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SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT
LOGICS

MIHAIELA LUPEA

Abstract. The default nonmonotonic reasoning was formalised by a class
of logical systems: default logics (classical, justified, constrained, rational),
based on the same syntax which utilises nonmonotonic inference rules: de-
faults, but with different semantics for the defaults. In this paper we intro-
duce a uniform semantic characterisation for the constrained and rational ex-
tensions of a default theory. This characterisation is an operational approach
of the nonmonotonic reasoning that is viewed as a successive application of
the applicable defaults. During the reasoning process can be observed the
interaction between the defaults and the reasoning context. The graphical
interpretation associated to the semantic characterisation of extensions illus-
trates the type of applicability: cautious (for constrained extensions) and
hazardous (for rational extensions) of the defaults and some formal proper-
ties: semi-monotonicity, regularity, existence of extensions, commitment to
assumptions of these variants of default logic.

1. Introduction

An important part of commonsense reasoning is default reasoning, which means
drawing conclusions in the absence of complete information using default assump-
tions. This type of reasoning is nonmonotonic because the conclusions (formulas
which are only plausible, not necessarily true) inferred can be later invalidated
by adding new facts. Reiter [6] introduced nonmonotonic inference rules called
defaults, which permit reasoning on the basis of “the lack of evidence to the con-
trary”. The classical default logic was the first logical system that formalizes the
default nonmonotonic reasoning.

A default theory is a pair (D, W), where W is a set of consistent formulas from
first order logic and D is a set of default rules. W contains the facts (axioms) of
the theory and D contains general rules that might have exceptions. A default
rule has the form1:d = α:β

γ , where α, β, γare formulas of first order logic,α is the
prerequisite (Prereq(d)) of the default d, β is the justification (Justif(d)) of the
default d and γ is the consequent (Conseq(d)) of the default d.

In this paper the followin g notations will be used: Justif(D)=
⋃

d∈D Justif(d),
Prereq(D)=

⋃
d∈D Pr ereq(d), Conseq(D)=

⋃
d∈D Conseq(d).

1991 Mathematics Subject Classification. 03B70, 68T27, 68T37.
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Proving – nonmonotonic reasoning and belief revision.
1Due to the (semi) representability results for these versions of default logic, we use in this

paper only defaults with at most one justification (unitary default theories).
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A default d = α:β
γ can be applied and thus derive γ if α is believed and it is

consistent to assumed β.
Using the classical inference rules and the defaults we can extend the initial set

of facts with new formulas called nonmonotonic theorems obtaining extensions.
Definition 1.1[6]: Let (D,W) be a default theory. For any set of formulas S,

let Γ(S) be the smallest set of formulas S’ such that:

(1) W⊆S’;
(2) Th(S’)= S’,whereTh(X) is the set of all the theorems obtained from the

set X of formulas and using the classical inference rules;
(3) For any α:β

γ ∈ D, if α ∈S’ and ¬β /∈S then γ ∈S’. The application of the
default rule means: if we can believe αand ¬β is not believed, then we
can believe γ.

A set E of formulas is a classical extension of (D,W) if and only if Γ(E)=E.
A classical extension for a default theory is a maximal set of conclusions (beliefs)

derived from the facts of W using classical derivation and the defaults as inference
rules. A default theory may has zero, one or more classical extensions.

Due to the individual consistency checking of justifications and thus the loss
of implicit assumptions when are constructed the classical extensions, this logical
system does not satisfy some desirable formal properties: semi-monotonicity, reg-
ularity, existence of extensions, commitment to assumptions. In classical default
logic these properties are satisfied only for normal default theories, that are the
theories with all the defaults of the form: α:β

β .
The next versions of default logic (justified default logic, constrained default

logic, rational default logic) try to obtain for general default theories the above
properties by modifying the meaning of the statement “it is consistent to assumed
β”.

Reiter has not provided a semantic for classical default logic, but he has observed
that the application of defaults restricts the models of the initial set of facts W,
and thus the class of models of an extension is a restricted class of models of W.
This idea was formalised by Lukaszewicz [2] for normal default theories and then
generalised by Etherington in [1]. Later on, as the new versions of default logics
were defined, new approaches of the semantic of these logics appeared.

The focused models semantics was introduced for the classical default logic in
[1] and then used in [7] for constrained default logic. This semantics is based on a
preference between focused models structures induced by some set of default rules.
An extension is characterized by a maximal models structure.

In the papers [7, 8] Schaub has developed a uniform semantical framework for
all the variants of default logic. This approach is called possible worlds semantics
for default logics and uses Kripke structures to characterise the two components
of an extension: the set of beliefs and the underlying assumptions.

The aim of this paper is to provide a semantic characterization for constrained
extensions and rational extensions of a default theory in the spirit of the approach
of Lukaszewicz [3]. Thus we can obtain an uniform approach of the semantics for
classical, justified, constrained, rational default logics, based on the idea that the
reasoning process, viewed as a successive application of the applicable defaults,
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restricts the models of the initial set of facts. The advantage of this characteriza-
tion is its graphical interpretation, which illustrates the semantics of applicability
conditions for defaults and some formal properties.

The paper is organized as follows. Section 2 provides some notions and results
about constrained and rational default logics. In Section 3 we propose an opera-
tional semantic characterization for constrained and rational extensions. Section 4
of the paper contains the graphical interpretation of the semantic characterization
for constrained and rational extension. The last section is a comparative study of
the formal properties of the variants (classical, justified, constrained, rational) of
default logic from a semantical point of view.

2. Constrained and rational defaults logics

Schaub defined constrained default logic in [7] as an alternative approach to
classical default logic. The nonmonotonic reasoning formalized by this logic is
based on the observation that when we draw conclusions, we have to keep track of
the assumption used in the inference process and then to verify that they do not
contradict each other and do not contradict with the conclusions.

Definition 2.1[7]: Let (D,W) be a default theory. For any set of formulas T,
let Ψ(T) be the pair of the smallest sets of formulas (S’,T’) such that:

(1) W⊆S’⊆T’;
(2) S’=Th(S’) and T’=Th(T’);
(3) For α:β

γ ∈ D, if ∀0S’ and T ∪ {β} ∪ {γ} is consistent, then γ ∈S’ andβ ∧
γ ∈T’.

A pair (E,C) of sets of formulas is a constrained extension of (D,W) if and only
if Ψ(E,C)=(E,C).

The set E is the actual extension of the default theory and C is the set of
constraints (a consistent context for E), which keeps track of the justifications
assumed to be true in the construction of E.

The set of the generating defaults for the constrained extension (E,C) is defined
as follows:GD

(E,C)
∆ =

{
α:β
γ |α ∈ E and C ∪ {β, γ} 6 7→fals

}
.

This logical system satisfies the properties: semi-monotonicity, the existence
of a constrained extension is guaranted, strong-regularity and commitment to as-
sumption.

Rational default logic was proposed in [5] and is based on the idea that we
cannot use in the construction of an extension defaults whose all justifications
together are inconsistent with the extension.

Definitions 2.2[5]: Let (D,W) be a default theory, let X be a subset of the set
D of defaults and let S be a set of formulas.

(1) We define XS =
{

α
γ |α:β1,...,βn

γ ∈ X, S ∪ {¬βi} inconsistent, 1 6 i 6 n
}

and Mon(X)=
{

Pr ereq(d)
Conseq(d) |d ∈ X

}
.

(2) A set X of defaults is active with respect to W and S if it satisfies the
conditions:

(i) Justif(X)=∅ or Justif(X)∪ S is consistent
(ii) Prereq(X)⊆ ThXS (W), where ThXS (W) is the deductive closure of

W using classical inference rules and the monotonic rules fromXS .
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(3) We denote by A(D,W,S) the set of all subsets of the defaults in D which
are active with respect to W and S. ∅ ⊆ A(D,W,S). MA(D,W,S) is
defined as the set of all maximal elements in A(D,W,S).

The set E of formulas is a rational extension for the theory (D,W) if
E=ThXE (W), where X∈ MA(D,W,E), and X is the set of generating defaults.

The next definition is proposed by Schaub [8] and it is equivalent with the
original definition of rational default logic.

Definition 2.3[8]: Let (D,W) be a default theory. For any set of formulas T,
let Ψ(T) be the pair of the smallest sets of formulas (S’,T’) such that:

(1) W⊆S’⊆T’;
(2) S’=Th(S’) and T’=Th(T’);
(3) For any α:β

γ ∈ D, if ∀0S’ and T ∪ {β} is consistent, then γ ∈S’ andβ ∧
γ ∈T’.

A pair (E,C) of sets of formulas is a rational extension of (D,W) if and only if
Ψ(E,C)=(E,C). The set E is the actual extension of the default theory and C is
the reasoning context.

The set of the generating defaults for the rational extension (E,C) is defined as
follows: GD

(E,C)
∆ =

{
α:β
γ |α ∈ E si C ∪ {β} 6 7→fals

}
.

Rational default logic is a generalisation of constrained default logic that means:
each rational extension of a default theory is also a constrained extension of the
same theory. It can be easy observed that the sets of generating defaults for
constrained extensions are active sets, not necessarily maximal active sets. Con-
strained default logic and rational default logic coincide on the class of semi-normal
default theories. This logical system is strongly regular, does not guarantee the
existence of extensions, is not semi-monotonic and does not commit to assump-
tions.

The following theorems provide characterisations for constrained, respective
rational extensions of a default theory, using the set of generating defaults.

Theorem 2.1[8]: Let (D,W) be a default theory and let E and C be sets
of formulas. Then (E,C) is a constrained extension of (D,W) if and only if
E=Th(W∪Conseq(D’)) and C=Th(W∪Justif(D’)∪Conseq(D’)) for a maximal set
D’⊆D such that D’ is grounded in W and W∪Justif(D’)∪Conseq(D’) is consistent.

Theorem 2.2[4]: Let (D,W) be a default theory and let E and C be sets of
formulas. Then (E,C) is a rational extension of (D,W) if and only if E=Th(W
∪ Conseq(D’)) and C=Th(W ∪ Justif(D’) ∪ Conseq(D’)) for a maximal D’ ⊆ D
such that D’ is grounded in W and are satisfied the following conditions:

(i) W∪Conseq(D’)∪Justif(D’) is consistent
(ii) ∀d ∈ D\D’ we have: W∪Conseq(D’)∪{¬Precond(d)} is consistent or

W∪Conseq(D’)∪Justif(D’∪{d}) is inconsistent.
The condition (ii) from the above theorem states that the set of generating

defaults is maximal active with respect to W and E.
The two variants of the default logic presented in this section have as a common

feature the fact that the inference process formalised by them is guided by a reason-
ing consistent context, which contains the beliefs and the underlying assumptions,
used for deriving new nonmonotonic theorems.
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3. Semantic characterization for constrained extensions and
rational extensions of a default theory

In this section we will provide semantic characterization for constrained and
rational extensions of a default theory. This operational approach is inspired from
[3], the construction of an extension is viewed as a successive application of the
applicable defaults.

In the following some notions from the semantic of first order logic will be used.
Definition 3.1:

(1) For each class of frames Λand a formula A we denote by Λ(A)={M|M∈
Λand | =MA} the models of A, that means the set of all the frames from
Λ in which the formula A is true.

(2) The frame M is a model for the set S of formulas, if and only if are
satisfied: | =MA, ∀A ∈ S. We will use the notation | =MS.

(3) A class Λ of frames is elementary if and only if Λ is the class of all the
models of the set S of formulas.

The particularity of these two variants of default logic that are used implicit
assumptions to derive new explicit conclusions suggests that there is an explicit
content (the set of beliefs) and an implicit content (assumptions) of the knowledge
base. These two aspects must be correlated in the semantic characterisation of an
extension.

Constrained and rational extensions are defined using a pair (E=actual exten-
sion, C=reasoning context). Thus it is naturally to have a pair < Λ1,Λ2 > which
characterises semantic these types of extensions as follows: Λ1 is the class of all
the models of the set E of beliefs, and Λ2 is the class of all the models of the
context C. We have Λ2 ⊆ Λ1 since E⊆C.

Definition 3.2: Let Λ1 and Λ2 be two classes of frames. The pair < Λ1,Λ2 >
is called a bi-structure if and only if Λ1 and Λ2are elementary classes and Λ2 ⊆ Λ1.

A bi-structure < Lambda1,Λ2 > characterises the stage of the reasoning process
as follows: Λ1represents the set of all the models of a set of beliefs and Λ2 represents
the set of all the models of a set of formulas, which represent the reasoning context.

reasoning context = set of beliefs (non-monotonic theorems) +
implicit assumptions (justifications of the used defaults)

Definition 3.3: Let < Λ1,Λ2 > be a pair of frames-frames and d = α:β1,...,βm

γ

a default.
(1) The default d is res-applicable with respect to < Λ1,Λ2 > if and only if:

(i) | =M α, ∀M ∈ Λ1 and (ii) ∃M ∈ Λ2 a.i. | =M β ∧ γ
(2) The default d is rat-applicable with respect to < Λ1,Λ2 > if and only if:

(i) | =M α, ∀M ∈ Λ1 and (ii) ∃M ∈ Λ2 a.i. | =M β

The conditions of res-applicability and rat-applicability are the semantic coun-
terpart of the applicability conditions from definitions 2.1 and 2.3. We can inter-
pret these semantic conditions of applicability as follows:

• res-applicable with respect to < Λ1, Λ2 > if and only if the prerequisite is
believed and the justification together with the consequent are consistent
with the reasoning context.

• rat-applicable with respect to < Λ1, Λ2 > if and only if the prerequisite
is believed and the justification is consistent with the reasoning context.
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Definition 3.4: To a closed default d = α:β1,...,βm

γ we assign a mapping dres

from the set of the bi-structures into the set of bi-structures as follows:

d
R(< Λ1,Λ2 >) =

{
< Λ1(γ), Λ2(β ∧ γ) > if d is res-applicable wrt < Λ1,Λ2 >
< Λ1, Λ2 > otherwise

This mapping models a cautious application of the defaults which means that
the commitment to assumptions for each applied default is guaranteed, and then
inconsistencies after the application of an applicable default cannot be obtained.

Definition 3.5: To a closed default d = α:β1,...,βm

γ we assign a mapping drat

from the set of frames-frames into the set of frames-frames as follows:

d
rat(< Λ1, Λ2 >) =





< Λ1(γ),Λ2(β ∧ γ) if < Λ1, Λ2 > is a bi-structure and
d is rat-aplicable wrt < Λ1, Λ2 >

< Λ1, Λ2 > if < Λ1, Λ2 > is a bi-structure and
d is not rat-aplicable wrt < Λ1, Λ2 >

< ∅, ∅ > if < Λ1, Λ2 > is not a bi-structure

The above definition models a step in the reasoning process, where the com-
mitment to assumptions is not guaranteed. We say that we have a hazardous
application of the defaults that means: the application of an applicable default
can cause inconsistencies in the set of beliefs or in the reasoning context.

Definition 3.6: Let < Λ1, Λ2 > be a bi-structure and D a set of closed defaults.
(1) < Λ1,Λ2 > is res-stable wrt D if and only if dres(< Λ1,Λ2 >)=<

Λ1,Λ2 >, ∀d ∈ D.
(2) < Λ1,Λ2 > is rat-stable wrt D if and only if drat(< Λ1,Λ2 >)=< Λ1,Λ2 >,

∀d ∈ D.
A stable bi-structure characterises the end of the reasoning process in which all

the applicable defaults were used.
Definition 3.7: Let < Λ1,Λ2 > be a pair of frame-frame and < di > a sequence

of closed defaults.
(1) We denote by < di >res(< Λ1,Λ2 >) the bi-structure obtained as follows:

< di >rat(< Λ1, Λ2 >) =
{

< Λ1,Λ2 > if < di >= ∅
< ∩Λi

1,∩Λi
2 > else

where < Λ0
1, Λ

0
2 >=< Λ1,Λ2 >, and < Λi+1

1 , Λi+1
2 >= dres

i (< Λi
1, Λ

i
2 >)

for i=1,2,. . .
(2) We denote < di >rat(< Λ1,Λ2 >) the pair frames-frames obtained as

follows:

< di >res(< Λ1, Λ2 >) =
{

< Λ1, Λ2 > if < di >= ∅
< ∪Λi

1,∪Λi
2 > else

where < Λ0
1, Λ

0
2 >=< Λ1,Λ2 >, and < Λi+1

1 , Λi+1
2 >= drat

i (< Λi
1, Λ

i
2 >)

for i=1,2,. . .
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These definitions model a reasoning process that consists in a successive appli-
cation of the elements from a sequence of defaults.

Definition 3.8: Let < Λ1,Λ2 > be a bi-structure, let Z be an elementary class
of frames and < di > a sequence of closed defaults. The pair < Λ1,Λ2 > is < di >-
x-accessible from Z if and only if < Λ1,Λ2 >=< di >x(< Z,Z>). < Λ1,Λ2 > is
x-accessible from Z wrt D if and only if there exists a sequence < di > of defaults
in D such that < Λ1,Λ2 > is < di >-x-accessible from Z. x can be res or rat, and
thus the notions of res-accessibility and rat-accessibility are defined.

Using the notions presented before, the following theorems provide semantic
characterisations for constrained extensions, respective rational extensions.

Theorem 3.1 (correctness and completeness): Let (D,W) be a closed
default theory and let Z be the class of all models of W. A class of frames Λ1 is
the class of all models of actual extension E and Λ2is the class of all models of
the reasoning context C (where (E,C) is a constrained extension of (D,W)) if and
only if there exists a bi-structure < Λ1,Λ2 > which satisfies:

(i) < Λ1,Λ2 > is res-stable wrt D and (ii) < Λ1,Λ2 > is res-accessible from Z
wrt D.

Proof:
(correctness) Assume that (E,C) is a constrained extension for (D,W), then

according to theorem 2.1 we have that:
E=Th(W∪Conseq(D’)), C=Th(W∪Conseq(D’)∪Justif(D’)), where D’ is

grounded in W and the set W∪Conseq(D’) ∪Justif(D’) is consistent.
Let Λ1={M| | =M W ∪ Conseq(D′)} be the set of all models of the actual

extension E and let Λ2={M| | =M W ∪ Conseq(D′) ∪ Justif(D′)} be the set
of all models of the reasoning context C. We have then that < Λ1,Λ2 > is a bi-
structure and we have to verify that < Λ1,Λ2 > satisfies conditions (i) and (ii)
from the theorem:

• For (i) we have to prove that ∀d ∈ D : dres(< Λ1,Λ2 >)=< Λ1,Λ2 >

There are two cases:
1. For d = α:β

γ ∈ D′:
α ∈E, hence | =M α, ∀M ∈ Λ1 and
γ ∈E, C∪{β ∧ γ} is consistent, hence ∃M ∈ Λ2 such that | =M β ∧ γ
We have Λ1(γ) = Λ1 since γ ∈E, and Λ2(β ∧ γ)¿ =Λ2 sinceβ ∧ γ ∈C.
The default d is res-applicable wrt < Λ1,Λ2 > according to definition3.3 and

dres(< Λ1,Λ2 >)= < Λ1(γ),Λ2(β ∧ γ) >= < Λ1,Λ2 >

2. For d = α:β
γ ∈ D\D′:

α /∈E, hence ∃M ∈ Λ1 such that | 6 =Mα or
C∪{β ∧ γ} is inconsistent, hence 6 ∃M ∈ Λ2 such that | =M β ∧ γ
According to the definition 3.3 the default d is not res-applicable wrt < Λ1,Λ2 >

and dres(< Λ1,Λ2 >)=< Λ1,Λ2 >
Thus we have proved the res-stability of the bi-structure < Λ1,Λ2 > wrt D.

• For (ii) we have to prove that there exists a sequence of defaults < di >
such that < Λ1,Λ2 >=< di >res(<Z,Z>), where Z={M| | =M W}.

The set D’ is grounded in W, therefore exists an enumeration 〈δi〉i∈I of its
elements such that:
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(1) W ∪ Conseq({δ0, δ1, . . . , δi−1}) 7→ Pr econd(δi), ∀i ∈ I = {0, 1, 2, n}
We consider that this enumeration represents the sequence < di >, which pro-

vides the application order of the defaults for generating the constrained extension
(E,C).
a) if < di >= ∅ then < Λ1,Λ2 >=<Z,Z>, the set of generating defaults D’=∅ and

the constrained extension (E,C), E=C=Th(W).
b) if < di > 6= ∅ we show by induction that:

(2) < d0, ..., dk >res (< Z,Z >) =< Λk+1
1 ,Λk+1

2 >, k = 0, . . . , n, where

Λk+1
1 ={M| | =M W ∪ Conseq({d0, ..., dk})} and

Λk+1
2 ={M| | =M W ∪ Conseq({d0, ..., dk}) ∪ Justif({d0, ..., dk})}

Base: k=0
From (1) with i=0 we have: W7→ Pr econd(d0) which implies W| =

Pr econd(d0), therefore ∀M ∈ Z | =M Pr econd(d0). The set
W∪Conseq(d0) ∪Justif(d0) is consistent because is a subset of the consistent
set W∪Conseq(D’)∪Justif(D’)).

Hence ∃M ∈ Z such that | =M Justif(d0) ∧ Conseq(d0).
Thus are satisfied the res-applicability conditions for the default d0 wrt <Z,Z>.
dres
0 (<Z,Z>)= < Λ1

1=Z(Conseq(d0),Λ1
2=Z(Justif(d0)∧Conseq(d0)) >.

Step: Let us assume that the relation (2) is true for k and we will prove that
it is true for k+1.

From (1) with i=k we have: W∪Conseq({d0, . . . , dk})7→ Pr econd(dk+1) which
implies W∪Conseq({d0, . . . , dk})| = Pr econd(dk+1), and then ∀M ∈ Λk+1

1 | =M

Pr econd(dk+1).
W∪Conseq({d0, ..., dk, dk+1})∪Justif({d0, . . . , dk, dk+1}) is a consistent set be-

cause is a subset of the consistent set W∪Conseq(D’)∪Justif(D’).
Hence ∃M ∈ Λk+1

2 such that | =M Justif(dk+1) ∧ Conseq(dk+1)
Thus are satisfied the res-applicability conditions for the default dk+1 wrt <

Λk+1
1 ,Λk+1

2 >.
< d0, ..., dk+1 >res(<Z,Z>) = dres

k+1(¡Λ
k+1
1 ,Λk+1

2 >)= < Λk+1
1 (Conseq( dk+1)),

Λk+1
2 (Conseq(dk+1)∧ Justif dk+1)) > = < Λk+2

1 , Λk+2
2 > and thus the relation

(2) is satisfied for k+1.
For i=n we have: < d0, . . . , dn >res (<Z,Z>) = < Λn+1

1 ,Λn+1
2 > =

<{M|| =M W ∪ Conseq({d0, . . . , dn})}, {M|| =M W ∪ Conseq({d0, . . . , dn}) ∪
Justif({d0, . . . , dn})}¿ = < Λ1, Λ2 > since D’={d0, ..., dn}.

Thus was proved the res-accessibility of the bi-structure < Λ1, Λ2 > from Z wrt
D.

(completeness) We assume that < Λ1,Λ2 > is a bi-structure which satisfies
the conditions (i) and (ii). Λ1 is the set of all the models of the set E of formulas
and Λ2is the set of all the models of the set C of formulas. The relation Λ1 ⊇ Λ2
implies E⊆C.

We have to prove that (E,C) is a constrained extension for the default theory
(D,W).
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According to the condition (ii) there exists a sequence of defaults < di >=
d0, ..., dnin D such that < d0, ..., dn >res(<Z,Z>)= < Λ1,Λ2 >, where
Z={M| | =MW}

If < di >= ∅ then < Λ1,Λ2 > = <Z,Z> .
Since <Z,Z> is a bi-structure res-stable wrt D we have that

(E=Th(W),C=Th(W)) is a constrained extension for (D,W). The set of
the generating defaults is ∅.

If < di >6= ∅ then:
Following step by step the application of the defaults in the sequence we observe

that:
(a0) | =MPrecond(d0), ∀M ∈ Z = Λ0

1 and thus W 7→ Pr econd(d0)
(b0) dres

0 (<Z,Z>)=< Λ1
1 = Z(Conseq(d0), Λ1

2 = Z(Justif(d0)∧Conseq(d0)) > =
<{M| | =M W ∪ Conseq(d0)}, {M| | =M W ∪ Conseq(d0) ∪ Justif(d0)}¿.

< Λ1
1,Λ

1
2 > is a bi-structure which implies that W∪Conseq(d0)∪Justif(d0) is a

consistent set.
Using the notations:
Λk+1

1 ={M| | =M W ∪ Conseq({d0, ..., dk})} and
Λk+1

2 ={M| | =M W ∪ Conseq({d0, ..., dk}) ∪ Justif({d0, ..., dk})}
we can easily prove by induction that for k=1,2,. . . , n are satisfied the relations:

(ak) | =MPrecond(dk), ∀M ∈ Λk
1 , hence W∪Conseq({d0, ..., dk})7→

Pr econd(dk+1)
(bk) < d0, ..., dk >res(<Z,Z>)=< Λk+1

1 , Λk+1
2 > is a bi-structure.

From (a0) + (a1) +. . . +(an) we have that the set D’={d0, ..., dn} is grounded
in W.

For k=n we have: < d0, ..., dn >res(<Z,Z>)= < Λ1,Λ2 > = <{M| | =M W
∪Conseq(D’)}, {M| | =M W ∪Conseq(D’) ∪Justif(D’)}¿

< Λ1,Λ2 > is a bi-structure and thus W∪Conseq(D’)∪Justif(D’) is a consistent
set.

The res-stability condition for < Λ1,Λ2 > means that dres(< Λ1,Λ2 >)=<
Λ1,Λ2 >, for every d in D :

If d∈D’ then d is res-applicable wrt < Λ1,Λ2 > but it was applied already.
If d∈D\D’ then we have two cases (i) or (ii):

(i) d is res-applicable wrt < Λ1,Λ2 > but applying it we can neither obtain
new nonmonotonic theorems nor modify the context. We add to D’ all the
defaults d with this property: D’=D’∪{d} and D’ remains grounded in W.

(ii) d is not res-applicable wrt < Λ1,Λ2 > due to the following:
∃M ∈ Λ1 a.i. | 6 =M Pr econd(d),thus D’∪{d} is not grounded in W or
6 ∃M ∈ Λ2 a.i | =M Justif(d) ∧ Conseq(d), thus
W∪Conseq(D’∪{d})∪Justif(D’∪{d}) is an inconsistent set.

All the defaults in D\D’ are not res-applicable wrt < Λ1,Λ2 > and thus
is guaranteed the maximality of D’ such that D’ is grounded in W and
W∪Conseq(D’)∪Justif(D’) is consistent.

The maximal sets E, C of formulas with the property that Λ1,Λ2 are the
sets of all their models respectively, have the form: E=Th(W∪Conseq(D’),
C=Th(W∪Conseq(D’)∪Justif(D’)) and thus (E,C) is a constrained extension ac-
cording to the theorem 2.1.
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Theorem 3.2 (correctness and completeness): Let (D,W) be a closed
default theory and Z be the class of all models of W. A class of frames Λ1 is
the class of all the models of the actual extension E and Λ2is the class of all the
models of the reasoning context C (where (E,C) is a rational extension of the
theory (D,W)) if and only if there exists a bi-structure < Λ1,Λ2 > which satisfies
the following conditions:

(i) < Λ1,Λ2 > is rat-stable wrt D and (ii) < Λ1,Λ2 > is rat-accessible from Z
wrt D.

Proof: The proof of this theorem is similar to the above proof. Theorem 2.2
can be used for the characterization of rational extensions.

4. Graphical interpretation of the semantic characterization of
constrained and rational extensions

To each default theory (D,W) we can associate a transition network. The nodes
of this network contain pairs frames-frames and the arcs are labelled with defaults
from the set D. If a node contains a bi-structure is called viable, otherwise is called
contradictory. A leaf node is a node whose outbound arcs loop back.

The network is specified as follows:
(1) The set of nodes is the smallest set which satisfies the conditions:

• < Z, Z ¿ is the root node, where Z={M| | =MW}.
• if n is a viable node and d∈D, then dres(n) (respective drat(n)) is

a node of the network.
(2) From each viable node n and for each d∈D, there is an arc label by d

which leads to the node dres(n) (respective drat(n))
We can give a graphical interpretation for the theorems 3.1 and 3.2.
Let (D,W) be a default theory and the associated transition network built us-

ing dres(respective drat). Every viable node characterises a constrained extension
(respective rational extension) for the default theory (D,W) as follows:

< Λ1,Λ2 > is a stable bi-structure contained in a leaf node, where:
< Λ1,Λ2 >=< di >res(< Z,Z>) (respective < Λ1,Λ2 >=< di >rat(< Z,Z>)),
< di >=d1, . . . , dk , and Z={M| | =MW}.
if and only if

Λ1is the class of all models of the set E=Th(W ∪
k⋃

i=1

Conseq(di)) and Λ2 is

the class of all the models of the set of formulas C=Th(W ∪
k⋃

i=1

Conseq(di) ∪
k⋃

i=1

Justif(di)), that means:

Λ1 = {M || =M W ∪
k⋃

i=1

Conseq(di)},

Λ2 = {M || =M W ∪
k⋃

i=1

Conseq(di) ∪
k⋃

i=1

Justif(di)}
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and {d1, . . . , dk} is the set of generating defaults for the constrained extension
(E,C) (respectively for the rational extension (E,C)).

Example 4.1: The default theory (
{
d1 = :B

C , d2 = :¬B
D , d3 = :¬C∧¬D

E

}
, ∅) has

three constrained extensions corresponding to the leaf nodes of the transition net-
work from the fig1.

(E1=Th({C}),C1=Th({C∧B})) with {d1} as the set of generating defaults.
(E2=Th({D}),C2=Th({D∧¬B})) with {d2} as the set of generating defaults.
(E3=Th({E}),C3=Th({E∧¬C∧¬D})) with {d3} as the set of generating de-

faults.

Figure 1.

Fig2 contains the transition network that characterizes the rational extensions.
The same default theory has only two rational extensions: (E1,C1) and (E2,C2).

Figure 2.

According to the original definition of rational default logic we have that:
• {d1}∈ MA(D,W,E1), where E1=Th(W∪Conseq({d1})).
• {d2}∈ MA(D,W,E2), where E2=Th(W∪Conseq({d2})).
• {d1,d3},{d2,d3}∈MA(D,W,S), where S=Th(W∪Conseq({d3})). There-

fore the set {d3} is not maximal active with respect to W and S; hence
{d3} cannot be a set of generating defaults for a rational extension.

The existence of the contradictory node in fig2 illustrates the semantical fail-
ure of semi-monotonicity, and thus the failure of commitment to assumption for
rational default logic.
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5. Conclusions

The semantic characterization of constrained and rational extensions proposed
in this paper together with the semantic characterization of classical and justi-
fied extensions from [3] can be viewed as a uniform approach of semantics which
permits a comparative study of the formal properties of these variants of default
logic. We can observe similarities between classical and rational default logics,
respective justified and constrained default logic as follows:

justified - constrained default logics:
• cautious application of the defaults
• a transition network which models the reasoning process in justified or

constrained default logic does not have contradictory nodes
• these variants of default logic satisfy the semi-monotonicity property

which permits to successively apply one default after another with no
risk of destroying any previous partial extension

• a default theory has always justified and constrained extensions.
classical - rational default logics

• hazardous application of the defaults
• there is the possibility to obtain contradictory nodes, which means: a

default that satisfies the applicability condition, after its application can
cause inconsistencies in the set of beliefs or in the reasoning context

• the failure of the semi-monotonicity property, and thus a classical and a
rational extension can not be generate iteratively

• the existence of classical and rational extensions is not guaranteed: there
are transition networks having only contradictory nodes as final nodes

• does not commit to assumptions
Constrained default logic satisfies the property of commitment to assumptions

due to the fact that the res-applicability condition is cautious and the reasoning
context must be consistent.

Rational and constrained default logics are strong-regular because the applica-
bility conditions for defaults require the reasoning context to be consistent.
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