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A REINFORCEMENT LEARNING INTELLIGENT AGENT

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about
his performance. In this paper we design an Intelligent Agent who learns
(by reinforcement) to play the ”Game 21”, a simplified version of the game
”Black -Jack”. The algorithm used for training the agent is the SARSA
algorithm.
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1. Intelligent agents

An agent [1] is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actions. One of the
task of an agent is to assist the user, achieving tasks in his place, or teaching the
user what he should do. An agent is characterized by:

• the architecture part, or the agent’s behavior - the action performed after
any given sequence of percepts;

• the program part, or the agent’s built-in part - the internal functionality
of the agent.

The aim of Artificial Intelligence is to design the agent program: a function
that implements the agent mapping from percepts to actions.

So, an artificial intelligent agent should be endowed with an initial (built-in)
knowledge and with the capability of learning. The learning capability ensures the
agent’s autonomy - the capability of deducing his behavior from its own experience.

An intelligent agent has a utility function, which measure the performance of
the agent’s actions. The utility is a function that associates a real number to an
agent’s state, as a measure of the state’s degree of success (a state preferred by
the agent in comparison with others has a bigger utility function).
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As a conclusion, the intelligence of an agent is included in his program part.
At a given moment, the agent will choose the best way of action, as he was pro-
grammed to do it. In situations in which the program has incomplete information
(knowledge) about the environment in which the agent acts and lives, learning is
the only way for the agent to acquire the knowledge he needs in order to achieve
his task.

So, an important task is to design the program part of an intelligent agent, and
even more, to implement the capability of learning.

2. Reinforcement Learning

Reinforcement Learning (RL) [3] is an approach to machine intelligence that
combines two disciplines to solve successfully problems that neither discipline can
address individually: the fields of dynamic programming and supervised learning.
In RL, the computer is simply given a goal to achieve. The computer then learns
how to achieve that goal by trial-and-error interactions with its environment.

A reinforcement learning problem has three fundamental parts [3]:
• the environment - represented by ”states”. Every RL system learns a

mapping from situations to actions by trial-and-error interactions with
a dynamic environment. This environment must at least be partially
observable by the reinforcement learning system;

• the reinforcement function - the ”goal” of the RL system is defined us-
ing the concept of a reinforcement function, which is the exact function
of future reinforcements the agent seeks to maximize. In other words,
there exists a mapping from state/action pairs to reinforcements; after
performing an action in a given state the RL agent will receive some
reinforcement (reward) in the form of a scalar value. The RL agent
learns to perform actions that will maximize the sum of the reinforce-
ments received when starting from some initial state and proceeding to
a terminal state.

• the value (utility) function - explains how the agent learns to choose
”good” actions, or even how we might measure the utility of an action.
Two terms were defined: a policy determines which action should be
performed in each state; a policy is a mapping from states to actions.
The value of a state is defined as the sum of the reinforcements received
when starting in that state and following some fixed policy to a terminal
state. The value (utility) function would therefore be the mapping from
states to actions that maximizes the sum of the reinforcements when
starting in an arbitrary state and performing actions until a terminal
state is reached.

In a reinforcement learning problem, the agent receives a feedback, known as
reward or reinforcement; the reward is received at the end, in a terminal state, or
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in any other state, where the agent has correct information about what he did well
or wrong.

2.1. Q-learning. Q-learning [3] is another extension to traditional dynamic pro-
gramming (value iteration) and solves the problem of the non-deterministic Markov
decision processes, in which a probability distribution function defines a set of po-
tential successor states for a given action in a given state.

Rather then finding a mapping from states to state values, Q-learning finds a
mapping from state/action pairs to values (called Q-values). Instead of having
an associated value function, Q-learning makes use of the Q-function. In each
state, there is a Q-value associated with each action. The definition of a Q-value
is the sum of the (possibly discounted) reinforcements received when performing
the associated action and then following the given policy thereafter. An optimal
Q-value is the sum of the reinforcements received when performing the associated
action and then following the optimal policy thereafter.

If Q(a, i) denotes the value of doing the action a in state i, R(i) denotes the
reward received in state i and Ma

ij denotes the probability of reaching state j
when action a is taken in state i, the Bellman equation for Q-learning (which
represents the constraint equation that must hold at equilibrium when the Q-
values are correct) is the following [1]:

(1) Q(a, i) = R(i) +
∑

j

max
a′

Q(a′, j)

or, equivalently

(2) Q(a, i) = R(i) + γ ·max
a′

Q(a′, j)

The temporal-difference approach requires no model of the environment, so the
update equation for TD Q-learning is:

(3) Q(a, i) = Q(a, i) + α(R(i) + max
a′

Q(a′, j)−Q(a, i))

which is calculated after each transition from state i to state j, and α ∈ [0, 1] is
called the learning rate.

2.2. Selection mechanisms. In this subsection we present two of the simplest
action-selection mechanisms (policies).
The Greedy and ε-Greedy policy. One of the simplest action-selection mechanism
is the Greedy mechanism and its extension ε -Greedy. This mechanism operates
this way:

• chooses the action with the maximum value Q(s,a), with the probability
1 - ε, if it exists;

• otherwise, chooses a random action.
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The ε-Greedy methods are better than Greedy methods, because they allow
exploration and continue to improve their chances for recognizing the optimal
actions. The SoftMax policy. In a SoftMax policy, at the t-th game, action a will
be chosen with the probability:

(4)
e

Qt(a)
τ

∑n
b=1 e

Qt(b)
τ

where τ is a positive parameter called temperature. The high temperatures
make almost all actions to be equal-probable.

Low temperatures make a bigger difference between the selection probabilities
of actions. At the limit, when τ → 0, the SoftMax action selections behave like
Greedy action selections.

2.3. The SARSA Algorithm. SARSA is a reinforcement Q-learning algorithm,
which combines the advantages of Temporal difference learning and Monte Carlo
learning methods.

From the TD methods, the algorithm takes the advantage of learning at each
step, instead of waiting the end of an episode. From the Monte Carlo methods,
SARSA takes the advantage of going back and using the rewards obtained in
each state in order to update the values of the previous action-state pairs and
the capacity of functioning without the model of the environment in which the
learning takes place [4].

The idea of the SARSA algorithm [2]is to apply the Temporal Difference meth-
ods to the state-action pairs, in comparison with the classical methods, where this
methods are applied only to the states. So, the update equation for the action-state
pairs will be :

(5) Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

This update is done after every transition from a nonterminal state st. If st+1

is terminal, then Q(st+1, at+1) is defined as 0. This rule uses every element of
the quintuple of events, st, at, rt+1, st+1, at+1, that make up a transition from one
state-action pair to the next. This quintuple gives rise to the name SARSA for
the algorithm.

The convergence properties of the SARSA algorithm depends on the nature
of the policy’s dependence on Q (one could use ε-Greedy or SoftMax policies).
SARSA converges with probability 1 to an optimal policy and action-value function
as long as all state-action pairs are visited an infinite number of times and the
policy converges in the limit to the Greedy policy.

The general form of the SARSA algorithm is given in Figure 1.
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Initialize Q(s, a) arbitrarily
Repeat(for each episode)

Initialize s
Choose a from s using policy derived from Q(ε-Greedy, SoftMax)
Repeat(for each step of the episode):

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q(ε-Greedy, Soft-
Max)

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s → s’;
a → a’;

until s is terminal

Figure 1. The SARSA Algorithm

3. The application “Agent 21”

3.1. General presentation. In this section we describe an Intelligent Agent
which learns by reiforcement to play the ”Game 21”. We propose a game with
two players: a dealer (which shares the cards) and an agent, in fact the computer
(which uses the SARSA algorithm for learning the game’s rules and which plays
against the dealer). The agent tries to win, obtaining a score (the sum of the
cards’ values) less or equal than 21, but greater than the dealer’s score.

The probabilistic nature of this game make it an interesting problem for testing
the learning algorithms, even if the learning of a good playing strategy is not
obvious.

Learning from a teacher (the supervised learning) is not useful in this game,
as the output data for a given state are unknown. The agent has to explore
different actions and to develop a strategy by selecting and retaining the actions
that maximize his performance.

The purpose of this application is to study the behavior of an agent, which
initially doesn’t know neither the rules nor the game’s goal, and to follow the way
for assimilating this goals.

After learning, the agent (the computer) wins about 54% of the games. This is
due to the fact that the ”Game 21” is a random game. The agent tries to manage
as well as he can with the cards received from the dealer.
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As an observation, even if the game has a strong probabilistic characteristic,
after the training rounds the agent plays approximately identically or maybe even
better than a human player (which has a random playing strategy).

3.2. The application. The application is written in Visual Basic 6.0 and has two
parts:

• Learning, which trains the agent using the SARSA algorithm. Before
starting the learning process, the user can select:

– the number of episodes of the agent’s training and the number of
games per episode;

– the rewards obtained by the agent when he wins or looses, the values
for α and γ (the step size and the reducing factor from the basis
equation of the SARSA algorithm);

– the selection mechanisms (ε-Greedy or SoftMax). After the learning
process, the user can see a graphic that contains the percentage of
the games that the agent won and the values of the action-state
pairs.

• Game, which simulates the game between the agent and the dealer. Be-
fore starting the game, the user can select the score at which the dealer
stops, the strategy used by the agent. If the learning took place, the
current strategy can be selected and the agent will use the experience
from the training games, otherwise a random strategy can be selected
and the agent will play randomly.

3.3. The Agent’s design. The basis classes used for implementing the agent’s
behavior are the following:

• CGame - contains functions for starting the game, for calculating the
points, calls the functions for design the cards on the game table and at
the end of the game displays if a player wins or looses;

• CPlayer - contains the settings for the players: for the computer adds
the current strategy. In this class are called the functions for designing
the cards on the game table, for calculating the score. The main method
of the class is ComputerPlay, which implements the game function for
the computer;

– the computer applies the selected strategy. If the agent has gone
through all the training rounds, he will use his experience and will
apply the strategy used in the training rounds (ε-Greedy or Soft-
max).

• CPlayers - is the class for creating the players and setting the game
strategy for the dealer and the computer;

• CReinforcementLearning - the main class of the agent which imple-
ments the SARSA algorithm. Here the learning function for the agent is
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implemented and the estimation function is updated. The main method
is Learn.

The learning strategy is very conservative: it stops if the score is greater then
11. Anyway, it is very interesting that the algorithm determines such a threshold
without knowing the game’s rules or it’s goal (only from experience and from
the obtained rewards). In fact, the SARSA agent learns to continue (to ask for
one more card) only if he is sure that this will not make him to loose. The
agent discovers from experience the double value of the ace, which determines the
following strategy: continues if the score is lower than 11 or he has an ace; stops
in all the other situations.

Figure 2

3.4. Experiment. Using the application “Agent 21” we accomplish the training
of the agent for the following settings:
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• α = 0.01;
• γ = 0.9;
• the reward for winning the game = 1;
• the reward for loosing the game = -1;
• number of episodes = 500;
• number of games/episode = 100.

Figure 3. The game table with the agent’s training

During the learning process, the agent wins 27188 games and loses 22812 games,
that is a percentage of 54.376% of the won games. The graphic that contains the
percentage of the games that the agent won during the learning is shown in Figure
2.

After the training took place, the agent uses his experience and wins about 50%
of the the games (Figure 3).
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Without training (with a random strategy), the agent won about 30% of the
games (Figure 4).

Figure 4. The game table without the agent’s training

4. Conclusions

The agent implemented using the SARSA algorithm in the ”Game 21” uses
an optimal strategy. These allows him to win about 50% of the games, because
of the strong random characteristic of the game. Knowing that, using a random
strategy, the computer wins only about 30%, it’s easy to notice the intelligence
degree obtained by the agent after learning. However, if a human player and an
agent, who assimilated the optimal strategy, play against the dealer, it can be
observed that the number of the games won by the human player is approximately
equal to the number of the games won by the agent.
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Anyway, Reinforcement Learning represents an important way for improving
the performance and the behavior of an Intelligent Agent.
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