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NUMERICAL SOLUTION OF THE DELAY DIFFERENTIAL
EQUATIONS BY NONPOLYNOMIAL SPLINE FUNCTIONS

V. A. CĂUŞ AND G. MICULA

Abstract. In this paper the nonpolynomial spline function to approximate

the solution of the delay differential equations is constructed. The stability

and the convergence of the nonpolynomial spline algorithms are also investi-

gated.
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1. Introduction

The delay differential equations provide realistic models for many phenomena
arising in applied mathematics. As known, delay differential equations can be
used for the modeling of population dynamics, the spread of infections diseases,
two-body problems of electrodynamics, etc.

Delay differential equations, or generally functional differential equations have
been extensively studied in the past decades, especially as models to describe many
physical and biological systems. Although, there exist several methods to solve
numerically the delay differential equations, most of them cannot handle some
difficulties properly. At the same time spline functions have steadily advanced to
the front position as a very useful tool in general for the approximate the solutions
of nonlinear differential, integral and partial differential equations, and particularly
of the modified argument differential equations.

Comprehensive bibliography of published papers in this field (see [15]) and
especially the reference therein.

The aim of this paper is to propose an alternative approximate method for the
numerical solution of the delay differential equation problem and to introduce a
new approach to the stability analysis of the nonpolynomial spline approximate
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solution. We will only consider in this paper the following scalar delay differential
equation problem:

ý(t) = f(t, y(t), y(g(t))), t ∈ [0, T ]

y(t) = ϕ(t), ý(t) = ϕ́(t), t ∈ [α, 0], α < 0(1)

Several other methods for such delay differential equation problems have been
proposed and their convergence has been investigated. For example, Oberle and
Pesch [16] investigated the convergence of a numerical method for a constant delay
g(t) = t − h, Bellen and Zennaro [4] investigated the convergence of a numerical
method for time dependent delay, Tavernini [18], Arndt [2], Feldstein and Neves
[8], Karoui and Vaillancourt [12, 13] and Baker and Paul [3] investigated the con-
vergence of a numerical methods for state dependent delay differential equations.
Jackiewicz [9, 10, 11] investigated the convergence of numerical method for time
dependent delay of neutral delay differential equations. Recently, Enright and
Hayashi [7] gave a very deep investigation of the convergence analysis of the solu-
tion of retarded and neutral delay differential equations by continuous numerical
method.

We assume the existence, uniqueness and stability of the solutions to the math-
ematical problem under consideration. For example, sufficient conditions for the
existence and uniqness of solution to the delay differential equation problem (1)
are:

-f is continuous with respect to t, y(t), y(g(t)),
-y(t) is continuous,
-f satisfies a Lipschitz condition in the last two argument,
-ϕ is continuous and
-f is bounded (see Driver[6]).
We suppose here that f ∈ Cr([0, T ]×R2, R) for a given natural number r ∈ N

and we shall introduce the nonpolynomial spline function space of degree m ∈ N

denoted by Sm(∆), in which we shall find an approximate solution for the problem
(1). It will be shown that our approximating method is a one-step method and
the order of the method is O(hβ+r+m) in y(q), (q = 0, 1, ..., r + 1), 0 < β ≤ 1.

Here m is an arbitrary positive integer, which in fact indicates the number of
iteration processes in the method that describes the spline function.

Assume that f satisfies the following Lipschitz condition:

(2)
∣∣∣f (q)(t, u1, v1)− f (q)(t, u2, v2)

∣∣∣ ≤ L [|u1 − u2|+ |v1 − v2|]
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where (t, u1, v1), (t, u2, v2) ∈ [0, T ]×R2.

The continuity of f and the Lipschitz condition (2) guarantee the existence and
uniqueness of the solution y : [α, T ] → R of problem (1).

Assume that the delay function g satisfied the condition g(t) ≤ t, t ∈ [α, 0] and
the jump discontinuities to be known for sufficiently high-order derivatives of y

and are given in the form:

(3) ∆ : ξ0 < ξ1 < ... < ξM

We will construct a nonpolynomial spline function s : [0, T ] → R in such a way
that on each interval [ξk, ξk+1] s be a nonpolynomial spline function.

We will use a collocation method of the order O(hβ+r+m) in f (q), q = 0, 1, ..., r+
1. The function f (q), q = 0, 1, ... is a function of the variables t, y(t) and y(g(t))
and it will be obtained from the following algorithm:

If we denote f (0) := f (t, y(t), y(g(t))) , then for all q = 0, 1, 2, ...

(4) y(q+1) :=
dqf

dtq
:= f (q) :=

∂(q−1)f

∂t
+

∂(q−1)f

∂y(t)
· f +

∂(q−1)f

∂y(g(t))
· ∂y(g(t))

∂g(t)
· ∂g(t)

dt

can be used as a recurrence formula. Let us consider the first interval [ξ0, ξ1]
which is [0,ξ1] and the uniform partition of this interval

(5) ξ0 = t0 ≤ t1 ≤ ... ≤ tm−j+1 ≤ ... ≤ tm ≤ ξ1

Choosing a sufficiently large arbitrary positive integer m, let us define the non-
polynomial spline functions s, which approximate the solution y of (1)

(6) s(t) := s
[m]
k (t) +

∫ t

tk

f [t1, s
[m−1]
k (t1), s

[m−1]
k (g(t1))]dt1

on the subinterval tk ≤ t ≤ tk+1, (k = 1, 2, ..., n− 1) such that
s
[m]
−1 (t0) = ϕ(t0), s0(g(t)) = ϕ(g(t)), and s0(t) = ϕ (t) , t ∈ [α, 0]

Define the nonpolynomial spline function s0 approximating the solution y of
(1), on the first interval I1 : [t0, ξ1] by

(7) s0 (t) = ϕ (t1) +
∫ t

t0

f(t1, ϕ[j−1] (t1) , ϕ[j−1](g(t1)))dt1

Associating the following m iteration processes
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(8) s1 (t) = s
[m]
0 (t1) +

r∑

j=0

(t− t1)
j+1

(j + 1)!
f (j)(t1, s

[m]
0 (t1), s

[m]
0 (g(t1)))

Let us denote the nonpolynomial spline function by sk, sk ∈ Sm, which is ap-
proximating the solution on the interval Ik : [ξk−1, ξk]. sk is a nonpolynomial
spline function such that sk : [ξk−1, ξk] → R. In a similar manner, following the
introduced procedure one can easily construct spline functions on each subinterval
Ik : [ξk−1, ξk].

sk(t) = sk−1(tk) +

+
∫ t

tk−1

f(tm−j+1, s
[j−1](tm−j+1), s[j−1](g(tm−j+1)))dtm−j+1(9)

and

(10) sk(t) = s
[m]
k−1(t) +

r∑

j=0

(t− tk)j+1

(j + 1)!
f (j)(tk, s

[m]
k−1(tk), s[m]

k−1(g(tk))),

for (k = 0, 1, ..., n− 1).
We call the space Sm(∆) ={s :there exists polynomials, s0, s1, ..., sn such that

s(x) = si(x) for x ∈ Ii, (i = 1, 2, ...) and Djsi−1(xi) = Djsi(xi) for j = 0, 1, 2, ....}
Here the derivatives s(j) are left-hand limits of the segment of s defined on

[tk−1, tk].
This procedure yields a spline function s ∈ Sm over the entire interval [ξj , ξj+1]

with the knots {tk}N
k=1 .

By construction its obvious that s ∈ Cr([ξj , ξj+1], R). Thus the exact solution
of problem (1) can be written in the following form on the interval I1 :

(11) y(t) := y
[m]
k (tk) +

∫ t

t0

f(t1, y[m−1] (t1) , s[m−1](g(t1)))dt1

where the following m-iterations processes are considered

(12) y(t) := y[m](tk) +
r∑

j=1

(t− tk)j

j!
y(j)(tk) +

y(r+1)(ηk)
(r + 1)!

(t− tk)r+1
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y(t) : = y[j](tk) +

+
∫ t

tk

f(tm−j+1, y
[j−1](tm−j+1), s[j−1](g(tm−j+1)))dtm−j+1(13)

such that j = 1, 2, ...m, tk ≤ ηk ≤ tk+1 and k = 0, 1, 2, ...

It is then clear that the continuity of f and the Lipschitz condition (2) guarantee
the existence and uniqueness of the solution (1) on every subinterval [tk, tk+1].

2. Error estimation and Convergence

We show here that the global error of introduced numerical solution method for
delay differential equations is bounded on the whole interval.

Theorem 1. Assume that f satisfies the Lipschitz condition (2) and s(t) is the
nonpolynomial spline approximation of the solution of (1). Then the order of the
introduced method is O(hβ+r+m).

Proof. Let denote L = max {L1,L2, ..., Lm} as a Lipschitz constant and con-
sider the first interval I1 : [ξ0, ξ1]. For the error estimation of the introduced
method using Lipschitz condition we get

|y (t)− s (t)| ≤ L

∫ t

t0

{
∣∣∣y[m−1](t1)− s[m−1](t1)

∣∣∣ +

+
∣∣∣y[m−1](g(t1))− s[m−1](g(t1))

∣∣∣ }dt1

≤ 2L2

∫ t

t0

∫ t1

t0

{
∣∣∣y[m−2](t2)− s[m−2](t2)

∣∣∣ +

+
∣∣∣y[m−2](g(t2))− s[m−2](g(t2))

∣∣∣ }dt2dt1

...

≤ 2m−1Lm

∫ t

t0

∫ t1

t0

...

∫ tm−1

t0

{
∣∣∣y[0](tm)− s[0](tm)

∣∣∣ +

+
∣∣∣y[0](g(tm))− s[0](g(tm))

∣∣∣ }dtm...dt1(14)

and consequently we obtain
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(15) |y(t)− s(t)| ≤ 2mLm

(r + m + 1)!
hr+m+1 ·W (h) = O(hr+m+1)

where W (h) = max
{
ω(y(r+1)(t), h)

}
such that ω(y(r+1), h) is the continuity

moduli of the function y(r+1) and h is the step-length..
Similarly the difference |ý(t)− ś(t)| can be estimated easily. Thus

|ý(t)− ś(t)| ≤ L[
∣∣∣y[m−1](t)− s[m−1](t)

∣∣∣ +
∣∣∣y[m−1](g(t))− s[m−1](g(t))

∣∣∣]

≤ 2L2

∫ t

t0

[
∣∣∣y[m−2](t2)− s[m−2](t2)

∣∣∣ +
∣∣∣y[m−2](g(t2))− s[m−2](g(t2))

∣∣∣]dt2

≤ 2m−1Lm

∫ t

t0

∫ t2

t0

...

∫ tm−1

t0

[
∣∣∣y[0](tm)− s[0](tm)

∣∣∣ +

+
∣∣∣y[0](g(tm))− s[0](g(tm))

∣∣∣]dtmdtm−1...dt2

and finally we obtain

(16) |ý(t)− ś(t)| ≤ 2mLm

(r + m)!
hr+m ·W (h) = O(hβ+r+m)

Hence choosing for q = 2, 3, ..., r + 1 we get

(17)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ 2kLk

(r + m)!
hr+m ·W (h) = O(hβ+r+m)

This completes the proof of the theorem. Let denote the difference

(18) e(t) = |y(t)− s(t)| , é(t) = |ý(t)− ś(t)| .
Lemma 2. Suppose f ∈ Cr([0, T ] × [α, T ] × [α, T ], R), r ∈ N and f satisfy the
Lipschitz condition (2) with a constant L = max {L1, L2, ..., Lm} , then there exist
constants C1 and C2 which are independent of h such that

e(t) ≤ C1h
r+mW (h) = O(hβ+r+m)

(19) é(t) ≤ C2h
r+mW (h) = O(hβ+r+m)
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where 0 < β ≤ 1. Similarly it can be easily shown that there exists a constant
C3 which is independent of h such that the following inequality holds

(20)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ C3h
r+mW (h) = O(hβ+r+m)

where q = 2, 3, ..., r + 1 and t ∈ [tk, tk+1]. Proof of Lemma is obvious.
From (20) and defined procedure we have the following subsequent assertion:

Theorem 3. Let y : [0, T ] → R be the exact solution of the problem (1). If
s : [0, T ] → R is the nonpolynomial spline approximation of the solution of (1),
defined by the introduced procedure, then the following inequalities hold:

(21) |y(t)− s(t)| ≤ C0

(r + m + 1)!
hr+m+1W (h)

(22)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ C0

(r + m)!
hr+mW (h)

where C0 = 2mLm, q = 0, 1, 2, ..., r + 1, for all t ∈ [tk, tk+1] and consequently

(23)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ Chr+mW (h)

holds for all t ∈ [tk, tk+1] and for q = 0, 1, 2, ..., r + 1. Here C is a constant
independent of h.
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