
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

A PROPERTY SHEET

SORIN MOLDOVAN

Abstract. The graphical user interfaces (GUI) are very important today.
There is no application without designing a friendly, easy to understand and
accessible environment, both for beginners and for expert users. The aim
of this article is to analyze some aspects specific to graphical interfaces pro-
vided by CAD and CASE tools and to offer a solution for the programmers
developing components for such a tool in JAVA programming language. This
solution is illustrated in the design and implementation of a property sheet
used to display general and specific properties for the UML entities the user
works with.

1. Why such a component?

The objects with which the user operates are, most of the time, complex and
vast, having lots of attributes (properties). For example, Visual Basic users, when
they create a form, have to manage, for each graphical component, a large list
of properties (name, position, color, font, text, etc.). It would be a good idea if
these characteristic attributes of an object were grouped in several categories. At
a certain moment, the user is not interested in all the properties, but only in some
of them. Therefore, some categories should be summarized, rather than detailed.
Through this facility, we can dynamically control the level of detail at which we
study the object and also have a custom view upon an object.

Another aspect is related to editing the attribute values together with their
validation. By referring again to the example about the Visual Basic forms, we
notice that attributes such as name, position, can have an infinite (or at least very
large) domain of values. For editing these attributes, we will use controls of type
TextField (they may be specialized for alpha-numeric or only numeric values, or
may have additional constraints). Some other properties can only have a finite
domain of values (sometimes very small – for example, the visibility can be either
True or False). In this case, instead of the user providing a value as input and
then checking if the value is valid or not, the component will provide a list of
values (which will cover the whole domain), and the user will choose one of these

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; D.2.7 [Software] : Software Engineering – Distribution, Maintenance
and Enhancements .

101



102 SORIN MOLDOVAN

possible values. For properties such as the used font, editing is more complex and
we will open a dialog (probably a system dialog). Between some objects there
are dependency relationships (object1 “owned by” object2, for instance). If the
properties window of object1 has the “Owner” property with a value of object2,
then in some cases we can navigate the relationship from object1 towards object2
through the property sheet.

In the framework of the OCL Evaluator project the need of such property sheet
occurred. In addition to the model browser and diagrams which offer a view upon
the whole project or a part of it, one may have the possibility to inspect a certain
element and to modify its state. It acts as a view and a controller on the UML
model. Figure 1 illustrates how class properties are displayed. What this example
does not reveal is the possibility to edit each property using a specific control
depending of the kind of information the property contains.

Figure 1. The property sheet in a CASE tool



A PROPERTY SHEET 103

The implementation of the property sheet was realized in JAVA programming
language using the Swing package. First of all, we present the main technique we
used.

2. Classic Model-View-Controller (MVC) Architecture

The MVC Architecture is designed for applications that need to provide multiple
vies of the same data. MVC separates applications into three types of objects:

Model: Maintain data and provide data accessor methods; is the applica-
tion object.

Views: Paint a visual representation of some or all of a model’s data
Controller: Defines the way the user interface reacts to user input.

Models are responsible for maintaining data; for example a notepad application
would store the current document’s text in a model. Models typically provide
methods to access and modify their data. Model also fires events to registered
views when a model is changed, and the views respond by updating themselves
based on the model change.

Views are responsible for providing a visual representation of some portion of
a model’s data. For example, a notepad application would provide a view of the
current document by displaying some or all of the text stored in the model.

Controllers handle events for views. Swing listeners (such as mouse and action
listeners) are MVC controllers. The notepad application mentioned previously
would have mouse and key listeners that made changes to the model or view as
appropriate.

Before MVC, user interface designs tended to consider these objects together.
MVC decouples them to increase flexibility and reuse. MVC is a powerful design
for a number of reasons. First, multiple views and controllers can be plugged into
a single model, which is the basis for Swing’s pluggable look and feel.

Second, a model’s views are automatically notified when the model is changed,
changing a model property in one view results in subsequent updates of the model’s
other views.

Third, because model is not dependent upon views, models do not have to be
modified to accommodate new types of views and controllers.

We will refer to MVC architecture when we’ll describe the interaction between
the property sheet and the UML model.

Swing MVC is a specialized version of classic MVC meant to support pluggable
look and feel instead of applications in general. Swing lightweight components
consist of the following objects:

• a model that maintains a component’s data;
• a UI delegate that is a view with listeners for handling events;
• a component that extends JComponent class.



104 SORIN MOLDOVAN

Swing models translate directly to classic MVC models. The components del-
egate their look and feel to a UI delegate. UI delegates correspond to a view-
controller combination in classic MVC. Controllers are referred to as listeners from
here on.

Taking into account the Swing MVC architecture we describe how we have
create the JTreeTable class used in our view component upon the UML model.

3. JTreeTable

A TreeTable is a combination of a Tree and a Table – a component capable of
both expanding and contracting rows, as well as showing multiple columns of data.
The Swing package does not contain a JTreeTable component, but it is fairly easy
to create one by installing a JTree as a renderer for the cells in a JTable.

In Swing, the JTree, JTable, JList, and JComboBox components use a single
delegate object called a cell renderer to draw their contents. In fact it is the view
from the MVC pattern. A cell renderer is a component whose paint() method is
used to draw each item in a list, each node in a tree, or each cell in a table. A
cell renderer component can be viewed as a “rubber stamp”: it’s moved into each
cell location using setBounds(), and is then drawn with the component’s paint()
method.

By using a component to render cells, you can achieve the effect of displaying a
large number of components for the cost of creating just one. By default, the Swing
components that employ cell renderers simply use a JLabel, which supports the
drawing of simple combinations of text and an icon. To use any Swing component
as a cell renderer, all you have to do is create a subclass that implements the ap-
propriate cell renderer interface: TableCellRenderer for JTable, ListCellRenderer
for JList, and so on.

4. Rendering in Swing

Here’s an example of how you can extend a JCheckBox to act as a renderer in
a JTable:

public class CheckBoxRenderer extends JCheckBox
implements TableCellRenderer {

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected,
boolean hasFocus, int row, int column) {

setSelected(((Boolean)value).booleanValue()));
return this;

}
}



A PROPERTY SHEET 105

5. How the example program works

The code showed above shows how to use a JTree as a renderer inside a JTable.
This is a slightly unusual case because it uses the JTree to paint a single node
in each cell of the table rather than painting a complete copy of the tree in each
of the cells. We start in the usual way: expanding the JTree into a cell render
by extending it to implement the TableCellRenderer interface. To implement the
required behavior or a cell renderer, we must arrange for our renderer to paint just
the node of the tree that is visible in a particular cell. One simple way to achieve
this is to override the setBounds() and paint() methods, as follows:

public class TreeTableCellRenderer extends JTree
implements TableCellRenderer {

protected int visibleRow;
public void setBounds(int x, int y, int w, int h) {

super.setBounds(x, 0, w, table.getHeight());
}
public void paint(Graphics g) {

g.translate(0, -visibleRow * getRowHeight());
super.paint(g);

}
public Component getTableCellRendererComponent(JTable table,

object value,
boolean isSelected,
boolean hasFocus,
int row, int column) {

visibleRow = row;
return this;

}
}

As each cell is painted, the JTable goes through the usual process of getting the
renderer, setting its bounds, and asking it to paint. In this case, though, we record
the row number of the cell being painted in an instance variable named visibleRow.
We also override setBounds(), so that the JTree remains the same height as the
JTable, despite the JTable’s attempts to set its bounds to fit the dimensions of
the cell being painted.

To complete this technique we override paint(), making use of the stored variable
visibleRow, an operation that effectively moves the clipping rectangle over the
appropriate part of the tree. The result is that the JTree draws just one of its
nodes each time the table requests it to paint.

In addition to installing the JTree as a renderer for the cells in the first column,
we install the JTree as the editor for these cells also. The effect of this strategy



106 SORIN MOLDOVAN

is the JTable then passes all mouse and keyboard events to this “editor” – thus
allowing the tree to expand and contract its nodes as a result of user input.

Figure 2. TreeTable Architecture

6. A different editor for each row

We mentioned above that this component has a specific editor depending on the
values domain range. So we subclass DefaultCellEditor and name it TableCellEd-
itor. This class knows what editor is responsible for editing of a row. A private
member editors contains in a HashSet all the editors used. It is not necessary for
each row to provide an editor. If a row has no editor associatd a default editor is
provided.

We add a method to this class: selectEditor(MouseEvent e). This method (in-
voked by isCellEditable(EventObject anEvent) and shouldSelectCell(EventObject
anEvent)) calculate the row being edited and sets the editor member to the core-
sponding editor (from the hash set).



A PROPERTY SHEET 107

Invocation of a method of the TableCellEditor (which is set as the CellEditor
for the second column of the view) leads to invocation of the same method upon
the selected editor.

7. Interaction between UML model and the property sheet

To acquire the information from the UML model to be displayed a hierarchy
of adapter classes is created. This is similar with the metamodel class hierarchy.
These classes have a method getProperties(Element element) for gathering proper-
ties and a method propertyChanged(GProperty prop) responsible for modification
of properties of the current object (in our tool this responsibility is delegated a
class who performs all operations upon the model). This method also made some
check upon the new value of the attribute. It returns true if the update was
successfully and false otherwise.

The steps performed when the properties of an element need to be shown are
(notice the use, once more, of the MVC pattern):

• setting up the target element;
• invocation of the updateView method;
• creation of a new PropertyModel used by the JTreeTable to display the

information;
• gathering information (after an adapter class of the UML element is

created “P. . . ”); interogation of the model;
• creation of nodes using the collected properties (root node is created

with the target element as argument and is never displayed); creating
the view;

• editors for each property are set up; setting the controllers.

8. Conclusions and further developments

The goal of this article was to present a solution for developing graphical com-
ponents used to inspect the treats of objects which the user operates. Even if the
example above is from the CASE tools world we tried to provide a solution which
can be very easy adapted to any kind of application. In terms of MVC, only the
model has to be updated to correspond to the needs of the application. (One has
to subclass and full implement the TreeTableModel interface – see Figure 2).

A very important point about the property sheet is the graphical aspect. In
this version this is quite simple. Its improvement will increase also the quality.
These are some aspects that can be improved:

• Adding colours. It is useful to color attributes listed with different colors
to easily differentiate between them (e.g. In the class properties, the
color of inherited features may differ from the color of the ones defined
by the class). Also, the attributes that cannot be modified may have a
specific color to suggest they are read-only.



108 SORIN MOLDOVAN

• Attaching icons to the leafs of the tree to provide additional information
of the property (e.g. The features may have attached icons to illustrate
their visibility).

• A pop-up menu context dependent and keyboard shortcuts to improve
the editing proces of the model.

References

[1] Sun Java Tutorial, http://java.sun.com/docs/books/tutorial/index.html
[2] David M. Geary, Graphic JAVA. Mastering the JFC, vol II, Palo Alto, CA, 1999.
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison Wesley, Boston,

MA, 1994.
[4] OMG Unified Modeling Language Specification, http://www.omg.org

Babeş-Bolyai University, Computer Science Research Laboratory, RO 3400 Cluj-
Napoca, Str. Kogălniceanu 1, Romania

E-mail address: sorin@lci.cs.ubbcluj.ro


