would then become part of the secret key. This amendment allows us to avoid the
small exponentiation in the last step above, i.e., the signer would perform only
one full exponentiation with the exponent (z +r')e~".

The only possible drawback is the potential loss in the range of ag since it is no
longer generated independently from a. However, we note that a similar speedup
was proposed by Cramer and Shoup [3] where it was claimed that, since, a is highly
likely a generator of QR (n), the distribution of the resultant public key does not
change significantly.

The cost of signature verification in our scheme is dominated by step 3 which
requires two exponentiations: one full to compute u® and one small to compute

a® . However, the verification equation can be changed to u® (a_l)m/ = ap (mod n)
and hence the computation gets reduced to about one full exponentiation.

Next, we show that our signature scheme indeed satisfies the requirement for
a secure signature scheme according to Definition 1. The correctness property
follows from inspection of the scheme. It remains to prove the schemes security
against an adaptively chosen message attack. Similar to [8] we require that:

e For every H a collision-resistant hash function, all primes e € T" and
every two messages m; and ms the distribution H (my || e || r) and
H (mg2 || e ]| r) induced be the random choice of r are statistically close.

e The Strong RSA Assumption holds in a world where there exists an
oracle that on input a message m, a prime e € I and an x € A outputs
an r € A such that x = H (m || e || ).

Theorem 1. The signature scheme presented above is secure against adaptively
chosen messages attack under the Strong RSA Assumption and the further as-
sumption that there exists a family of hash functions {H} satisfying the above
requirements.

Proof.Assume that the attacker A queries signature for K messages and then
outputs a signature (u’,€’) on the message m’. We now show that if we take
control over the hash function, then we can use this attacker to break the Strong
RSA Assumption, i.e., we are given a z and an n and must find an w and v such
that w¥ = z (mod n).

Let ((ui,e1,r1),m1),...,((uk,ex,7K),mg) denote the signature-message
pairs that are constructed during the interaction with A. In order for A to be
successful its output ((v',€’,7’), m’) must satisfy (uv/,e’) # (u;,e;) for 1 <i < K.
Depending of whether e; 1 ¢’ for some i, there are two games to calculate a pair
(w,v) € Z X Z satisfying w” = z (modn) from which we randomly chose one
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each time then play with the attacker. As mentioned before, we are assuming that
there is an oracle that input a message m, a prime e € I" and an x € A outputs an
r € A such that x = H (m || e || ). The adversary is allowed to query this oracle
as well. The first of the two game goes as follows:

(1) Select Tl TK € Aandeq,..,ex €T

(2) Set a =z 1=<£° mod n.

(3) Choose a random r € {0,1}** and set agy=a" mod n.

(4) For all 1 <i < K, compute u; = @) Ticickazi @ mod n.

(5) Start A, feed it the (u;,e;,7;), where we get r; from the oracle, and

, 1/¢€
eventually obtain (x’; {u’ = (a’” ao) mod n, e, r’]) with 2/,7" € A

and e’ €T

(6) If ged (¢,e5) # 1 for all 1 < j < K output fail and stop. Otherwise,
let €= (2’ 4+7)[[;<;<x €~ Since ged (¢/,e;) =1 for all 1 < j < K, we
have ged (¢/,€) = ged (¢/, (' +7)). Hence, by the extended Euclidean
algorithm, there exist «, 8 € Z such that ae’ 4+ g€ = ged (¢, (' +1)).
Therefore, letting w = 2¢ (u')ﬁ mod n and v = €'/ ged (¢/, (2 + 7)) > 1
since €’ > (z' +7) we have w¥ = z (modn).

The previous game is only successful if A returns a new signature with
ged(e/,ej) = 1 for all 1 < j < K. We now present a game that solves the
Strong RSA Problem in the other case, that is, when ged (¢/,e;) # 1 for some
1 <j < K. Note that ged (¢/,e;) # 1 means ged (€', e;) = e; since e; is prime.

(1) Select x1, ...,z € A and ey, ...,ex € T

(2) Choose a random j € {1,..., K} and set a = z 1=i=K:i#5 “ mod n.

(3) Choose a random r € {0,1}*" and set uj = a” mod n and ag = ujj Ja®i
mod n. o

(4) For all 1 < i < K, i # j, compute u; = 2@+ “icisxuzii ® mod
n.

(5) Start A, feed it the (u;,e;,r;), where we get r; from the oracle, and

/

1/¢€
eventually obtain (:c’; {u' = (a"’” ao) mod n, e, r’]) with 2/, 7" € A

and ¢ €T

(6) If ged(e’,ej) # e; output fail and stop.  Otherwise, we have
¢ = te; for some t and can define b = (u)" /ujmod n if
¢ > x; and b = wu;/(u) mod n otherwise.  Hence b =

|£E/*CE" 1/ej o Ie‘ 1/6j . ~ /
(a J) = (zl¥) (modn) with € = (2" —2;) [ 1<)« gz €1-

Since ged <€jﬂH1§l§K;l;ﬁjel) = 1 it follows that gcd(e;,le]) =
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ged (ej, |#" — x;]). Hence, by the extended Euclidean algorithm, there ex-
ist @, 8 € Z such that ae; + 3 |e] = ged (ej, |2 — x;]). Therefore, letting
u = 20" mod n and e = e;/ ged (ej, |2’ — z4|) > 1 since e; > |2/ — z],
we have u® = z (modn).

Consequently, by playing randomly one of game 1 or game 2 with A one can
solve the Strong RSA Problem. Since the latter is assumed to be infeasible, it
follows that no such attacker can exist. m

We now compare our signature scheme with some recent results. The scheme
due to Gennaro et al. [8] is simpler and seemingly more efficient than our scheme.
The scheme is simpler since it appears as a true hash-and-sign scheme very close
to RSA. It uses a similar variation of the Strong RSA Assumption for the proof
of security as we do. However, their requirements for a suitable hash function are
non-standard, e.g., it is required to be division intractable.

An interesting sidenote is that the only practical realization of a suitable hash
function presented in [8] is the so-called chameleon hashing which outputs primes.
This yields a signature scheme that requires the signer to generate a random
looking prime. The cost of signing thus becomes roughly the same as in our
present scheme: generation of a large prime, computation of its inverse and a
single exponentiation. The cost of verification is one exponentiation plus the cost
of a message hash which is quite expensive due to the special hash function used.

Comparing our signature scheme to the one by Cramer and Shoup, we find that
are similar in many aspects of security properties and associated costs. The public
key size in our scheme is somewhat smaller than its counterpart in Cramer and
Shoup. The latter consists of a tuple (n, h,z,e’), where n is a modulus, h and z
are elements of QR(n) and €’ is a prime. In contrast, our scheme’s public key is a
tuple (n, a, ag, H), where n is a modulus, a and ag are elements of QR(n) and H is
a hash function which is, incidentally, also needed in a Cramer and Shoup public
key. Thus, the size difference is due to the prime ¢’ in the latter. A Cramer-Shoup
signature is a tuple (y,y’,e) where e is a small prime, 3’ € QR(n) and y € Z%,
i.e., both are n-bit integers. This is about the same as for our scheme. The cost
of signing in [3] amounts to generating a prime, computing its inverse and three
exponentiations of which two are small (each with an exponent from the range
of the underlying hash function) and one is full. Hence, the cost of signing is
somewhat higher in [3] than in our scheme. Signature verification in the Cramer
and Shoup translates into two small exponentiations which is a bit more efficient
than in our scheme.
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6. CONCLUSION

In this paper we proposed a digital signature scheme which is provably secure

against adaptive chosen message attacks. Compared with the recent signature
scheme by Cramer and Shoup [3], public keys in our scheme are a bit smaller but
the two schemes have about the same computational efficiency.
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