
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

AN EFFICIENCY COMPARISON OF
DIFFERENT JAVA TECHNOLOGIES

FLORIAN MIRCEA BOIAN

Abstract. Java and related technologies are very used for distributed ap-
plications today. In this moment, there are many Java technologies using the
client-server paradigm. Among these, the following are the most important:
Common Gateway Interface (CGI) [4,7], Servlets/JSP [1,10,12], JavaSpaces
[1,5,6] and Enterprise Java Beans (EJB) [1,2,8]. To choose one of these for
solving a problem (to implement a distributed application), the performances,
rapid development and robustness are important criteria. In this paper, we
present a run-time performance comparison between these technologies.

1. Introduction

Platform independence is an important argument for using Java technologies
instead others, (for example Microsoft’s) distributed technologies. Each of the
CGI, Servlet, JavaSpaces and EJB technologies has specific characteristics and
implementation difficulties. Theoretically, they are, equivalent: every application
implementation using a technology, from one of above, can be (theoretically) im-
plemented using any of the other three technologies.

Of course, from practical point of view there are significant differences. The
design and coding effort is relatively reduced for CGI, a little bit more significant
for Servlet, a medium one for JavaSpaces and quite impressive for EJB. Taking
into account the robustness, security and reliability, we have a reverse order: in
the top is EJB; on last position is CGI. It’s a difficult, and almost an impossible
task, to analyse an compare these technologies in a global and unitary manner.
Our opinion is that one has to solve and implement a (some) application(s) using
each of the above technologies. Then, make a comparison and behavior analysis
of the implementations vis--vis to a (some) criterion(s).

In the present paper, we solve a unique problem: a counter. Four implementa-
tions were made: CGI, Servlet, JavaSpaces and EJB. For these implementations,
we analyse a single criterion: run-time aspect, both in the server part and client
part.

In the next section, the test problem is presented. In the following four sections,
the specific architecture and particularities for each implementation are presented.

2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organizations]:

Computer-Communication Networks – Distributed Systems.

29

30 FLORIAN MIRCEA BOIAN

In the last section, some numerical results, comparison between these implemen-
tations and some conclusions are presented.

2. The experiment problem: a counter

Most programs for Internet applications are designed using the client / server
paradigms and their extensions [3,9]. For our experiments, we use some counter
implementations. Particularly, in Internet there are many counters. For example,
many Web pages have counters for measuring the total number of accesses to them.
The systems for voting popularity pages are based also to counters.

For our purpose, a counter is a pair of the following form:

(name, value),

where name is a string – the name of the counter – and value is the value of the
counter – a positive integer.

There are two operations, defined as follows (like Java method prototypes):
void counterInit(String name, int initValue);

int counterAccess(String name);

counterInit creates the counter name and sets its initial value to intValue.
counterAccess increments, for the counter name, the current value and returns
it. Usually, the arithmetic overflow is ignored.

The distributed counter architecture is presented in Figure 1.

Figure 1. Distributed counter

We adapt the counter implementation so that we obtain the run-times per
operation, for client and for server. In the first step, the client invokes the server
to create the counter. For our goals, the counterAccess returns the run-time –
in milliseconds.

The algorithm for the main step, in both the client and server, is presented in
Table 1.

The experiment, for each technology, uses two hosts, the same for all technolo-
gies: one for the client – only one – and the other for the server. The above
algorithms run, without interrupt and without sleeps, waits and so on, for few
hours. The connection between hosts was made directly, without any gateways,
proxy-s or other related entities. The hosts were run only necessaries services for
the experiment.

From time to time, the client saves on a local file, the following information
(times are in milliseconds):

• average server time for a counterAccess;

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 31

Table 1

Client Server

for (; ;) { // loop forever

ti = theCurrentTime
connect to server

ts = counterAccess

close connection
tf = theCurrentTime

use ti, ts, tf for statistics
save, from time to time
the intermediate statistics
on a local file

}

for (; ;) { // loop forever

wait for connection
ti = theCurrentTime

open access from counter
access the counter from the

external support
increment the value
save the counter to this

external support
close access to counter

tf = theCurrentTime
return (tf - ti)

}

• average client time for a counterAccess;
• maximum server time for a counterAccess;
• maximum client time for a counterAccess;
• minimum server time for a counterAccess;
• minimum client time for a counterAccess;
• total server time spend for all counterAccess;
• total client time spend for all counterAccess;
• total connected time for client: the above time plus the time spent for

computed statistics and save intermediate results;
• total number of connections.

The code sources used in the experiment can be accessed at the home page
of the author: http://www.cs.ubbcluj.ro/∼florin. For a uniform approach,
and independently of technology, the clients are Java standalone applications, of
course, very similar.

The client runs under Windows 2000 Pro, using an AMD K7 (Athlon) at 1GHz,
with 512RAM. The server runs under Linux RedHat 7.2, also an AMD K7 (Athlon)
at 1GHz, with 512RAM.

3. CGI: features and specifics

The Common Gateway Interface (CGI) [4,7] is a standard for interfacing exter-
nal applications with information servers, such as HTTP or Web servers. A plain
HTML document that the Web daemon retrieves is static, which means it exists
in a constant state: a text file that doesn’t change. A CGI program, on the other
hand, is executed in real-time, so that it can output dynamic information. Since

32 FLORIAN MIRCEA BOIAN

a CGI program is executable, it is basically the equivalent of letting the world run
a program on your system, which isn’t the safest thing to do. Therefore, there are
some security precautions that need to be implemented when it comes to using
CGI programs. Probably the one that will affect the typical Web user the most is
the fact that CGI programs need to reside in a special directory, so that the Web
server knows to execute the program rather than just display it to the browser.
This directory is usually under direct control of the webmaster, prohibiting the
average user from creating CGI programs. Interested reader can find details about
CGI in [4,7].

For our experiment, the CGI architecture is presented in Figure 2.

Figure 2. CGI architecture

The java standalone client sends to the CGI, using URLConnection, the name
of the file using the POST method.

The CGI program was developed in ANSI C. For each connection, it opens the
(binary) file name having only 4 bytes, in fact an int. Then it reads the value,
increments it, rewrites it again and then close the file.

The response is a Content-type: text/plain and is the server time, in ASCII
form.

4. Servlet: features and specifics

Servlets are the answer of Java technology’s to CGI programming [1,10,11,12].
They are programs that run on a Web server and build Web pages. Java servlets
are more efficient, easier to use, more powerful, more portable, and cheaper than
traditional CGI and than many alternative CGI-like technologies.

As known, for using servlets, a servlet container is necessary. We use the Tomcat
container - today a reference servlet container (and free distributable and license
free).

For our purposes, only a simple architecture is necessary, so we use only the
web facilities offered by the Tomcat 4.x version. Of course, for an important and
consistent application, the interfce between Tomcat and Apache Web server must
be use.

For our experiment, the Servlet architecture is presented in Figure 3.
The java standalone client sends to the servlet, using URLConnection, the name

of the file using the POST.
The servlet implements the doPost method. Using the HttpServletRequest

parameter, the name of the counter is obtained, reading an object String. For
each connection, as in the case of CGI, does it open the (binary) file name having
only 4 bytes, in fact an int. Then reads the value, increments, rewrites again and
then closes the file.

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 33

Figure 3. The servlet architecture

The response is a Content-type: application/octet-stream. It contains the
serialization form for an Integer object, having the server time in it.

5. JavaSpaces: features and specifics

An important class of distributed applications is based on the JINI technology.
JINI is the Sun’s solution for creating common, everyday, networking appliances
that just “plug and work”. Fundamentally, JINI is using in an extensive manner
the RMI (Remote Method Invocation) [1,12] Java technology. A programming
model/infrastructure JINI enables building/deploying of distributed systems or-
ganized as federations of services. A service can be a hardware or software com-
ponent, a common channel, a user, a disk drive which can offer a storage service
and so on. Once part of a federation, a service can be used by other services or
clients

An important particular application of JINI is JavaSpaces [5].
A JavaSpaces server is called space, and holds entries (typed groups of objects)

in it. A distributed Java Spaces application has a space, and a lot of clients that
access this space. There are three main operations over space:

write: put an object in space using a special Entry object - a container
for the objects from space;

read: get a copy for an object from space. Look it up using template
entries, using fields with values (exact matching) and null for wildcards.
The object is found by associative methods. If such an object is not in
the space, the client waits until such object put in the appearance in the
spaces.

take: similar with read, find an object from space and move the object
from space into the client program.

Therefore, an elegant paradigm for distributed programming and concurrent
programming is provided. All operations are transaction security. Entries written
to a space are leased (using JINI leasing). For short, a JavaSpaces acts as a “shared
memory” for distributed processes. We can preserve any kinds of objects in space,
with elaborate “data structures” in them.

For our experiment, the java source of the objects from the spaces is defined as
follows:

public class ObjectCounter implements Entry {
public String name;
public Integer counter;

34 FLORIAN MIRCEA BOIAN

public ObjectCounter() {
}//ObjectCounter.ObjectCounter
public ObjectCounter(String name) {

this.name = name;
}//ObjectCounter.ObjectCounter
public ObjectCounter(String name, int counter) {

this.name = name;
this.counter = new Integer(counter);

}//ObjectCounter.ObjectCounter
public Integer increment() {

this.counter = new Integer(counter.intValue() + 1);
return counter;

}//ObjectCounter.increment
}//ObjectCounter

The ObjectCounter() is mandatory for JavaSpaces Technology. The method
ObjectCounter(String name, int counter) is used for the init part and the
method ObjectCounter(String name) is repeatedly used for take and rewrite
objects in the space. The JavaSpaces architecture for this application is presented
in Figure 4.

Figure 4. The JavaSpaces architecture

The time for a client access includes the operations setSecurityManager, con-
struct a LookupLocator object, define a ServiceRegistrar object and lookup
the space object. (For details, see [1,6]).

After that, we consider part of the server time, and its current standalone
actions are:
template = new ObiectContor(NameOfTheCounter);
counter = (ObjectCounter)space.take(template, null, Long.MAX_VALUE);
Integer i = counter.increment();
space.write(counter, null, Lease.FOREVER);

6. EJB: features and specifics

Enterprise JavaBeans (EJB) [2,8,12] are a container-based component architec-
ture that allow you to easily create secure, scalable and transactional enterprise
applications. Developed as session beans, entity beans, or message-driven beans,
EJBs are the critical business objects in any J2EE application. The 2.0 version of
the specification for EJB introduces important improvements to the bean-managed
(BMP) and container-managed (CPM) models for entity persistence.

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 35

Our experiment uses the 2.0 CPM model for the counter implementation. The
important parts of the Java source excerpt are given below. Firstly, the remote
interface is:

import javax.ejb.*;
import java.rmi.*;
public interface Counter extends EJBObject {

int increment() throws RemoteException, FinderException;
}//Counter

The home interface is:
import java.io.*;
import java.rmi.*;
import javax.ejb.*;
public interface CounterHome extends EJBHome {

Counter create(String name, int value)
throws RemoteException, CreateException;

Counter findByPrimaryKey(String name)
throws RemoteException, FinderException ;

}//CounterHome

The main part of the Entity bean is:
import javax.ejb.*;
import java.rmi.*;
public abstract class CounterBean implements EntityBean {

private EntityContext context;

public abstract String getName();
public abstract void setName(String name);
public abstract int getValue();
public abstract void setValue(int value);

public int increment() throws RemoteException, FinderException{
long ti = System.currentTimeMillis();
int i = getValue();
setValue(i+1);
return((int)(System.currentTimeMillis()-ti));

}//CounterBean.increment

- - - - - - - - - - - - - -

}//CounterBean

The main part of the standalone client is:
- - - - - - - - - - - - - -

Context initial = new InitialContext(env);
Object ref = initial.lookup("aliasCounter");
CounterHome counterHome = (CounterHome) PortableRemoteObject.narrow(

ref, CounterHome.class);
Counter counter = counterHome.findByPrimaryKey("nameOfCounter");
ts = (long)counter.increment();

- - - - - - - - - - - - - -

36 FLORIAN MIRCEA BOIAN

The EJB architecture for this application is presented in Figure 5.

Figure 5. The EJB architecture

7. Time comparisons

For comparing these technologies, from the run-time point of view, we made
many experiments. At http://www.cs.ubbcluj.ro/∼florin there is an archive
with files having results and program sources. CGI, Servlet and JavaSpaces, codes
run in the same conditions, for about 8 hours. EJB was experiment only for 1
hour.

In the following table, we present the run-times after run about 1 minute, 10
minutes, 30 minutes, 1 hour, 4 hours and 8 hours. After each 1000 tests, the client
programs verify if the moments of saving results appeared or not. For this reasons,
the times for total connections have some differences between our intention to save
the results and the real moments to save.

Min. Parameter CGI Servlet JavaSpaces EJB
1 TotalClient

TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

132901
9671
10
0
410
398
14
1
9000
132941

130338
93260
0
0
231
153
14
10
9000
130398

151057
72045
30
20
540
160
50
24
3000
151067

256569(43171)
20(22)
161(80)
0(0)
1092(571)
10(4)
256(43)
0(0)
1000(400)
256579(43612)

10 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

663214
65752
10
0
611
597
15
1
44000
663354

670645
471949
0
0
250
173
13
9
49000
670805

694078
311208
30
10
2974
230
53
23
13000
694178

705275
60
150
0
1092
10
235
0
3000
705305

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 37

30 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

1868597
266662
10
0
881
857
15
2
117000
1868817

1863150
1310745
0
0
251
246
13
9
136000
1863500

1892922
855115
30
10
2974
390
54
24
35000
1893102

2068375
201
150
0
1742
11
229
0
9000
2068465

60 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

3672722
433542
10
0
982
961
15
1
234000
3673022

3670319
2611931
0
0
321
311
14
10
260000
3670959

3682746
1656224
30
10
3025
390
54
24
67000
3682996

3745356
351
150
0
2674
11
234
0
16000
3745536

240 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

14460504
2015054
10
0
1001
984
16
2
903000
14461685

14458049
9953004
0
0
401
311
13
8
1111000
14460173

14475715
6532319
30
10
3085
421
54
24
264000
14476456

480 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

28558686
3223970
10
0
1001
984
15
1
1839000
28865617

22400298
14725660
0
0
6399
6390
13
9
1625000
29642314

28861269
12946711
30
10
3085
3034
54
24
527000
28862612

However, EJB performance is very dependent on the underlying configuration.
For example, informal tests (http://www.JBoss.org) show that on the same PC
box, it can run twice as fast under Windows 2000 / Sun JVM than under Linux 2.2
/ Sun JVM. Linux users probably already know that linux does not support real

38 FLORIAN MIRCEA BOIAN

threads. Under heavy load, JBoss will for example crash with 200 concurrent users
under linux, whereas it can handle 1000 of them on the same box with Windows
2000. Of course, if you use Apache or Jetty in front of JBoss to handle the thread
pooling, this will not be a problem.

In our experiment, EJB randomly crashes on Linux, between 100 to 400 tests.
In the first cell from EJB in the above table, we write in brackets, our results after
400 tests.

The main parameter in which we are interested is the average time client. From
this point of view, our conclusion is:

• For this kind of applications, the Servlet technology is optimal. We
consider that 13 millisecond is a good average time client.

• The CGI technology have a nearly performance, 15 millisecond is a value
nearly of the Servlet technology. The difference is due to the fact that
CGI uses much more system resources than Servlet [10].

• JavaSpaces is an elegant solution, but its performance is about 3 times
sluggish than Servlet and CGI technologies.

• EJB technology is a robust one, but only if it use a professional EJB
server (as JBoss or BEA for example) with a professional operating sys-
tem (as Solaris, for example).

Thus, for simple distributed applications, with very frequent rate of use but with
simple security restrictions we recommend to the use a Servlet or CGI technologies.
JavaSpaces and EJB are recommended to be use only for large applications, with
a medium frequency of use and with high security and transactional restrictions.

References

[1] Ayers D. et. al. Professional Java Server Programming Wrox Press, 1999
[2] Bodoff S. et.al. The J2EE Tutorial. Sun Microsistems, 2001
[3] Boian. F.M. Distributed programming in Internet (Romanian) Blue ed. Cluj, Romania, 1998
[4] Breedlove et. al. Web Programming Unleashed. Sams.het, 1996, http://sams.mcp.com
[5] Edwards W.K Core Jini. Prentice Hall, 1999
[6] Halter S.L. JavaSpaces Example by Example. Prentice Hall, 2002, http://www.phptr.com
[7] Kim E. et. al. CGI Programming Unleashed. Sams.het, 1996, http://sams.mcp.com
[8] Roman E. Mastering Enterprinse JavaBeans and the Java 2 platformWilley, 1999
[9] Umar A. Object Oriented Client / Server Internet Environments. Prentice Hall, 1997

[10] * * * http://http://www.coreservlets.com
[11] * * * http://jakarta.apache.org
[12] * * * http://java.sun.com/

University ”Babeş-Bolyai”, Cluj-Napoca, Romania
E-mail address: florin@cs.ubbcluj.ro

