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ACTIVECASE - TOOL FOR DESIGN OF CONCURRENT
OBJECT-ORIENTED APPLICATIONS

DAN MIRCEA SUCIU

ABSTRACT. Object-oriented concurrent programming is a methodology that
seems to satisfy nowadays requirements for complex application development.
Issues like inheritance anomalies or developing of object models that integrate
in a natural way concurrent programming elements with object-oriented con-
cepts was intensely analyzed in literature.

Construction of a consistent modeling mechanism that ameliorates the
inheritance anomalies as much as possible represents the main goal of our
research work ([13], [14]). This paper presents the implementation of this
modeling mechanism into a CASE tool for analysis and design of concur-
rent object-oriented applications. Developing specific scalable statecharts for
behavior modeling of active objects and automatic code generation are sub-
sequent issues that are attend to validate the executability of our mechanism.

Key words: CASE tools, object-oriented concurrent programming,
reactive systems, statecharts.

1. INTRODUCTION

CASE (Computer Aided Software Engineering) tools are software products able
to support medium or large application development. This support is realised by
automating some of the activities made in an analysis and design method. If
we agree that one of the main goals of an analysis and design method is code
generation and that we should obtain automatically a high rate of application
code, it is obvious that an efficient use of a method cannot be made without an
associated CASE tool.

Typically, the translation of a complex analysis/design model into a program-
ming language takes a long period. A model is called executable if this translation
can be made automatically. The automatization of the translation process allows
running a prototype of an application immediately after building its model.

The executability is an important feature of scalable statecharts [13], allowing
the automatization of active objects implementation based on their behavioral
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models. Furthermore, the executability offers support for simulation, testing and
debugging of active object execution at the same level of abstraction like the built
model.

The paper describes the architectural and functional features of a CASE tool
designed for modeling, developing and simulation of concurrent object oriented
applications. This tool, called ActiveCASE, is complete original and supports
active objects behaviour modeling through scalable statecharts formalism as de-
scribed in [13] and [14]. In addition, ActiveCASE allows concurrent class structure
specification, active object behavior modeling and source code generation.

Section 2 presents the meta-model of class diagrams and scalable statecharts
implemented in ActiveCASE.

A detailed description of tool functional features is shown in section 3.

Section 4 validates the modeling capacity and executability of scalable stat-
echarts describing the development and modeling process of an application for
traffic control on a rectangular track. This sample exploits all scalable statecharts
features described in [13] and [14].

2. THE META-MODEL OF SCALABLE STATECHARTS

In this section is presented in detail a static meta-model of scalable statecharts.
This meta-model is used in scalable statecharts implementation in ActiveCASE
(figure 1).
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FIGURE 1. The meta-model of class and state diagrams used in ActiveCASE
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Because a state diagram is associated with a class, ActiveCASE supports also
a primitive class diagram editor. This kind of diagrams is not an important fea-
ture of ActiveCASE, because the tool focuses on behavioural models. However,
ActiveCASE can be easily interfaced with other existing CASE tools. The classes
that models class diagrams are: CLSClass (models a class), CLSStandard Type
(models primitive types like integer, float, string, boolean etc), CLSParameter,
CLSAttribute and CLSMethod (model the properties and operations of a spe-
cific class).

In ActiveCASE simple states are viewed like composed states with zero sub-
states, and a non-concurrent state like a state, which contains one orthogonal
component. This manner of considering state diagrams allows the elimination
of redundant classes from meta-model. In the same time, this representation
semantically unifies the concepts of simple state, composed state and orthogonal
state. Figure 2 shows in a graphical manner the relationships between entities of
scalable statecharts.

FIGURE 2. Graphical representation of scalable statecharts

FSMAbstractState abstract class models all kind of states defined in Level
2 scalable statecharts (5592). An object of FSMAbstractState class contains a
list of (incoming and outgoing) transitions (modeled by FSMTransition class)
and a list of orthogonal components (modeled by FSMOrthogonalComponent
class). In ActiveCASE there are two state categories: pseudostates (initial, final,
history - modeled by FSMPseudoState class)and concrete states (modeled by
FSMConcreteState class). A concrete state contains at least one orthogonal
components.

Another important element of our model is that a class has not associated
a state diagram or a state machine, but a concrete state. This concrete state
represents the parent (root) of all states that describes the behavior of associated
class objects. This particular state will have the same name as the modeled class,
and its invariant corresponds to the consistency condition imposed on class objects.
Practically, the concept of state diagram is not used anymore, and the behavior
of objects is described through a state hierarchy.

The auto-transition from FSMTransition class level assigns to each transition
a ‘clone’ used in scaling (minimizing or maximizing) composed states. In figure
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3 is presented a sample where this double transition is useful. The transitions
labeled with m1 and m3 link states from different nesting levels. When State2 is
minimized, its sub states will be ’hidden’ and the same thing will happen with
their transitions.
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Therefore, is necessary to introduce supplementary transitions that will preserve
the behavioral model. These transitions double the original transitions, and they
link states Statel and State2. Also, ‘clone’ transitions do not influence the source
code generation. Their launch conditions are conjunctions between the original
condition and the invariant of source state (for the transition labeled with m3,
its clone will have attached the condition ¢3 && ¢4, where && is logical AND
operator from C++ programming language).

3. AcTiIvECASE ARCHITECTURE

The ActiveCASE tool has three main components:

o ActiveCASE.exe - main application, used for editing class and scalable
statecharts diagrams and source code generation,

e StateControl.ocz - component used for specific statecharts display,

o ActiveStatechart.dll - component used in simulation of active objects
behavior during execution of a generated application.

ActiveCASE is a tool for modeling of active objects behavior and offers sup-
port for analysis, implementation and testing phases of life cycle of an application.
ActiveCASE application allows editing primitive class diagrams and scalable stat-
echarts, and has a C++ source code generator (Figure 4).
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FIGURE 4. ActiveCASE capture with graphical editors of class
and states diagrams

All modeled classes are sub-classes of a special class called ActiveObject. This
class has attributes and operations for handling states and transitions and for
interactions with simulation component.

The component used for simulation allows the visualization of concurrent ob-
jects execution during the execution of an application generated by ActiveCASE
environment,.

4. MODELING AN APPLICATION FOR TRAFFIC SIMULATION

In this section is presented a sample application for traffic simulation on a rect-
angular track. This sample application uses all features provided by ActiveCASE
tool and all new elements introduced by scalable statecharts.

Figure 5 shows the class diagram that models an application for traffic simu-
lation on a rectangular track. A Track object contains a bi-dimensional array of
locations and has a set of associated cars. The three operations of Track class
allow displaying a Track object on screen and to start or stop all its associated
cars.
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FIGURE 5. State diagrams for Track, Car and Location classes

All diagrams presented in figure 5 are made with ActiveCASE tool. Using Ac-
tiveCASE environment the implementation code for all three classes was generated
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and attached to a Visual C++ project. The intervention of developer is neces-
sary only for creating a Track object and for attaching to it a desired number of
cars (Car objects). In addition, the developer can implement code for graphical
representation of all objects.

Figure 6 shows a test of “Masgina rosie” active object behavior using the simu-
lation of its execution using scalable statecharts.
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FIGURE 6. The simulation of “Magina rosie” object behavior

5. CONCLUSIONS

The process of concurrent object oriented applications development is laborious.
As we stated in the previous sections, the conceptual differences between different
concurrent object oriented programming languages make difficult to translate ap-
plications from one language in another. In the same time, testing and debugging
these applications is more complicated than for sequential applications. There-
fore modeling these applications through a unitary set of concepts and notations
and testing and debugging them at models level increase the quality of developed
applications and decrease the maintenance effort.

The goal of ActiveCASE tool is to automate some steps of the developing pro-
cess for concurrent object oriented applications. Its main features are:

e flexibility in modeling active objects behavior through scalable state-
charts that cover most of concurrent object models;

e high level of internal concurrency specification;

e the source code generator is adaptable to any concurrent object oriented
programming language;
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e offers support for active objects behavior simulation at run-time;
e imposes an implementation discipline, which ameliorates reuse anom-
alies.
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