
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

FLOW IN NETWORK MODELING TIME TABLING AND
SCHEDULING PROBLEM

TEODOR TOADERE

Abstract. In this paper a new model for solving the Time Tabling and
Scheduling problem by determining the maximal flow in a specified trans-
portation network is proposed. This transportation network is also related to
an assignment problem where n-uples must be determined instead of pairs,
as with the classical assignment problem.

The network is based on a multipartite graph, whose set of vertices
is formed by the source, the sink and subsets with elements to be placed
in schedule. The subsets contain: the disciplines, the professors, the class
of learners (students, pupils, . . . ), the classrooms and time duration of the
activities.

1. Ford-Fulkerson algorithm

We suppose that the Ford-Fulkerson algorithm is well known but we will de-
scribe it in Pseudocode. For this purpose we will define the “ecarts” graph attached
to a transportation network from the source to the sink, and to a compatible flow.

As it is known, the flow φ in the network G = (X, U), is called compatible flow
if 0 ≤ φu ≤ cu, ∀u ∈ U .

Definition 1.1. Let G = (X, U) be a graph. To each compatible flow φ =
(φ1, . . . , φm)t the “ecarts” graph G(φ) = (X,U(φ)) is attached. The set of edges
(arrows) is built in the following mode: ∀u = (i, j) ∈ G, u+ = (i, j) ∈ U(φ) if
φu < cu and u− = (j, i) ∈ U(φ) if φu > 0. The capacities for edges are cu− φu for
u+ and φu for u−.

The capacities for edges from G(φ) are called residuals capacities. The capacity
(i.e. min

∑
e∈W c(e)) for each path w from G(φ) is called the path residual capacity.

The following result based on Ford-Fulkerson algorithm is well known. The
result may help us to find out a maximal flow in a transportation network.

Theorem 1.1. [1] Let φ̄ be a flow from the source s to sink t, in a transportation
network. Let G(φ) be, also, the attached “ecarts” graph. Then, the flow φ̄ is
maximal if and only if there is no path from source s to sink t, in G(φ).
Algorithm 1.1. Ford-Fulkerson algorithm. [2]:

2000 Mathematics Subject Classification. 05C38.
1998 CR Categories and Descriptors. G.2.2 [Mathematics of Computing] : Discrete

Mathematics – Graph Theory; Path and Circuit Problems.

39



40 TEODOR TOADERE

(a) Initializations;
k:=0;
Suppose φ0 a compatible flow, e.g. φ0 = (0, 0, . . . , 0).

(b) Halt criterium:
If ∃µk a path from s to t in G(φk)

Then goto (c)
Else stop; φk is optimal flow.

(c) Let ε be the residual capacity for µk;

φk+1
u =





φu + ε, u+ ∈ µk or u = 0
φu − ε, u− ∈ µk, for u ∈ U
φu, otherwise

k:=k + 1;
goto (b).

For the existence of µk, a path in the “ecarts” graph G(φk) and for its determi-
nation (and also for determination of the value of ε) we may use two procedures
[2]:

p1) From G(φk) a tree is built such that the root is s and the other vertices are
the vertices from G(φk) . We may use a procedure to mark the vertices and
then we may find out the residual capacity for a path form s.

p2) Without building the “ecarts” graph G(φk):
Each j ∈ X has a label (e1, e2, e3) such that: e1 ∈ X ∪ {0}; e2 ∈ {+,−};

e3 ∈ R+, with the following meaning:
• if e2 = + and e1 = i, then ∃u = (i, j) ∈ G and ∃µ ∈ G(φk), path from s

to j and the last edge is u+ = (i, j), its capacity is e3.
• if e2 = − and e1 = i, then ∃u = (j, i) ∈ G and ∃µ ∈ G(φk), path from s

to j and the last edge is u− = (i, j), its capacity is e3.

The source s is labeled with (0, +, maxint). The main iteration of this “labeled”
procedure consists in:

repeat
k:=0;
for each labeled i ∈ X do

if ∃j ∈ X (not labeled) such that u = (i, j) ∈ U and φu < cu,
then one assigns to j the label (i, +,min{e3(i), cu − φu}); k:=1;

endif;
if ∃j ∈ X (not labeled) such that u = (j, i) ∈ U and φu > 0,

then one assigns to j the label (i,−,min{e3(i), φu}); k:=1;
endif;

endfor;
until (t is labeled) or (k=0);

If t is labeled at the end of this algorithm then we find the path µk = (dp, dp−1, . . . , d1),
from s = dp to t = d1, using the values of e1. One starts from e1(t), so:



FLOW IN NETWORK MODELING TIME TABLING AND SCHEDULING PROBLEM 41

p := 1;
d1:= t;
while dp 6= s do

p:= p + 1;
dp:=e1(dp−1);

endwhile;
The final value of ε is equal to e3(t).
The other final condition, k = 0, shows us that there is no path in G(φk).

2. Flow in Network Modeling Time Tabling and Scheduling Problem

In few words the Time Tabling and Scheduling Problem is:
Data: • the set of disciplines;

• the set of professors;
• the set of classes of learners (students, pupils, . . . );
• the set of classrooms (rooms);
• the days and the time periods for activities planning;
• the dependences between the all five previous sets.

Requirements: A schedule than every element from every set must be
well found:
• all of disciplens must be planned;
• every professor can realize the weekly hours number;
• all of classes (students, pupils, . . . ) must be in schedule;
• all of rooms must be optimally used.

A schedule can be interpreted as a string of information (or as a database).
From it may be extracted:

• the schedule of all classes (students, pupils, . . . );
• the schedule of all professors;
• the schedule of all rooms.

A record (a position in this schedule) must contain: the date, the time, the
discipline, the room, the class and the professor.

Suppose that we can encode the time periods of a week. For example: suppose
that all activities (courses, seminars, laboratories, . . . ) last two hours (120 min-
utes). One can count the pair hours between 8 and 20 from Monday to Friday.
One count 5 days x 6 period = 30 values (the attribute Hour). On the other hand
the class of students, pupils, . . . can be encoded (the attribute Class). A similar
codification can be done for each discipline (the attribute Discipline). From each
pair Class-Discipline one identifies the professor.

This activity of making the schedule is modeling like a maximal flow problem
in a special graph. Than, the elements of the previous sets will be considered as
vertices. Will be five types of vertices:

• Disciplines;
• Professors;



42 TEODOR TOADERE

• Class (students, pupils, . . . );
• Rooms;
• Hours.

A record (a position in the schedule) can be interpreted as a path in this special
graph and contains vertices from every type.

The first proposed model attaches to the Time Tabling and Scheduling Problem
a multipartite graph. This graph has five partitions:

• the first partition contains the disciplines;
• the second partition contains the professors;
• the third partition contains the classes (students, pupils,);
• the fourth partition contains the classrooms;
• the final partition contains the hours.

In this case for each professor, each discipline, each class, each room there is a
corresponding vertex in that graph. For each hour (or two hours = 120 minutes)
we have a vertex in graph in the hours partition as, for example:

• Monday: the time 10-12 is labeled with 2;
• Wednesday: the time 14-16 is labeled with 16, and so on.

There will be 30 vertices (5 days x 6 periods of time / each day). If we would like
to solve the Time Tabling and Scheduling Problem for a school of pre-university
level one can consider 60 vertices for 60 hours (5 days x 12 periods of time / each
day).

The vertices with compatibilities with some activities will be connected. For
example, every discipline is taught by a subset of the set of professors, every
professor do some activities only with certain classes of students, every room must
be available at certain hours weekly.

In addition to the five partitions of vertices, we have two vertices: s for source
and t for sink. An example is shown in Figure 1.

Figure 1. A multipartite graph example



FLOW IN NETWORK MODELING TIME TABLING AND SCHEDULING PROBLEM 43

As we see, every discipline is connected to a subset of professors-vertices. For
example: discipline D1 can be taught only by professors P1 and P2; the capacity
value between vertices D5 and P4 is cD5P4 .

Every professor can teach a subset of classes of learners. For example: Professor
P4 may teach only classes C3 and C4; the capacity value between vertices P4 and
C4 is cP4C4 .

Every class of learners may carry its activities in certain rooms. For example:
C1 carries its activities only in R1 and R2. The capacity value between vertices
C4 and R3 is cC4R3 .

Finally, every classroom will be connected to the available hours. For example:
R1 is related to H1, . . . , H30; the capacity value between vertices R1 and H30 is
cR1H30 .

The source s is connected to every discipline-vertex and the sink t is connected
to every hour-vertex.

Denotation:
G = (V, E) – the network (the graph attached to the problem);

V – the set of vertices;
E – the set of edges;

R = (G, s, t, c) – the transportation network;
s – the source;
t – the sink;
c – c : E → R+, c(i) = the capacity of edge i, ∀i ∈ E.

The capacities will be built such that:

• if a professor P must teach c hours for a discipline D then the edge
between D and P has the capacity equal to c (cD,P = c);

• if a professor P must do c activity hours with a class C then the edge
between P and C has the capacity equal to c (cP,C = c);

• for every edges between a class C and a classrooms R, the capacity is at
least

∑
e∈Γ−1(C) c(e); the maximal may be either 30 or 60;

• the capacities attached to the edges between classrooms-vertices and
hours-vertices will be set to 1 or 2;

• every edge form source s to discipline D has the capacity cs,D equal to
the number of weekly-hours;

• the edges between every hour H and the sink vertex t have the capacity
cH,t = 1.

An example with one discipline (D1), two professors (P1, P2), two classes (C1,
C2), two classrooms (R1, R2) and three hours (H1, H2, H3) is depicted in Figure
2.

Every path from s to t may be a position in schedule because the path locates
the discipline, the professor, the class, the classroom and the time.

Now, for the schedule determination we solve the problem with Ford-Fulkerson
algorithm, by determining the maximal flow in the network R = (G, s, t, c). The
maximal flow between s and t is found out by successive selection of certain paths in



44 TEODOR TOADERE

Figure 2. A specific example

the ecarts graph. Every selected path from s to t is a position in the schedule. For
every edge of these paths, the capacity equals to the capacity minus the residual
capacity.

When obtaining the maximal flow in the schedule, all the schedule positions
have been set. Now the schedule is realized.

3. Conclusions and Improvements

By using the method presented above a schedule variation is determined, which
depends on the selection order of the path in the ecarts graph.

If an optimization of the produced schedule is needed, we suggest that to the
transportation network defined above some extra edges, called inhibitory edges,
should be added. These edges define the schedule restrictions, e.g. if a certain
professor is not available at specific hours, an inhibitory edge will be added be-
tween those professor-vertex and hour-vertex. As another example, if some classes,
some activities may not take place, an inhibitory edge will be added between the
corresponding vertices. When using the Ford-Fulkerson algorithm, the paths with
inhibitory edges will not be selected. Then, the network will be represented by
using the two types of edges, e.g. two adjacent matrices or a matrix with values
equal the edges capacity, or zero, if no edge exists, or -1 for an inhibitory edge.
Each solver may decide on the data representation of the network defined by the
model described for the scheduling problem.

References

[1] Ford, L.R. Jr., Network-flow theory, The Rand Corporation, 1956, pp. 293
[2] Toadere, T., Grafe: Teorie, algoritmi şi aplicaţii, Editura Albastră, Cluj, 2001

Department of Computer Science, “Babeş-Bolyai” University, 1 M. Kogălniceanu
St., RO-3400 Cluj-Napoca, Romania

E-mail address: toadere@cs.ubbcluj.ro


