STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

ACTIVECASE - TOOL FOR DESIGN OF CONCURRENT
OBJECT-ORIENTED APPLICATIONS

DAN MIRCEA SUCIU

ABSTRACT. Object-oriented concurrent programming is a methodology that
seems to satisfy nowadays requirements for complex application development.
Issues like inheritance anomalies or developing of object models that integrate
in a natural way concurrent programming elements with object-oriented con-
cepts was intensely analyzed in literature.

Construction of a consistent modeling mechanism that ameliorates the
inheritance anomalies as much as possible represents the main goal of our
research work ([13], [14]). This paper presents the implementation of this
modeling mechanism into a CASE tool for analysis and design of concur-
rent object-oriented applications. Developing specific scalable statecharts for
behavior modeling of active objects and automatic code generation are sub-
sequent issues that are attend to validate the executability of our mechanism.

Key words: CASE tools, object-oriented concurrent programming,
reactive systems, statecharts.

1. INTRODUCTION

CASE (Computer Aided Software Engineering) tools are software products able
to support medium or large application development. This support is realised by
automating some of the activities made in an analysis and design method. If
we agree that one of the main goals of an analysis and design method is code
generation and that we should obtain automatically a high rate of application
code, it is obvious that an efficient use of a method cannot be made without an
associated CASE tool.

Typically, the translation of a complex analysis/design model into a program-
ming language takes a long period. A model is called executable if this translation
can be made automatically. The automatization of the translation process allows
running a prototype of an application immediately after building its model.

The executability is an important feature of scalable statecharts [13], allowing
the automatization of active objects implementation based on their behavioral

2000 Mathematics Subject Classification. 68N30.

1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering — Coding
Tools and Techniques; D.2.7 [Software] : Software Engineering — Distribution, Maintenance
and Enhancements .

73

74 DAN MIRCEA SUCIU

models. Furthermore, the executability offers support for simulation, testing and
debugging of active object execution at the same level of abstraction like the built
model.

The paper describes the architectural and functional features of a CASE tool
designed for modeling, developing and simulation of concurrent object oriented
applications. This tool, called ActiveCASE, is complete original and supports
active objects behaviour modeling through scalable statecharts formalism as de-
scribed in [13] and [14]. In addition, ActiveCASE allows concurrent class structure
specification, active object behavior modeling and source code generation.

Section 2 presents the meta-model of class diagrams and scalable statecharts
implemented in ActiveCASE.

A detailed description of tool functional features is shown in section 3.

Section 4 validates the modeling capacity and executability of scalable stat-
echarts describing the development and modeling process of an application for
traffic control on a rectangular track. This sample exploits all scalable statecharts
features described in [13] and [14].

2. THE META-MODEL OF SCALABLE STATECHARTS

In this section is presented in detail a static meta-model of scalable statecharts.
This meta-model is used in scalable statecharts implementation in ActiveCASE
(figure 1).

dependencies type

CLSParameter [+

CLEStandardType

parameters

awnerClass

FS subStates
F—— ShAbstractState -

e Asransions .3 |0r‘thngonan)aren|
| FSMOrthoganalComponent

I |
[]
orthComponents(1 *

FSMPseudoState
e PSEIDG STATE TYiE FSMConcreteState
| —

FIGURE 1. The meta-model of class and state diagrams used in ActiveCASE

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS 75

Because a state diagram is associated with a class, ActiveCASE supports also
a primitive class diagram editor. This kind of diagrams is not an important fea-
ture of ActiveCASE, because the tool focuses on behavioural models. However,
ActiveCASE can be easily interfaced with other existing CASE tools. The classes
that models class diagrams are: CLSClass (models a class), CLSStandard Type
(models primitive types like integer, float, string, boolean etc), CLSParameter,
CLSAttribute and CLSMethod (model the properties and operations of a spe-
cific class).

In ActiveCASE simple states are viewed like composed states with zero sub-
states, and a non-concurrent state like a state, which contains one orthogonal
component. This manner of considering state diagrams allows the elimination
of redundant classes from meta-model. In the same time, this representation
semantically unifies the concepts of simple state, composed state and orthogonal
state. Figure 2 shows in a graphical manner the relationships between entities of
scalable statecharts.

FIGURE 2. Graphical representation of scalable statecharts

FSMAbstractState abstract class models all kind of states defined in Level
2 scalable statecharts (5592). An object of FSMAbstractState class contains a
list of (incoming and outgoing) transitions (modeled by FSMTransition class)
and a list of orthogonal components (modeled by FSMOrthogonalComponent
class). In ActiveCASE there are two state categories: pseudostates (initial, final,
history - modeled by FSMPseudoState class)and concrete states (modeled by
FSMConcreteState class). A concrete state contains at least one orthogonal
components.

Another important element of our model is that a class has not associated
a state diagram or a state machine, but a concrete state. This concrete state
represents the parent (root) of all states that describes the behavior of associated
class objects. This particular state will have the same name as the modeled class,
and its invariant corresponds to the consistency condition imposed on class objects.
Practically, the concept of state diagram is not used anymore, and the behavior
of objects is described through a state hierarchy.

The auto-transition from FSMTransition class level assigns to each transition
a ‘clone’ used in scaling (minimizing or maximizing) composed states. In figure

76 DAN MIRCEA SUCIU

3 is presented a sample where this double transition is useful. The transitions
labeled with m1 and m3 link states from different nesting levels. When State2 is
minimized, its sub states will be ’hidden’ and the same thing will happen with
their transitions.

Class1
t m1 [et]
(Statel @
=1
| m3 [e3]
i oF
Sated
The invarian
af Srated
[Classi L] i includedin

(o] S rransition condition
Statel & m3 (o3 &4 egq]l
=

i

Fi1GURE 3. Cloning transitions

Therefore, is necessary to introduce supplementary transitions that will preserve
the behavioral model. These transitions double the original transitions, and they
link states Statel and State2. Also, ‘clone’ transitions do not influence the source
code generation. Their launch conditions are conjunctions between the original
condition and the invariant of source state (for the transition labeled with m3,
its clone will have attached the condition ¢3 && ¢4, where && is logical AND
operator from C++ programming language).

3. AcTiIvECASE ARCHITECTURE

The ActiveCASE tool has three main components:

o ActiveCASE.exe - main application, used for editing class and scalable
statecharts diagrams and source code generation,

e StateControl.ocz - component used for specific statecharts display,

o ActiveStatechart.dll - component used in simulation of active objects
behavior during execution of a generated application.

ActiveCASE is a tool for modeling of active objects behavior and offers sup-
port for analysis, implementation and testing phases of life cycle of an application.
ActiveCASE application allows editing primitive class diagrams and scalable stat-
echarts, and has a C++ source code generator (Figure 4).

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS e

E art - [Cars.fsm *] =lofxf
Ble Edt Yew Opoons ool Window Help
” O F & [Setechen =l ;JHII% =
[Keell = 580 1m|
S ; i GE; L] ﬂ
TFamt posiian T
bovlean lacked Track baalean ride
TAmayCar Cars cars il

Car e

CAnayelLosation®, Location™s obstac e
it o Docupled i ! {CPoint position,

boalean mowing void LeRD)

boalesn Locd

e (a1d Draw wold Righ

B ke oid Star) e s~

w!d Dr-g o0 a mEag L Stopd) vild Dewngy

virid Desupn(Ca

Mg vaid ran)
~a e | sid oy

feold Hatt >
o | b

=

|

H o

Ready [T

FIGURE 4. ActiveCASE capture with graphical editors of class
and states diagrams

All modeled classes are sub-classes of a special class called ActiveObject. This
class has attributes and operations for handling states and transitions and for
interactions with simulation component.

The component used for simulation allows the visualization of concurrent ob-
jects execution during the execution of an application generated by ActiveCASE
environment,.

4. MODELING AN APPLICATION FOR TRAFFIC SIMULATION

In this section is presented a sample application for traffic simulation on a rect-
angular track. This sample application uses all features provided by ActiveCASE
tool and all new elements introduced by scalable statecharts.

Figure 5 shows the class diagram that models an application for traffic simu-
lation on a rectangular track. A Track object contains a bi-dimensional array of
locations and has a set of associated cars. The three operations of Track class
allow displaying a Track object on screen and to start or stop all its associated
cars.

78 DAN MIRCEA SUCIU

Track lncations M —on o
1.x
01 L car
cars Car
1.8

Track
CAmray<Car,Car= cas
CAmray<Llocation™, Location™ obstacles
boolean moving

woid Dram()
woid Start()
wvoid Stop)
[Location [
[Urlacked o
Location Qocupy [MoOoeupied < 2]

CPaoint position
boolean lodked
Car*car

int nodocupied
boolean Lodk()

woid Unlock() Becupy EOc:cuiied rl
woid Draw) _car 1= NULLM
waid Qecupyi(Car *car) -

Car"Releaserl)

Releaze

sahle [
MoOccupies < 4

i

Oecupy [MoOcoupied == 3]

Release § Lock

. Damaged

NoOccupies »= 4

!ocked

Car [
Started ™

Car
int direction
boolean ride
Track track
CPoint position
woid Left()
woid Righte)
woid Up()
woid D own)
woid Dram)
woid Ga)
woid Halt()

Down

1 < direction < 4

FIGURE 5. State diagrams for Track, Car and Location classes

All diagrams presented in figure 5 are made with ActiveCASE tool. Using Ac-
tiveCASE environment the implementation code for all three classes was generated

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS 79

and attached to a Visual C++ project. The intervention of developer is neces-
sary only for creating a Track object and for attaching to it a desired number of
cars (Car objects). In addition, the developer can implement code for graphical
representation of all objects.

Figure 6 shows a test of “Masgina rosie” active object behavior using the simu-
lation of its execution using scalable statecharts.

lnix]

Tesk Wi Halp

= =]

x

Ready [oo

FIGURE 6. The simulation of “Magina rosie” object behavior

5. CONCLUSIONS

The process of concurrent object oriented applications development is laborious.
As we stated in the previous sections, the conceptual differences between different
concurrent object oriented programming languages make difficult to translate ap-
plications from one language in another. In the same time, testing and debugging
these applications is more complicated than for sequential applications. There-
fore modeling these applications through a unitary set of concepts and notations
and testing and debugging them at models level increase the quality of developed
applications and decrease the maintenance effort.

The goal of ActiveCASE tool is to automate some steps of the developing pro-
cess for concurrent object oriented applications. Its main features are:

e flexibility in modeling active objects behavior through scalable state-
charts that cover most of concurrent object models;

e high level of internal concurrency specification;

e the source code generator is adaptable to any concurrent object oriented
programming language;

80

[1]

2

[9]
(10]

(11]

(12]
(13]

14]

ST.

DAN MIRCEA SUCIU

e offers support for active objects behavior simulation at run-time;
e imposes an implementation discipline, which ameliorates reuse anom-
alies.

REFERENCES

F. Barbier, H. Briand, B. Dano, S. Rideau, “The Executability of Object-Oriented Finite
State Machines”, Journal of Object-Oriented Programming, SIGS Publications, 4 (11), pp.
16-24, jul/aug 1998

Michael von der Beeck, “A Comparison of Statecharts Variants”, Formal Techniques in
Real-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil (eds.), Lecture Notes
in Computer Science, vol. 863, pp. 128-148, Springer-Verlag, New York, 1994

S. Cook, J. Daniels, “Designing Object Systems - Object-Oriented Modelling with Syn-
tropy”, Prentice Hall, Englewood Cliffs, NJ, 1994

Bruce Powel Douglas, “UML Statecharts”, Embedded Systems Programming, jan. 1999,
available at http://www.ilogix.com/fs_prod.htm

D. Harel, A. Naamad, “The STATEMATE Semantics of Statecharts”, ACM Transactions
on Software Engineering and Methodology, 5 (4), pp. 293-333, 1996

D. Harel, E. Gery, “Executable Object Modeling with Statecharts”, IEEE Computer, 30
(7): 3142, Jul. 1997

David Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, vol.8, no. 3, pp. 231-274, June 1987

Object Management Group, OMG Unified Modeling Language Specification, ver. 1.3, June
1999 available on Internet at http://www.rational.com/

Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974

Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Report
TR-95-049, International Computer Science Institute, Berkeley, Aug. 1995

Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, Iulian Ober, Specification of active
objects behavior using statecharts, Studia Universitatis “Babes Bolyai”, Informatica, Vol.
XLII, no. 1, pp. 19-30, 1997

Dan Mircea Suciu, Reuse Anomaly in Object-Oriented Concurrent Programming, Studia
Universitatis “Babes-Bolyai”, Informatica, Vol. XLII, no. 2, pp. 74—89, 1997

Dan Mircea Suciu, Extending Statecharts for Concurrent Objects Modeling, Studia Univer-
sitatis “Babes-Bolyai”, Informatica, Vol. XLIV, No. 1, pp. 37-44, 1999

Dan Mircea Suciu, Using Scalable Statecharts for Active Objects Internal Concurrency
Modeling, Studia Universitatis “Babes-Bolyai”, Informatica, Vol. XLV, No. 2, pp. 67-76,
2000

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAI” UNIVERSITY, 1 M. KOGALNICEANU
, RO-3400 CLuJ-NAaPOoCA, ROMANIA
E-mail address: tzutzu@cs.ubbcluj.ro

