
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

A NEW REAL TIME LEARNING ALGORITHM

GABRIELA ŞERBAN

Abstract. It is well known that all Artificial Intelligence problems require
some sort of searching [7], that is why search has represents an important
issue in the field of Artificial Intelligence. Search algorithms are useful for
problem solving by intelligent (single or multiple) agents. In this paper we
propose an original algorithm (RTL), which extends the Learning Real-Time
A* (LRTA*) algorithm [1], used for solving path-finding problems. This
algorithm preserves the completeness and the characteristic of LRTA* (a real-
time search algorithm), providing a better exploration of the search space.
Moreover, we design an Agent for solving a path-finding problem (searching
a maze), using the RTL algorithm.
Keywords: Search, Agents, Learning.

1. Introduction

One class of problems addressed by search algorithms is the class of path-finding
problems. Given a set of states (configurations), an initial state and a goal (final)
state, the objective in a path-finding problem is to find a path (sequence of moves)
from an initial configuration to a goal configuration.

In single-agent problem solving, the question is [7] that an agent is assumed
to have limited rationality, so, the computational ability of an agent is usually
limited. Therefore, the agent must do a limited amount of computations using
only partial information on the problem.

The A* algorithm ([2]), a standard search algorithm, extends the wavefront
of explored states from the initial state and chooses the most promising state
within the whole wavefront. In this case, at each step, the global knowledge of the
problem is required, that is why the computational complexity is considerable. So,
the task is to solve the problem by accumulating local computations for each node
in the graph (the search problem). These local computations can be executed
concurrently (the execution order can be arbitrary), so, the problem could be
solved both by single and multiple agents.

2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning;

3



4 GABRIELA ŞERBAN

2. Path-Finding Problem

A path-finding problem consists of the following components [7]:

• a set of nodes, each representing a state;
• a set of directed links, each representing an operator available to a prob-

lem solving agent (each link is weighted with a positive number repre-
senting the cost of applying the operator - called distance);

• a unique node called the start node;
• a set of nodes, each of which represents a goal state.

We call the nodes that have directed links from node i neighbors of node i.
The problem is to find a path from the initial state to a goal state. In the

followings we will refer to the problem of finding an optimal (shortest) path from
the initial state to a goal state (we call the shortest path the path having the
shortest distance to goal).

Notational conventions used in the followings are:

• h(s) - the shortest distance from node s to goal nodes;
• h’(s) - the estimated distance from node s to goal nodes;
• k(s,s’) - the distance (cost of the link) between s and s’.

3. Learning Real-Time A*

When only one agent is solving a path-finding problem, it is not always possible
to perform local computations for all nodes (for example, autonomous robots may
not have enough time for planning and should interleave planning and execution).
That is why the agent must selectively execute the computations for certain nodes.
The problem is which node should choose the agent.

A way is to choose the current node were the agent is located. The agent
updates the h’ value of the current node, and then moves to the best neighboring
node. This procedure is repeated until the agent reaches a goal state. The method
is called the Learning Real-Time A* algorithm [1].

The algorithm is described in Figure 1.

(1) Calculate f(j) = k(i, j) + h′(j) for each neighbor j of the current node i
(2) Update: Update the estimate of node i as follows:

(1) h′(i) := minjf(j)

(3) Action selection: Move to the neighbor j that has the minimum f(j)
value.

Figure 1. The Learning Real-Time A* algorithm.



A NEW REAL TIME LEARNING ALGORITHM 5

One characteristic of the algorithm is that the agent determines the next action
in a constant time. That is why this algorithm is called an on-line, real-time search
algorithm.

The function that gives the initial values of h′ is called a heuristic function. A
heuristic function is called admissible if it never overestimates (in the worst case,
the condition could be satisfied by setting all estimates to 0).

In LRTA*, the updating procedures are performed only for the nodes that the
agent actually visits. The following characteristic is known [1]:

• In a finite number of nodes with positive link costs, in which there exists
a path from every node to a goal node, and starting with non-negative
admissible initial estimates, LRTA* is complete, i.e., it will eventually
reach a goal node.

Since LRTA* never overestimates [7], it learns the optimal solution through
repeated trials. In this case, the values learned by LRTA* will eventually converge
to their actual distances along every optimal path to the goal node.

4. A Real-Time Learning Algorithm (RTL)

In fact, the behavior of the agent in the given environment can be seen as a
Markov decision process. Regarding LRTA* there are two problems:

(1) in order to avoid recursion in cyclic graphs, it should be retained the
nodes that have been already visited (with the corresponding values of
h’). Therefore, the space complexity grows with the total number of
states in the search space;

(2) what happens in some plateau situations - states in which, let us say,
exists more successor (neighbor) states with the same minimum value
for h’ (the choice of the next action is nondeterministic).

In the followings, we propose an algorithm (RTL) which is an extension of
the LRTA* algorithm, having some alternatives of solving the above presented
problems. We mention that the algorithm preserves the completeness of LRTA*.

The proposed solutions for the problems (1) and (2) are:
(1) we keep a track of the visited nodes, but we do not retain the values of

h’ for each node;
(2) in order to choose the next action in a given state, the agent determines

the set of states S (which were not visited by the agent) having a mini-
mum value for h’. If S is empty, the training fails, otherwise, the agent
chooses a random state from S as a successor state (this allows a better
exploration of the search space).

The idea of the algorithm (based on LRTA*) is the following:
• through repeated trials (training episodes), the agent tries some paths

(possible optimal) to a goal state, and retains the shortest one;



6 GABRIELA ŞERBAN

• the number of trials is selected by the user;
• after a training trial there are two possibilities:

– the agent reaches a goal state; in this case the agent retains the
path and it’s cost;

– the learning process fails (the agent does not reach the final state,
because it was blocked).

• for avoiding cycles in the search space, the agent will not choose a state
that was visited before, only if it has a single alternative (it was blocked)
and it must return to the formerly visited state.

We make the following notations and assumptions:

• S = {s1, · · · , sn} - the set of states;
• si ∈ S - the initial state;
• G - the set of goal states;
• A = {a1, · · · , am} - the set of actions that could be executed by the

agent;
• we assume that the state transitions are deterministic - a given action in

a given state transitions to a single successor state (the Markov Model
is not hidden [8]);

• with the former assumption, the transitions between states (and their
costs’) could be retained as a function env : SxAxN → S - if s, s′ ∈ S,
a ∈ A and c ∈ N so that if the agent takes the action a in the state s he
reaches the state s′ with the cost c, then s′ = env(s, a, c);

• we will say that the state s′ is the neighbor of the state s iff ∃a ∈ A and
c ∈ N so that s′ = env(s, a, c);

• h’(s) - the estimated distance from state s to a goal node;
• we will say that the cost of the path s1

a1→ s2
a2→ · · · ak−1→ sk is C =∑k−1

i=1 ci, where si+1 = env(si, ai, ci) for all i = 1, · · · , k − 1.

The algorithm
The algorithm consists in a repeated update of the estimated values of the

states, until the agent reaches a goal state (in fact a training sequence). The
training is repeated for a given number of trials.

The algorithm is shown in Figure 2.
We have to mention that:

• we considered that if the agent finds in several trials the same optimal
solution, then it is very probable that the solution is the correct one,
and the training process stops;

• the time complexity (in the worst case) of the training process during
one trial is O(n2), where n is the number of states of the environment;

• the agent determines the next action in a real-time (the selection process
is a linear one);



A NEW REAL TIME LEARNING ALGORITHM 7

Repeat until the number of trials was exceeded or until the correct solution was
found

• Training:
(1) Initialization:

– sc (the current state):= si (the initial state)
– calculate the estimation of the current state h′(sc)

(2) Iteration:
Repeat until (sc ∈ G) or (the agent was blocked) or (the number
of visited states exceeds a maximum value)

(a) Update:
– for each state s′ neighbor of sc the agent calculates the

estimation of the shortest distance from s′ to a goal state

(2) f(s′) = c + h′(s′), s′ = env(sc, a, c)

– the agent determines the set of states M = {s”
1, · · · s”

k}
so that for all j = 1, · · · , k

(3) s”
j = argmins′{f(s′) | ∃a ∈ A, c ∈ N so that s′ = env(sc, a, c)}

(b) Action selection:
– if k = 1 (the agent has a single alternative to continue)

then the agent moves in the state s”
1;

– otherwise the agent determines from the set M a subset
M ′ of states that were not visited in the current training
sequence and chooses randomly a state from M ′.

Figure 2. The Real-Time Learning (RTL) algorithm.

• the space complexity is reduced (there are retained only the states from
the optimal path).

As in the LRTA* algorithm, if the heuristic function (the initial values of h’)
is admissible (never overestimates the true value -h′(s) <= h(s) for all s ∈ S-),
then we can easily prove that the RTL algorithm is complete, i.e, it will eventually
reach the goal [4] and h′(s) will eventually converge to the true value h(s) [6].

The proof of convergence is presented below:

Proof. Let h′n(s) be the estimation of the shortest distance from state s to a
final state, at the n-th training episode. Let hn(s) be the shortest distance from
state s to a final state, at the n-th training episode. Let en(s) = hn(s)− h′n(s) be
the estimation error at the n-th episode. We will prove that limnen(s) = 0, for all
s ∈ S, which will assure the convergence of the algorithm.



8 GABRIELA ŞERBAN

Because h′ never overestimates h it is obvious that

(4) en(s) >= 0, for all n ∈ N, s ∈ S

From the updating step of the RTL algorithm (Figure 2) results that:

(5) h′n(s) = mins′{k(s, s′) + h′n(s′)}, s’ neighbor of s

for all s ∈ S, s visited by the agent in the current training sequence.
On the other hand, it is obvious that:

(6) hn(s) = mins′{k(s, s′) + hn(s′)}, s’ neighbor of s

for all s ∈ S.
Moreover, the real values of the shortest distance from a state s to goal are the

same in all the training episodes, so that:

(7) hn+1(s) = hn(s)

for all s ∈ S.
(8)
h′n+1(s) = hn(s), if s was not visited, otherwise, h′n+1(s) = mins′{k(s, s′)+hn(s′)}

From equations (7) and (8) results that:

(9) en+1(s)− en(s) = h′n(s)− h′n+1(s) <= h′n(s)− h′n(s′) <= 0

where s′ is neighbor of s and it is closer than s to a goal state (that is why it’s
estimation is less than the estimation of the current state).

From (4) and (9) results that en(s) is convergent to 0. In other words, if the
number of the training sequences is infinite, then the convergence of the algorithm
is guaranteed.

5. An Agent for Maze Searching

5.1. General Presentation. The application is written in Borland C and im-
plements the behavior of an Intelligent Agent (a robotic agent), whose purpose is
coming out from a maze on the shortest path, using the algorithm described in
the previous section (RTL).

We assume that:
• the maze has a rectangular form; in some positions there are obstacles;

the agent starts in a given state and it tries to reach a final (goal) state,
avoiding the obstacles;

• in a certain position on the maze the agent could move in four directions:
north, south, east, west (there are four possible actions);

• the cost of executing an action (move in one direction) is 1;
• as a heuristic function (initial values for h′(s)) we have chosen the Man-

hattan distance to the goal (it is obvious that this heuristic function is
admissible), which assures the completeness of the algorithm.



A NEW REAL TIME LEARNING ALGORITHM 9

In fact it is a kind of semi-supervised learning, because the agent starts with
an initial knowledge (the heuristic function) , so it has an informed behavior. In
the worst case, if the values of the heuristic function are 0, then the learning is
unsupervised, but the behavior of the agent becomes uninformed.

5.2. The Agent’s Design. For implementing the algorithm, we will represent
the following structures:

• a State from the environment;
• the Environment (as a linked list of States);
• a Node from the optimal path (the current State and the estimation h’

of the current state);
• the optimal path from a training sequence (as a linked list of Nodes).

The basis classes used for implementing the agent’s behavior are the followings:
• IElement: defines an interface for an element. This is an abstract class

having two pure virtual methods:
– for converting the member data of an element into a string;
– a destructor for the member data.

• CNode: defines the structure of a Node from the optimal path. This
class implements (inherits) the interface IElement, having (besides the
methods from the interface) it’s own methods for:

– setting components (the current state, the estimation of the current
state);

– accessing components.
• CState: defines the structure of a State from the environment. This

class implements (inherits) the interface IElement, having (besides the
methods from the interface) it’s own methods for:

– setting components (the current position on the maze, the value of
a state);

– accessing components;
– calculating the estimation h’ of the state;
– verifying if the state is accessible (contains or not an obstacle).

• CList: defines the structure of a linked list, with a generic element (a
pointer to IElement) as information of the nodes. The main methods of
the class are for:

– adding elements;
– accessing elements;
– updating elements.

• CEnvironment: defines the structure of the agent’s environment (it
depends on the concrete problem - in our example the environment is a
rectangular maze). The private member data of this class are:

– m: the environment, represented as a linked list (CList) of states
(CState);



10 GABRIELA ŞERBAN

– si: the initial state of the agent (is a CState);
– sf: the final state from the environment (is a CState);
– l, c: the dimensions of the environment (number of rows and columns).

The main methods of the class are for:
– reading the environment from an input stream;
– setting and accessing components;
– verifying the neighborhood of two states in the environment.

• Agent: the main class of the application, which implements the agent’s
behavior and the learning algorithm.

The private member data of this class are:
– m: the agent’s environment (is a CEnvironment);
– l: the list of Nodes used for retaining the optimal path in the current

training sequence (is a CList);
The public methods of the agent are the followings:

– readEnvironment: reads the information about the environment
from an input stream ;

– writeEnvironment: writes the information about the environ-
ment in an output stream ;

– learning: is the main method of the agent; implements the RTL
algorithm.

Besides the public methods, the agent has some private methods used
in the method learning.

We notice that all the representations of data structures are linked, which means
that there are no limitations for the structures’ length (number of states).

5.3. Experimental Results. For our experiment, we considered the environment
shown in Figure 3. The state marked with 1 represents the initial state of the agent,
the state marked with 2 represents the final state and the states filled with black
contains obstacles (which the agent should avoid).

We repeat the experiment four times, because of the random character of the
action selection mechanism. The results after the experiments are shown in Table
1, 2, 3, 4 (in a solution the agent determines the moving direction from the current
state).

We notice that, in average, after 8 episodes, the agent finds the optimal path
to the final state.



A NEW REAL TIME LEARNING ALGORITHM 11

Table 1. First experiment

Number of episodes 8
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 10
2 16
3 10
4 10
5 18
6 12
7 14
8 10

Figure 3. The agent’s environment

6. Conclusions and Further Work

The algorithm described in this paper is very general, could be applied in any
problem which goal is to find an optimal solution in a search space (a path-finding
problem).



12 GABRIELA ŞERBAN

Table 2. Second experiment

Number of episodes 6
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 16
2 10
3 14
4 10
5 10
6 10

Table 3. Third experiment

Number of episodes 14
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 18
2 10
3 12
4 10
5 16
6 10
7 12
8 14
9 16
10 28
11 14
12 16
13 14
14 10

On the other hand, the application is designed in a way which allows us to
model (with a few modifications) any environment and any behavior of an agent.

Further work is planned to be done in the following directions:

• to analyze what happens if the transitions between states are nondeter-
ministic (the environment is a Hidden Markov Model [8]);

• to use probabilistic action selection mechanisms (ε-Greedy, SoftMax [5]);



A NEW REAL TIME LEARNING ALGORITHM 13

Figure 4. The number of steps/episode during the training processes

Table 4. Fourth experiment

Number of episodes 5
The optimal solution East East East North East East North North North North

Episode Number of steps until the final state was reached
1 12
2 10
3 12
4 10
5 10

• to combine the RTL algorithm with other classical path-finding algo-
rithms (RTA*);

• in which way the agent could deduce the heuristic function from the
interaction with it’s environment (a kind of reinforcement learning);

• to develop the algorithm for solving path-finding problems with multiple
agents.

References

[1] Korf, R., E.: Real-time heuristic search. Artificial Intelligence, 1990
[2] Korf, R., E.: Search. Encyclopedia of Artificial Intelligence, Wiley-Interscience Publica-

tion, New York, 1992



14 GABRIELA ŞERBAN

[3] Russell, S.J., Norvig, P.: Artificial intelligence. A modern approach. Prentice-Hall Inter-
national, 1995

[4] Ishida, T., Korf, R., E.: A moving target search. A real-time search for changing goals.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995

[5] Sutton, R., Barto, A., G.: Reinforcement learning. The MIT Press, Cambridge, England,
1998

[6] Shimbo, M., Ishida T.: On the convergence of real-time search. Journal of Japanese
Society for Artificial Intelligence, 1998

[7] Weiss, G.: Multiagent systems - A Modern Approach to Distributed Artificial Intelligence,
The MIT Press, Cambridge, Massachusetts, London, 1999

[8] Serban, G.: Training Hidden Markov Models - a Method for Training Intelligent Agents,
Proceedings of the Second International Workshop of Central and Eastern Europe on
Multi-Agent Systems, Krakow, Poland, 2001, pp.267-276

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro


