
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

A NEW ALGORITHM FOR SOLVING SELF-DUAL LINEAR
OPTIMIZATION PROBLEMS

ZSOLT DARVAY

Abstract. Recently in [3] we have defined a new method for finding search

directions for interior point methods (IPMs) in linear optimization (LO).

Using one particular member of the new family of search directions we have

developed a new primal-dual interior point algorithm for LO. We have proved

that this short-update algorithm has also the O(
√

n log n
ε
) iteration bound,

like the standard primal-dual interior point algorithm. In this paper we de-

scribe a similar approach for self-dual LO problems. This method provides a

starting interior feasible point for LO problems. We prove that the iteration

bound is O(
√

n log n
ε
) in this case too.

1. Introduction

In this paper we discuss polynomial methods for LO. The first polynomial al-
gorithm for solving LO problems is the ellipsoid method of Khachiyan [6]. This
method is important from a theoretical point of view, but is not so efficient in
practice. An alternative variant was defined in 1984 by Karmarkar [5]. His projec-
tive method is the first IPM for LO. The field of IPMs has been very active since
1984. For an overview of results see the following books [1, 2, 10, 13, 14]. Let us
consider the LO problem in canonical form

min cT ξ

s.t. Aξ ≥ b,(P )

ξ ≥ 0,
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where A ∈ <m×k with rank(A) = m, b ∈ <m and c ∈ <k. The dual of this
problem is:

max bT π

s.t. AT π ≤ c,(D)

π ≥ 0.

It is well-known the following theorem.

Theorem 1.1 (strong duality) Let ξ ≥ 0 and π ≥ 0 so that Aξ ≥ b and
AT π ≤ c, in other words ξ is feasible for (P ) and π for (D). Then ξ and π are
optimal if and only if cT ξ = bT π.

This theorem implies that if (P ) and (D) have optimal solutions then

Aξ − z = b, ξ ≥ 0, z ≥ 0,

AT π + w = c, π ≥ 0, w ≥ 0,(1)

bT π − cT ξ = ρ, ρ ≥ 0

has also a solution, where z ∈ <m, w ∈ <k and ρ ∈ < are slack variables. Fur-
thermore, every solution of (1) provides optimal solutions of (P ) and (D). Let us
introduce the matrix M̄ and the vectors x̄ and s̄(x̄) as

M̄ =




0 A −b

−AT 0 c

bT −cT 0


 , x̄ =




π

ξ

τ


 , and s̄(x̄) =




z

w

ρ


 ,

where τ ∈ <. Consider the following homogeneous system

(2) s̄(x̄) = M̄x̄, x̄ ≥ 0, s̄(x̄) ≥ 0.

We mention that system (2) is the so-called Goldman-Tucker model [4, 12]. Let
n̄ = m + k + 1 and observe that the matrix M̄ ∈ <n̄×n̄ is skew-symmetric, i.e.
M̄T = −M̄ . Now we can state the following theorem.

Theorem 1.2 Consider the primal-dual pair (P ) and (D). Then we have
(1) If ξ and π are optimal solutions of (P ) and (D) respectively, then for

τ = 1 and ρ = 0 we obtain that x̄ is a solution of (2).
(2) If x̄ is a solution of (2), then we have τ = 0 or ρ = 0, thus we cannot

have τρ > 0.
(3) If x̄ is a solution of (2) and τ > 0, then ( ξ

τ , π
τ ) is an optimal solution of

the primal-dual pair (P )-(D).
(4) If x̄ is a solution of (2) and ρ > 0, then at least one of the problems (P )

and (D) are infeasible.



A NEW ALGORITHM FOR SELF-DUAL LO PROBLEMS 17

Proof: The first statement follows from the strong duality theorem. To prove the
second one observe that

0 ≤ τρ = τbT π − τcT ξ = πT (τb)− τcT ξ = πT Aξ − πT z − πT Aξ − πT w ≤ 0.

Thus τρ = 0, and we get τ = 0 or ρ = 0. Using this result the third assertion
follows from Theorem 1.1. To prove the last statement suppose that both problems
are feasible and ρ > 0. Thus there exists ξ̂ ≥ 0 and π̂ ≥ 0 so that Aξ̂ ≥ b and
AT π̂ ≤ c. From ρ > 0 we get τ = 0, therefore Aξ ≥ 0 and AT π ≤ 0. Furthermore,
from ρ > 0 we obtain that bT π > 0 or cT ξ < 0. If bT π > 0 then

0 < bT π ≤ ξ̂T AT π ≤ 0,

and if cT ξ < 0 then
0 > cT ξ ≥ π̂T Aξ ≥ 0,

hence in both cases we have a contradiction. Thus the proof is complete.

In the next section we shall use the system (2) to accomplish the self-dual
embedding of the primal-dual LO pair.

2. Self-Dual Embedding

In this section we investigate a generalized form of the system (2). Our approach
follows the method proposed in [10]. Let us consider the LO problem

min q̄T x̄

s.t. M̄ x̄ ≥ −q̄,(SP )

x̄ ≥ 0,

where M̄ ∈ <n̄×n̄ is a skew-symmetric matrix, q̄ ∈ <n̄ and q̄ ≥ 0. Moreover, let

s̄(x̄) = M̄x̄ + q̄.

We are going to solve (SP ) with an IPM, thus we need starting feasible solutions,
so that x̄ > 0 and s̄(x̄) > 0. We say that in this case the problem (SP ) satisfies the
interior point condition (IPC). Unfortunately such starting feasible solution for the
problem (SP ) does not exist, but we can construct another problem equivalent to
(SP ) which satisfies the IPC. For this purpose let

r = e− M̄e and n = n̄ + 1,

where e denotes the all-one vector of length n̄. Furthermore, introduce the nota-
tions

M =
[

M̄ r

−rT 0

]
, x =

[
x̄

ϑ

]
and q =

[
0
n

]
,
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and consider the problem

min qT x

s.t. Mx ≥ −q,(SP )

x ≥ 0.

Observe that the matrix M is also skew-symmetric, and problem (SP ) satisfies
the IPC. Indeed, we have

M

[
e

1

]
+ q =

[
M̄ r

−rT 0

] [
e

1

]
+

[
0
n

]
=

[
M̄e + r

−rT e + n

]
=

[
e

1

]
.

We have used that the matric M̄ is skew-symmetric, thus eT M̄e = 0, and this
equality yields

−rT e + n = −(e− M̄e)T e + n = 1.

In order to solve the problem (SP ) we use an IPM. Let

s = s(x) = Mx + q,

and consider the path of analytic centers [11], the primal-dual central path

Mx + q = s,

xs = µe,
(3)

where µ > 0, and xs is the coordinatewise product of the vectors x and s, i.e.

xs = [x1s1, x2s2, . . . , xnsn].

In fact for an arbitrary function f , and an arbitrary vector x we will use the
notation

f(x) = [f(x1), f(x2), . . . , f(xn)]T .

It is well-known that if the IPC holds for the problem (SP ), then the system (3) has
a unique solution for each µ > 0. IPMs generally follow the central path by using
Newton’s method. In the next section we are going to formulate an equivalent
form of the central path, and we shall apply Newton’s method to obtain new
search directions.

3. A New Class of Directions

New search directions have been studied recently by Peng, Roos and Terlaky
[7, 9, 8]. In a recent paper [3] we have proposed a different approach for defining
a new class of directions for LO. In this section we propose a similar approach for
the self-dual problem (SP ). Thus, we introduce a new class of directions for the
problem (SP ). Let <+ = {x ∈ < | x ≥ 0}, and let us consider the function

ϕ ∈ C1, ϕ : <+ → <+,
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and suppose that the inverse function ϕ−1 exists. Then the system of equations
which defines the central path (3) is equivalent to

Mx + q = s,

ϕ

(
xs

µ

)
= ϕ(e).

(4)

Using Newton’s method for the system (4) we obtain new search directions for the
problem (SP ). Denote

v =
√

xs

µ
,

and assume that (x, s) > 0 and Mx + q = s, thus x is an interior feasible solution
of the problem (SP ). Applying Newton’s method for the system (4) we get

M∆x = ∆s,(5a)
s

µ
ϕ′

(
xs

µ

)
∆x +

x

µ
ϕ′

(
xs

µ

)
∆s = ϕ(e)− ϕ

(
xs

µ

)
(5b)

We introduce the notations

dx =
v∆x

x
, ds =

v∆s

s
.

We have

(6) µv(dx + ds) = s∆x + x∆s,

and

(7) dxds =
∆x∆s

µ
.

Consequently (5b) can be written in the following form

(8) dx + ds = pv,

where

pv =
ϕ(e)− ϕ(v2)

vϕ′(v2)
.

Now using that M is skew-symmetric we get

∆xT ∆s = ∆xT M∆x = −∆xT M∆x,

hence ∆xT ∆s = 0. Moreover, from (7) follows

dT
x ds = eT (dxds) =

1
µ

eT (∆x∆s) =
1
µ

∆xT ∆s = 0,

thus dx and ds are orthogonal. We shall use this relation later in the paper.
We conclude that in this section we have defined a class of search directions for
the problem (SP ). For this purpose we have used a function ϕ to transform the
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system (3) in an equivalent form. In the next section we shall consider a particular
member of this class of search directions. Thus we shall develop a new polynomial
algorithm for the self-dual problem (SP ).

4. The Algorithm

In the remaining part of the paper we assume that ϕ(x) =
√

x. Using this
function we present a new primal-dual interior-point algorithm for solving the
problem (SP ). Consequently, we obtain also a solution of (P ) and (D). In this
case applying Newton’s method for the system (4) yields

M∆x = ∆s,
√

s

µx
∆x +

√
x

µs
∆s = 2

(
e−

√
xs

µ

)
.

(9)

For ϕ(x) =
√

x we have

(10) pv = 2(e− v),

and we can define a proximity measure to the central path by

σ(x, µ) =
‖pv‖

2
= ‖e− v‖ =

∥∥∥∥e−
√

xs

µ

∥∥∥∥ ,

where ‖ · ‖ denotes the Euclidean norm (l2 norm). Let us introduce the notation

qv = dx − ds

Now using that the vectors dx and ds are orthogonal we obtain

‖pv‖ = ‖qv‖,
therefore the proximity measure can be written in the form

σ(x, µ) =
‖qv‖

2
.

Moreover, we have

(11) dx =
pv + qv

2
, ds =

pv − qv

2
and dxds =

p2
v − q2

v

4
.

The algorithm can be defined as follows.

Algorithm 4.1 Let ε > 0 be the accuracy parameter and 0 < θ < 1 the update
parameter (default θ = 1

2
√

n
).

begin
x := e; µ := 1;
while nµ > ε do begin

µ := (1− θ)µ;
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Compute ∆x using (9);
x := x + ∆x;

end
end.

In the next section we shall prove that this algorithm solves the linear optimization
problem in polynomial time.

5. Complexity analysis

In this section we are going to prove that Algorithm 4.1 solves the problem (SP )
in polynomial time. In the first lemma we investigate under which conditions the
feasibility of the full Newton step is assured. Let x+ = x + ∆x and

s+ = s(x+) = M(x + ∆x) + q = s + M∆x = s + ∆s.

Using these notations we can state the lemma.

Lemma 5.1 Let σ = σ(x, µ) < 1. Then the full Newton step is strictly feasible,
hence x+ > 0 and s+ > 0.

Proof: For each 0 ≤ α ≤ 1 introduce the notation x+(α) = x + α∆x and
s+(α) = s + α∆s. Then we have

x+(α)s+(α) = xs + α(s∆x + x∆s) + α2∆x∆s,

and from (6) and (7) we obtain

1
µ

x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds.

Furthermore, from (8) and (11) we get

1
µ

x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2

v

4
− q2

v

4

)
.

Using (10) we find that

v2 + vpv = 2v − v2 = e− (e− v)2 = e− p2
v

4
,

and this relation leads to

(12)
1
µ

x+(α)s+(α) = (1− α)v2 + α

(
e− (1− α)

p2
v

4
− α

q2
v

4

)
.

Evidently, the inequality x+(α)s+(α) > 0 is satisfied if
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞

< 1,
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where ‖ · ‖∞ denotes the Chebychev norm (l∞ norm). We have
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
≤ (1− α)

‖p2
v‖∞
4

+ α
‖q2

v‖∞
4

≤

≤ (1− α)
‖pv‖2

4
+ α

‖qv‖2
4

= σ2 < 1.

Hence, for each 0 ≤ α ≤ 1 we have x+(α)s+(α) > 0. Consequently, the sign
of the continuous functions of α, x+(α) and s+(α) remains the same for every
0 ≤ α ≤ 1. Hence x+(0) = x > 0 and s+(0) = s > 0 yields x+(1) = x+ > 0 and
s+(1) = s+ > 0. This completes the proof.

In the following lemma we formulate a condition which guarantees the quadratic
convergence of the Newton process. We mention that in fact this requirement will
be identical to that one used in Lemma 5.1, namely σ(x, µ) < 1.

Lemma 5.2 Let σ = σ(x, µ) < 1. Then

σ(x+, µ) ≤ σ2

1 +
√

1− σ2
.

Hence, the full Newton step is quadratically convergent.

Proof: We deduce from Lemma 5.1 that the full Newton step is strictly feasible,
thus x+ > 0 and s+ > 0. Denote

v+ =
√

x+s+

µ
,

and observe that making the substitution α = 1 in (12) that equation becomes

(13) v2
+ = e− q2

v

4
.

Thus

(14) min(v+) =

√
1− 1

4
‖q2

v‖∞ ≥
√

1− ‖qv‖2
4

=
√

1− σ2,

where for each vector ξ we denote min(ξ) = min{ξi | 1 ≤ i ≤ n}. Furthermore,
(13) and (14) lead to

σ(x+s+, µ) =
∥∥∥∥

e− v2
+

e + v+

∥∥∥∥ ≤
1

1 + min(v+)
‖e− v2

+‖ ≤

≤ 1
1 +

√
1− σ2

∥∥∥∥
q2
v

4

∥∥∥∥ ≤
1

1 +
√

1− σ2

‖qv‖2
4

=
σ2

1 +
√

1− σ2
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Consequently, we have σ(x+s+, µ) < σ2, and this implies the lemma.

From the self-dual property of the problem (SP ) follows that the duality gap is

2(qT x) = 2(xT s),

where x is a feasible solution of (SP ), and s = s(x) is the appropriate slack vector.
For simplicity we also refer to xT s as the duality gap. In the following lemma we
analyse the effect of the full Newton step on the duality gap.

Lemma 5.3 Let σ = σ(x, µ) and introduce the vectors x+ and s+ such that
x+ = x + ∆x and s+ = s + ∆s. Then we have

(x+)T s+ = µ(n− σ2).

Thus (x+)T s+ ≤ µn.

Proof: Substituting α = 1 in (12) results in

1
µ

x+s+ = e− q2
v

4
,

and using this equation we get

(x+)T s+ = eT (x+s+) = µ(eT e− eT q2
v

4
) = µ(n− ‖qv‖2

4
) = µ(n− σ2)

This implies the lemma.

In the following lemma we investigate the effect on the proximity measure of a full
Newton step followed by an update of the parameter µ. Assume that µ is reduced
by the factor (1− θ) in each iteration.

Lemma 5.4 Let σ = σ(x, µ) < 1 and µ+ = (1− θ)µ, where 0 < θ < 1. We have

σ(x+, µ+) ≤ θ
√

n + σ2

1− θ +
√

(1− θ)(1− σ2)
.

Furthermore, if σ < 1
2 and θ = 1

2
√

n
then σ(x+, µ+) < 1

2 .

Proof: From (13) and (14) we deduce

σ(x+, µ+) =
∥∥∥∥e−

√
x+s+

µ+

∥∥∥∥ =
1√

1− θ

∥∥∥
√

1− θe− v+

∥∥∥ =

=
1√

1− θ

∥∥∥∥
(1− θ)e− v2

+√
1− θe + v+

∥∥∥∥ ≤
1√

1− θ(
√

1− θ + min(v+))

∥∥∥∥−θe +
q2
v

4

∥∥∥∥ ≤

≤ 1
1− θ +

√
(1− θ)(1− σ2)

(
θ
√

n +
∥∥∥∥

q2
v

4

∥∥∥∥
)
≤ θ

√
n + σ2

1− θ +
√

(1− θ)(1− σ2)
.
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Thus, the first part of the lemma is proved. Now observe that n = m + k + 2 ≥ 4,
hence for θ = 1

2
√

n
we get 1−θ ≥ 3

4 . Consequently, from σ < 1
2 follows σ(x+, µ+) <

1
2 . Thus the proof is complete.

From Lemma 5.4 we conclude that the algorithm is well defined. Indeed, the
requirements x > 0 and σ(x, µ) < 1

2 are maintained at each iteration. In the
following lemma we discuss the question of the bound on the number of iterations.

Lemma 5.5 Let xk be the k-th iterate of Algorithm 4.1, and let sk = s(xk) be
the appropriate slack vector. Then (xk)T sk ≤ ε for

k ≥
⌈

1
θ

log
n

ε

⌉
.

Proof: Using Lemma 5.3 we find that

(xk)T sk ≤ µkn = (1− θ)kµ0n = (1− θ)kn,

thus the inequality (xk)T sk ≤ ε is satisfied if

(1− θ)kn ≤ ε.

Now taking logarithms, we may write

k log(1− θ) + log(n) ≤ log ε,

and using the equation − log(1−θ) ≥ θ we observe that the above inequality holds
if

kθ ≥ log(n)− log ε = log
n

ε
.

Thus the proof is complete.

For θ = 1
2
√

n
we obtain the following theorem.

Theorem 5.6 Let θ = 1
2
√

n
. Then Algorithm 4.1 requires at most

O
(√

n log
n

ε

)

iterations.
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6. Concluding remarks

In this paper we have developed a new class of search directions for the self-
dual linear optimization problem. For this purpose we have introduced a func-
tion ϕ, and we have used Newton’s method to define new search directions. For
ϕ(x) =

√
x these results can be used to introduce a new primal-dual polynomial

algorithm for solving (SP ). We have proved that the complexity of this algorithm
is O

(√
n log n

ε

)
.
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1999. (In Romanian).

[2] Zs. Darvay. Interior Point Methods in Linear Programming. ELTE, Budapest, 1997. (In

Hungarian).

[3] Zs. Darvay. A new class of search directions for linear optimization. In Proceedings of Ab-

stracts, McMaster Optimizations Conference: Theory and Applications held at McMaster

University Hamilton, Ontario, Canada, page 18, August 1-3, 2002. Submitted to European

Journal of Operational Research.

[4] A.J. Goldman and A.W. Tucker. Theory of Linear Programming, Linear Inequalities and

Related Systems, volume 38 of H.W. Kuhn and A.W. Tucker eds. Annals of Mathematical

Studies. Princeton University Press, Princeton, NJ, 1956.

[5] N.K. Karmarkar. A new polinomial-time algorithm for linear programming. Combinatorica,

4:373–395, 1984.

[6] L.G. Khachiyan. A polynomial algorithm for linear programming. Soviet Math. Dokl.,

20:191–194, 1979.

[7] J. Peng, C. Roos, and T. Terlaky. A new class of polynomial primal-dual methods for linear

and semidefinite optimization. Technical Report TU Delft, NL–2628BLDelft, Faculty of

Mathematics and Computer Science, The Netherlands, 1999.

[8] J. Peng, C. Roos, and T. Terlaky. Self-regular proximities and new search directions for linear

and semidefinite optimization. Technical report, Department of Computing and Software,

McMaster University, Hamilton, Ontario, Canada, 2000.

[9] J. Peng, C. Roos, and T. Terlaky. A new and efficient large-update interior-point method for

linear optimization. Technical report, Department of Computing and Software, McMaster

University, Hamilton, Ontario, Canada, 2001.

[10] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization. An

Interior Approach. John Wiley & Sons, Chichester, UK, 1997.

[11] Gy. Sonnevend. An ”analytic center” for polyhedrons and new classes of global algorithms

for linear (smooth, convex) programming. In A. Prékopa, J. Szelezsán, and B. Strazicky, ed-
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