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PRINCIPAL COMPONENTS ANALYSIS BASED ON A FUZZY
SETS APPROACH

HORIA F. POP

Abstract. As with any other multivariate statistical method, Principal Com-
ponents Analysis is sensitive to outliers, missing data, and poor linear cor-
relation between variables due to poorly distributed variables. As a result
data transformations have a large impact upon PCA. This paper introduces
a powerful approach to improve PCA: robust fuzzy PCA algorithm (FPCA).
The matrix data is fuzzified, thus diminishing the influence of the outliers.

1. Introduction

Several statistical methods for the analysis of large quantities of data have been
applied to scientific problems during the last decades. One of these methods,
principal component analysis (PCA) showed special promise for furnishing new
and unique insights into the data interactions.

PCA is designed to reduce the number of variables that need to be considered
to a small number of indices (axes) called the principal components, that are linear
combinations of the original variables. The new axes lie along the directions of
maximum variance such that containing most of the information. PCA provides
an objective way of finding indices of this type so that the variation in the data
can be accounted for as concisely as possible.

In the case of an n-dimensional problem, often the number of components
needed to describe, say 90% of the sample variance is less than n, so that PCA es-
sentially affords one a technique whereby the dimensionality of the variable space
can be reduced, i.e., it is a dimension reduction method. It may well turn out
that usually two or three principal components provide a good summary of all
the original variables. Moreover, PCA offers a second important tool for multidi-
mensional analysis that derives, in fact, from its original application in the social
sciences and from which it took its name. In other words, PCA can also reveal
those underlying factors or combinations of the original variables that principally
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determine the structure of the data distribution and that not infrequently are re-
lated to some real influencing factors in the sample population. An important
issue in PCA is the interpretation of components, to help determine after the re-
duction of the observation space, which initial variables has the greatest shares in
the variance of particular principal components. This information can be obtained
using coefficients of determination (loadings) established between the components
and the initial variables.

2. Principal Components Analysis (PCA)

PCA is based on eigenanalysis of the covariance or correlation matrix. Let us
consider a data set X = {x1, . . . , xp}, and its covariance matrix M :

(1) Mij =
1

p− 1

p∑

k=1

(xk
i − x̄i) · (xk

j − x̄j), i, j = 1, . . . , n.

Let us also consider the ortonormal eigenvectors ei of the matrix M , and the
corresponding eigenvalues λi (i = 1, . . . , n).

The principal components of the data set X appear as linear combinations of
the original variables in the form

(2) PCi = ei
1y

1 + ei
2y

2 + · · ·+ ei
nyn,

where yi represents the i-th original variable (yi
j = xj

i ), and ei
j represent the j-th

element of the eigenvector ei of the matrix M .
A constraint that (ei

1)
2 + (ei

2)
2 + · · ·+ (ei

n)2 = 1 is imposed on all components.
The constraint is introduced in order to ensure that V ar(PCi) cannot be increased
by simply increasing any of the ei

j values.
From the orthonormality of e1, e2, . . . , en it follows that

(3)

eiT · ei = 1, for any i ∈ {1, . . . , n}
eiT · ej = 0, for any i, j ∈ {1, . . . , n}, i 6= j
eiT ·M · ei = 1, for any i ∈ {1, . . . , n}
eiT ·M · ej = 0, for any i, j ∈ {1, . . . , n}, i 6= j,

and

(4) M = λ1e
1e1T + λ2e

2e2T + · · ·+ λnenenT .

where T denotes the transposing operation.
The basic property of the new variables is their lack of correlation. We have

that

(5) Var(eiX) = λi, for i = 1, . . . , n

and

(6) Cov(eiX, ejX) = 0, for i, j = 1, . . . , n, i 6= j.
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The first principal component PC1 is that linear combination of sample values
for which the “scores” have maximum variation. The second component PC2 has
scores that are uncorrelated with the scores for PC1. Among the many linear
combinations with this property we select the one which has maximum variation
among its scores. The third component PC3 is defined to be that linear com-
bination which has the maximum variation among all those combinations whose
scores are uncorrelated with the scores of the first two components. Subsequent
components are defined analogously.

Principal component analysis as any other multivariate statistical methods are
sensitive to outliers, missing data, and poor linear correlation between variables,
due to poorly distributed variables. As a result, data transformations have a large
impact upon PCA [3].

One of the most illuminating approach to robustify PCA appears to be the
fuzzification of the matrix data by diminuishing in this way the influence of the
outliers.

3. Fuzzy Principal Components Analysis (Fuzzy PCA)

Fuzzy clustering is an important tool to identify the structure in data. In
general, a fuzzy clustering algorithm with objective function can be formulated as
follows: let X = {x1, . . . , xn} ⊂ Rp be a finite set of feature vectors, where n is the
number of objects (measurements) and p is the number of original variables, xj

k =
[xj

1, x
j
2, . . . , x

j
p]T and L = (L1, L2, . . . , Ls) be a s-tuple of prototypes (supports)

each of which characterizes one of the s clusters; a partition of X into s fuzzy
clusters will be performed by minimizing the objective function [2]:

J(P, L) =
s∑

i=1

n∑

j=1

(Ai(xj))md2(xj , Li),

where P = {A1, . . . , As} is the fuzzy partition, Ai(xj) ∈ [0, 1] represents the
membership degree of feature point xj to fuzzy cluster Ai, m > 1 is the fuzziness
index, and d(xj , Li) is the distance from the feature point xj to the prototype of
the cluster Ai. If Li are defined as points in the Rp Euclidean space, the distance
d may be defined as the Euclidean distance.

According to the choice of prototypes and the definition of the distance measure,
different fuzzy clustering algorithms are obtained. If the prototype of a cluster is
a point — the cluster center — it will produce spherical clusters; if the prototype
is a line it will produce tubular clusters, and so on. Also, elements with a high
degree of membership in the i-th cluster (i.e. close to the cluster’s center) will
contribute significantly to this weighted average, while elements with a low degree
of membership (far from the center) will contribute almost nothing.

Due to the problem at hand, we will consider that the fuzzy set is characterized
by a linear prototype, denoted L(u, v), where v is the center of the class and u, with
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‖u‖ = 1, is the main direction. This line is also called the first principal component
of the set, and its direction is given by the unit eigenvector u associated with the
largest eigenvalue λmax of, for example, the covariance matrix C = (Cij), formed
by the elements

(7) Cij =

p∑

k=1

A(xk)m · (xk
i − x̄i) · (xk

j − x̄j)

p∑

k=1

A(xk)m

, i, j = 1, . . . , n.

where x̄i is the arithmetic mean of the i-th variable, m > 1 is the fuzziness
index. The settings above mean that the fuzzy set A is characterized by the
linear prototype PC1 produced considering the fuzzy covariance matrix C.

We wish to determine the particular membership degrees A(x) such that the first
principal component is best fitted along the items of the data set X. The algorithm
proposed in this paper is a natural extension of the Fuzzy 1-Lines Algorithm [5].

Let us denote by α the membership degree corresponding to the farthest outlier.
For the moment we consider that α is a value preset by the user. The membership
degrees A(x) will be produced using the following mechanism:

Algorithm Determine Fuzzy Memberships(α):
(1) Initialize A(x) = 1, for all x ∈ X;
(2) Determine the linear prototype L(u, v): u is the eigenvector correspond-

ing to the largest eigenvalue of the matrix C computed as in (7); v is
the weighting center of the fuzzy cluster A, weighted by the m-th power
of the membership degrees:

v =

n∑

j=1

A(xj)m · xj

n∑

j=1

A(xj)m

;

(3) Determine the new fuzzy membership degrees A(xj):

A(xj) =

α

1− α
α

1− α
+

(
d2(xj , L)

) 1
m−1

;

(4) if the new fuzzy set is close enough to the old one, then Stop and return
the new fuzzy set; else go to Step 2.

The algorithm suggested above depends on the input variable α. As opposed
to the general case, we now do have a way to determine the best value for α. Of
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course, we are interested to find fuzzy membership degrees that contribute to pro-
ducing a better fitted first principal component along the data set. But, since the
eigenvalue associated to a principal component describes the scatter of data along
that component, we are also interested in producing a first principal component
characterised by an eigenvalue that is as large as possible. As a consequence, we
will prefer that particular value of α that maximizes the eigenvalue associated to
the first principal component.

Because of the fact that we are interested in real-world applications of this
algorithm, an exact value of α is not required. Instead, we will simply work
through a loop between 0 and 1, with a step to be chosen by the user, and select
the value of α that maximizes our criterion. The produced algorithm follows:

Algorithm Determine Best Alpha():
(1) Initialize step as appropriate; initialize α0 = 0 and λ0 = 0;
(2) Set α = step, the first value to be considered;
(3) Call Determine Fuzzy Memberships(α) with the current value of α,

and determine the optimal fuzzy membership degrees A(x);
(4) Using the fuzzy membership degrees determined above, compute the

matrix C as in (7), and compute the eigenvalue λ corresponding to its
largest eigenvector (i. e. the first principal component);

(5) If λ > λ0 then set λ0 = λ and α0 = α;
(6) Increment α by step; if α < 1 then resume from Step 3; else stop, and

return α0 as the optimal value for α.
Now we have all the prerequisites for writing the algorithm. We will call this al-

gorithm Fuzzy (first component) Principal Component Analysis (FPCA):
Algorithm FPCA():

(1) Determine the optimal value of α by calling Determine Best Alpha();
(2) Call Determine Fuzzy Membership(α) with the value of α computed

above, and determine the optimal value of the fuzzy membership degrees;
(3) Using the fuzzy membership degrees determined above, compute the

matrix C as in (7), and compute its eigenvalues and eigenvectors; these
are the fuzzy principal components and the corresponding scatter values.

4. Experiments

We have selected for our experiments the set of 48 Roman pottery sherds pre-
sented in [1] and analysed in [4].

4.1. PCA on Roman pottery data. The principal components produced using
Classical PCA on Roman pottery data are depicted in Table 1, together with their
associated eigenvalues.

Based on these values, we build reduction coefficients corresponding to different
dimensionality reduction criteria. These reduction coefficients show the amount
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of original information explained by keeping only a limited number of variables or
principal components, and are depicted in Table 2.

Eigenvalue Eigenvector
3.04969 -0.288946 -0.523259 0.352801 0.32056 -0.410301 -0.466635 0.171429
2.13202 -0.250928 -0.0121934 0.450562 -0.49078 0.306824 -0.301171 -0.555131
0.906438 0.787617 -0.104202 0.285086 -0.320179 0.0265746 -0.278653 0.326587
0.530287 -0.206816 -0.336004 0.218458 0.0857632 0.715959 0.266077 0.453712
0.193831 0.0999946 0.550648 0.651976 0.491662 0.00155423 0.136672 -0.0360862
0.135622 0.421228 -0.496785 -0.0255271 0.402459 0.144139 0.209852 -0.590197
0.0521156 -0.0547764 -0.228659 0.343225 -0.377891 -0.451031 0.693099 0.0171312

Table 1. Loadings of the principal components and their asso-
ciated eigenvalues, for the classical PCA

Variables Eigenvalue Successive Proportion Cummulative
difference proportion

1 3.04969 0.917665 0.435669 0.435669
2 2.13202 1.22558 0.304574 0.740244
3 0.906438 0.376152 0.129491 0.869735
4 0.530287 0.336456 0.0757552 0.94549
5 0.193831 0.0582092 0.0276901 0.97318
6 0.135622 0.083506 0.0193745 0.992555
7 0.0521156 0.0521156 0.00744509 1
Table 2. Reduction coefficients for the classical PCA

4.2. Fuzzy PCA on Roman pottery data. The principal components pro-
duced using Fuzzy PCA on Roman pottery data are depicted in Table 3, together
with their associated eigenvalues. The optimal value of the α index has been
determined to be 0.01.

Based on these values, we build reduction coefficients corresponding to different
dimensionality reduction criteria. These reduction coefficients show the amount
of original information explained by keeping only a limited number of variables
or principal components, and are depicted in Table 4. The scores of the first two
principal components are displayed in Figure 1.

By comparing Tables 1 and 3, we remark a larger value for the first eigenvalue
as computed in the case of the Fuzzy PCA method. This shows an ability of the
Fuzzy PCA method to get a better fit for the first principal direction among the
data set.

A similar conclusion may be drawn by an analysis of Tables 2 and 4, with respect
to the different reduction coefficients. For example, the cummulative proportion
is 0.435669, 0.740244 and 0.869735 (for the first, the first two, and the first three
variables, respectively) in the case of classical PCA, and 0.952995, 0.967357 and
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Eigenvalue Eigenvector
5.10731 0.0282576 0.524877 -0.458777 -0.279638 0.299205 0.4783 -0.341669
0.076967 0.858295 0.0479117 0.181638 0.198671 0.0109479 0.128092 0.414782
0.0561507 -0.189394 -0.166621 0.0940642 0.121235 0.885688 0.0541047 0.354191
0.0439734 -0.396615 0.5612 0.0312381 0.267516 -0.267034 0.183698 0.591742
0.0311047 0.25096 0.592121 0.594966 -0.0673231 0.206804 -0.390974 -0.17963
0.0286412 -0.0314195 0.079254 -0.183425 0.877202 0.0802429 -0.0962796 -0.417007
0.0150737 0.0734132 -0.150373 0.599232 0.148506 -0.0734878 0.745667 -0.171598

Table 3. Loadings of the principal components and their asso-
ciated eigenvalues, for FPCA

Variables Eigenvalue Successive Proportion Cummulative
difference proportion

1 5.10731 5.03034 0.952995 0.952995
2 0.076967 0.0208163 0.0143616 0.967357
3 0.0561507 0.0121773 0.0104774 0.977834
4 0.0439734 0.0128687 0.00820519 0.986039
5 0.0311047 0.00246344 0.00580395 0.991843
6 0.0286412 0.0135676 0.00534429 0.997187
7 0.0150737 0.0150737 0.00281266 1

Table 4. Reduction coefficients for FPCA

0.977834 in the case of fuzzy PCA. This shows a better capability to concentrate
the more information in less principal components, for the case of fuzzy PCA.
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Figure 1. Scores of the first two principal components of Roman
pottery data using FPCA
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5. Conclusions

A fuzzy principal component analysis (FPCA) method for robust estimation of
principal components has been described in this paper. The efficiency of the new
algorithm was illustrated on a data set of 48 Roman pottery sherds. The FPCA
method achieved better results mainly because it is more compressive than classical
PCA. For the case of a two component model, FPCA accounts for 96.74% of the
total variance, and PCA accounts only for 74.02%. Since much more classical
principal components would be needed to account for the same total variance as
two fuzzy principal components, the fuzzy PCA becomes a much more desirable
data analysis tool.

This, together with a sharper data separation, encourages the further research
on fuzzy principal components analysis, as well as the fuzzification of other im-
portant data analysis techniques.
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