STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

DESIGNING A FAULT-TOLERANT JINI COMPUTE SERVER

IOAN LAZAR

ABSTRACT. Java-based tuplespaces provide a simple infrastructure for scien-
tific distributed computing. There are several classes of problems that are not
efficiently solvable in JavaSpaces model of computation while efficiently solv-
able in other tuplespace implementation. JavaSpaces can be used for high
performance computing if viewed less strictly in the heritage of Linda and
more as a platform-neutral code delivery mechanism.

This paper presents an early design of JavaSpaces compute server. We
describe how we use mobile co-ordination and agent wills to provide fault-
tolerance in Jini based compute servers. Preliminary experimental results
show performance gains made when mobile co-ordination is used.

In this paper we apply the mobile co-ordination and agent wills [12] to provide
fault-tolerance in compute servers based on tuple spaces.

The first section the tuple space paradigm and the Linda model for parallel com-
putation. The next section provides an overview of Jini and JavaSpaces [14]. The
third section describes in detail our design and then we present our conclusions.

1. THE TUPLE SPACE PARADIGM

Linda is a well known co-ordination model [3]. The fundamental concepts of
Linda are tuples, templates and tuple spaces.

A tuple is an ordered collection of fields. Each field has a type and a value
associated to it. A field with both a value and a type is known as an actual. The
tuple < 1989, “Linda”string, 1.0,5,7 > is a tuple containing three fields, with
the type of the field shown as a subscript of the value.

Tuples are placed into tuple spaces and are removed from tuple spaces using an
associative matching process.

A template is similar to a tuple except the fields do not need to have values
associated to them, but all fields must have a type. A field that has only a
type and no value is known as a formal. A template is a tuple which can have
formals. A template matches a tuple if they have the same number of fields, and

2000 Mathematics Subject Classification. 65Y05, 68Q85.

1998 CR Categories and Descriptors. F.1.2 [Computation by Abstract Devices]:
Modes of Computation — Parallelism and concurrency; G.4 [Mathematics of Computing]:
Mathematical Software — D.1.3 [Programming Techniques|: Concurrent Programming — E.1
[Data]: Data Structures — Distributed data structures.

81



82 IOAN LAZAR

all the actuals in the template match the actual in the tuple and the formals in the
template matches the type of the corresponding actual in the tuple. The templates
< |Ojpt “Linda”string71'0real| >, and < [1989;,¢, “Ljnda”strjng, L.0ppgpl > will
match the tuple < 1989;,, “Linda”Sm-ng7 1.0,057 > (O in a template is used to
indicate formal fields.)

A tuple space is a logical shared associative memory that is used to store tuples.
A tuple space implements a bag or a multi-set (the same tuple may be present
more than once and there is no ordering of the tuples in a tuple space).

1.1. Basic Tuple Space Operations and Matching. Tuples are inserted into
tuple spaces. In order to retrieve a tuple an associative match is performed between
a template and the tuples in the tuple spaces. The main primitives (operations)
on tuple spaces are:

out(tuple): Place the tuple into the tuple space.

in(template): tuple: Removes a tuple from the tuple space. The tuple
removed is associatively matched using the template and the tuple is
returned to the calling process. If not tuple that matches exists then the
calling process is blocked until one becomes available.

rd(template): tuple: This primitive is identical to in except that the
matched tuple is not removed from the tuple space, and a copy is re-
turned to the calling process.

eval(active tuple): The active tuple contains one or more functions, eval-
uated in parallel with each other and the calling process. When all the
functions have terminated, a tuple is placed into the tuple space with
the results of the functions as its elements.

1.2. Multiple rd problem. The rd operation returns one arbitrary matching
tuple from all tuples matching a given template. If a process wants to iterate
over the list of all tuples matching a given template, no atomic Linda operation is
provided in order to do this.

One solution presented in [10] is adding another operation copy-collect to the
Linda operations. This operation reads all matching tuples in the tuple space and
copies them into another tuple space. Therefore this extension of the tuple space
model needs multiple addressable tuple spaces [3].

A similar operation collect is added to solve the equivalent multiple in problem,
which moves all matching tuples from one tuple space to another tuple space.

Another solution is to change the application using the tuple space instead.
One way is to include an index field in the tuples and iterate over that field when
rd operations.

1.3. Predicate Operations. Linda includes predicate variants of the two op-
erations in and rd, named inp and rdp. These are non-blocking versions of the



DESIGNING A FAULT-TOLERANT JINI COMPUTE SERVER 83

operations, meaning that if no tuple matches the template provided these oper-
ations return the boolean value false (or some other value) indicating that no
matching tuple was found, and do not block.

In general, the non-blocking Linda operations rdp and inp cause a problem
because they inspect the “present” state of a tuple space, and one could argue
that they are inappropriate in a distributed environment, where “the most recent
operation” is not defined [7].

1.4. Fault-tolerant tuple spaces. Early tuple space based languages suffered
from poor fault agent (program, process) fault tolerance. Later, many systems
have used transactions to provide fault-tolerant Linda primitives: PLinda [6],
JavaSpaces [14] and TSpaces [16]. More recently Rowstron [12] proposed a new
technique mobile coordination in order to provide fault tolerant tuple-space based
co-ordination.

Transactions. Most implementations which use transactions add two new prim-
itives which are start and commit [12]. The start primitive causes the server man-
aging the tuple spaces to retain all copies being removed and to hold all copies
being inserted by the agent (program, process) which performed the start. When
the agent execute the commit operation, the tuples inserted under the transaction
are actually placed in the tuple space and the tuples deleted are actually discarded.
There are many problems with this approach [12]: altering the semantics of the
co-ordination language and how can decide the server if the agent that performed
a start operation is alive?

As an alternative to this traditional approach using transactions the mobile
co-ordination approach solves the problems mentioned above.

Mobile Co-ordination. In this approach the co-ordination primitives are moved
on the server which store the tuple space. If all the coordination primitives reach
the server before any are executed then the entire operation of the agent will be
executed.

An overview of this framework from an application developer perspective is as
follows (see Figure 1). The agent who whish to execute an operation composed
by many primitives in and out, encapsulate these primitives into the function
coordination. This function will be executed by the tuple-space server. In order
to migrate this code to the tuple-server, the application developer creates a class
that implements the MobileCoordination interface (extended from the interface
Serializable). After that, the agent calls the tuple-space operation executeSafe
which returns a tuple.

An agent will is a set of tuple space access primitives that are executed when
the tuple space server managing the tuple spaces decides that an agent owning the
will has failed.



84 IOAN LAZAR

zzIntefaces» TupleSpace

hobileCoordination

; + createWill{Mobile Coordination)
S Al + executeSafe(MobileCoordination)
eunringtian(l Tupls + cancelwill(MobileCoordination)

A A +in(Tuple) : Tuple

| | + out{Tuple) : Tuple
M

AgentOperation Agentiill

+ coordination() : Tuple + coordinationd) : Tuple

FIGURE 1. Mobile coordination class diagram

The following lines of code shows how an agent can take safely a tuple from a
tuple space:

AgentOperation inOperation = new AgentOperation() ;

AgentWill inWill = new AgentWill(inOperation);

tuplespace.createWill(inWill);

tuple = tuplespace.executeSafe(opIn);

tuplespace.cancelWill(inWill);

where

class AgentOperation implements MobileCoordination {
Tuple t;
Tuple coordination() { //operations executed on server
t = tuplespace.in(template);
return t;
3
}
class AgentWill implements MobileCoordination {
Tuple t = null;
AgentWill (AgentOperation inOperation) {
this.tuple = inOperation.tuple;
}
Tuple coordination() { //operations executed on server
tuplespace.out (tuple) ;
return null;
}
}



DESIGNING A FAULT-TOLERANT JINI COMPUTE SERVER 85

class TupleSpace {
Tuple executeSafe(MobileCoordination agent) {
return agent.coordination();
}
}

This fault-tolerant mechanism is working if the AgentOperation and AgentWill
objects are migrated to the tuple space server and their coordination methods
are executed there.

1.5. Tuple Space Usage in Parallel Computing. The tuple space paradigm
provides a mechanism for communication between processes in a distributed sys-
tem. The abilities provided by a tuple space are for processes to share data and
coordinate events in a distributed environment.

The data sharing of a tuple space is simply achieved by having several processes
accesing a tuple space as a global shared memory.

The event coordination ability of a tuple space is achieved using a tuple to
simulate a semaphore by having clients insert tuples into a tuple space and with-
draw tuples from a tuple space. A single-element tuple is functionally equivalent
to a semaphore [4]. The coordination feature of the tuple space is illustrated by
implementing a counting n semaphore:

begin
jn(tsemaphore)
//critical region
Om(tsemaphore)
end

where the initial value n can be obtained by n repetitions of OUt(tsemaphore)’
There are two types of coordination (or synchronization): mutual exclusion
and conditional synchronization. Mutual exclusion is exemplified in the pseudo-
program above. Conditional synchronization — waiting for an event to occur, is
also an integral part of Linda. This is achieved by blocking operations — waiting

until a tuple is present.

2. DESIGN OVERVIEW OF JINI AND JAVASPACES

The Jini technology [15] is a runtime infrastructure that resides on the network
and provides mechanisms to enable addition, removal, discovery and access of
services. Jini enable building and deploying distributed systems that are organized
as a federation of services. A service is an entity capable of performing some
function. Services advertise their capabilities via a look up server. The primary
function of lookup servers is to assist Jini enabled clients to discover and access
services.



86 IOAN LAZAR

out(...) write(Entry entry, ...)

in(...) take (Entry template, ...)

rd(...) read(Entry template, ...)

eval(...) not included

inp(...) takeIfExists(Entry template, ...)
rdp(...) readIfExists(Entry template, ...)
not included | write (Entry, ...)

TABLE 1. Linda and JavaSpaces operations and terminology

JavaSpaces is a Java implementation of a tuple-based system [14], and is pro-
vided as a service based on Jini technology.

The tuple space is represented by the JavaSpace interface, and the Linda tuples
and templates are represented by the Entry marker interface.

The JavaSpace operations read, take and write correspond to the rd, in and
out Linda primitives. All these operations are synchronous (blocking operations).

There are also two asynchronous (non-blocking) operations readIfExists and
takeIfExist. These types of asynchronous operations correspond to some Linda
primitive extensions [11].

In order to provide fault tolerance for tuple space primitives, the read, take
and write operations can be performed as part of a transaction or not. The
description of the basic primitives include descriptions of how they interact with
transactions. This fact increases the complexity of the implementation, and makes
it from a simple model into a complex one.

JavaSpaces does not introduce any new concept at the Linda model level. JavaS-
paces objects (Entry derived objects) can be introduced in a space but there they
are not active objects. The JavaSpace interface does not have any operation
corresponding to Linda eval primitive.

3. A FRAMEWORK FOR ADAPTIVE MASTER-WORKER PARALLELISM

Master-worker parallelism is a widely used form of parallel application program-
ming [13, 2]. It is conceptually very simple and involves dividing a problem into
a smaller number of independent work units which can be distributed to remote
worker processes for computation in parallel. A single master process centrally
controls both the distribution of work units to worker processes and the returned
of computed results back to the master process. The method of maintaining a
collection of work units is referred as work queue or task farm scheduling.

There are many opportunities for running distributed running applications [13].
We choose here the Jini [15] environment for the master and worker processes, and
JavaSpaces for task scheduling.

A typical space-based compute server works as described below:



DESIGNING A FAULT-TOLERANT JINI COMPUTE SERVER 87

e A task is an entry that both describes the specific of the task and contains
methods that performs the necessary computations.

e Worker processes monitor a space, take tasks as they become available,
compute them, and then write their results back to the space.

e Results are entries that contain data from computation’s output.

Spaced-based computer servers have the following nice properties:

Scalability: the more worker processes there are, the faster the tasks will
be computed. Workers can be added or removed at run time and the
computation will continue as long as there is at least one worker to
compute tasks.

Load balancing: workers running on slower CPU will compute their tasks
slowly (and thus complete fewer tasks) than those running on faster
CPU.

Low coupling: the master and the workers are uncoupled. The workers
do not have to know anything about the master and the specific of the
task - they just compute them and return results to the space.

3.1. Basic abstractions.

Tasks. Our spaces hold tasks. The task is considered an active entity of the space
if it is not completed.

The Task class implements the Jini Entry interface in order to be JavaSpaces
compatible. Also, the Task class defines a method compute() that is overridden
by user-defined tasks and a method execute() called by the Worker processes.
The compute() method should be an abstract method but in order the Task to
be a template for retrieving tuples from the JavaSpaces spaces, the Task must be
a concrete class.

The master process writes Task instances (done = False) into spaces and the
workers take tasks execute them, and then return the completed tasks back into
the space (done = True).

Master and Worker Processes. Master and worker processes use Jini services
for JavaSpaces and distributed transactions. In the current implementation of the
framework both uses a TransactionManager and a JavaSpace Jini services. This
services are available through some methods of AbstractProcess class.

The abstract methods generateTasks() and collectResults() of the class
GenericMaster are defined in concrete master processes.

A worker continually looks for tasks, takes it from a space, computes it and
writes the result back in a space. The significant running code for the worker
process is:

work () {
for ( ; ; ) { //looks continually for tasks
Task task = taskReader.takeTask(); //take (safe) a task



88

IOAN LAZAR

Task

+id : String
+data ; Object
+result © Object
+ done ; Boolean

— O

MobileCoordinator

+ exec uteS afefl obile Coordination)
+ create Wil obileCoordination)
+ cancelilliMobile Coordination)

+ compute() : Object
+ executel)

Entry

AbstractProcess

rfram jini.core.entry)

8

+ petTransactionfdanager() : Transactionhanager
+ nethdobileCoordinatar() : MaobileCoordinator
+ get3pace]) : Javaspace

ConcreteTask

7

+ compute() : Object

zzghstract=>

task.exec
getSpace(
}
}

where taskReader is an instance of the class TaskReader.

Generichaster

+ generateTasks()
+ collectResults()

Warker WorkerWill
+ wirk () - taskReader : TaskReader
¢ + coordination() : Entry
TazkReader
+task : Task

+takeTask() . Task
+ coordination(] : Entry

— O

MobileCoardination

+ coardination() : Entry

FIGURE 2. A Master-Worker Jini Framework

ute() ;
) .write(task);

//execute, and then

//write the task

//(completed) back to the space

The next subsection discusses the rest of the design (our fault—tolerant deci-

sions).

3.2. Fault Tolerance. The worker process uses mobile co-ordination and agent
wills in order to provide a fault tolerant solution in our compute framework.

The TaskReader class encapsulates a safe Linda in operation on a JavaSpaces
space. The takeTask method returns a Task from the space and it is a blocking

operation:

1. Task takeTask() {
1 will = new WorkerWill(this);

2. WorkerWil




DESIGNING A FAULT-TOLERANT JINI COMPUTE SERVER 89

mobileCoordinator.createWill (will);
Task task = mobileCoordinator.executeSafe(this);
mobileCoordinator.cancelWill (will);

}

The mobileCoordinator in the above code is a proxy of a Jini service running in
the same Java virtual machine as the JavaSpaces service. (We have made some
minor modifications in the com.sun.jini.outrigger.SpaceProxy class, but not
altering the JavaSpaces services.) Line 4 causes the TaskReader object to be
migrated to the server, and the result is returned.

The MobileCoordinator server executes the following:

3 O W

Entry executeSafe(MobileCoordination mc) {
return mc.coordination();

}
which is the TaskReader’s code:

Entry coordination() {
this.task = space.take(new Task(), null, Long.MAX_VALUE)
return task;

3

but executed into the server.

Now, if the worker dies while executing the task, then the server can restore
the task back into the space since the Worker will, encapsulated into the class
WrokerWill, is:

Entry coordination() {
if (taskReader.task != null)
space.write(taskReader.task, null, Long.MAX_VALUE);
return null;

}

where the taskReader is a copy (stored in the server) of the TaskReader object.

4. CONCLUSIONS

In this paper we have demonstrated how the concepts of mobile co-ordination
can be used to provide fault—tolerant Jini compute servers.

This paper describes the use of a single tuple space server. In real implemen-
tations, multiple servers must be used. A comparison between the transactions
model used in Jini and also a multiple fault—tolerant tuple space servers is an area
under consideration.

We also will investigate the proposed design related to some computational
problems — linear and nonlinear solvers.



90

[1]
2]
(3]
(4]
[5]
[6]
7]
(8]

[9]

(10]

(11]

(12]

(13]
(14]
(15]

[16]

IOAN LAZAR
REFERENCES

N. Carriero, E. Freeman, G. Gelernter, D. Kaminsky, Adaptive parallelism and Piranha,
IEEE Computer, 28(1):40-49, 1995.

N. Carriero, G. Gelernter, How to write parallel programs: a first course, MIT Press, Cam-
bridge, 1990.

N. Carriero, D. Gelernter, Linda in context, Communication of the ACM, 32(4):444-458,
1989.

D. Gelernter, Generative Communication in Linda, ACM Transactions on Programming
Languages and Systems, 7(1), 1985.

E. Freeman, S. Hupfer, K. Arnold, JavaSpaces Principles, Patterns and Practice, Addison
Wesley, 1999.

K. Jeong, D. Shasha, Persistent Linda 2: a transaction/checkpointing approach to fault-
tolerant Linda, in Proc 13*" Symposium on Fault-Tolerant Distributed Systems, 1994.
J.E. Larsen, J.H. Spring, GLOBE: Global Object Exchange, Candidatus Scientiarum in
Computer Science Thesis, Univ. Copenhagen, 1999.

M.S. Noble, S. Zlateva, Distributed Scientific Computation with JavaSpaces?, Boston Uni-
versity, Technical Report CN01-34, 2001.

A. Rowstron, Using Agent Wills to Provide Fault-tollerance in Distributed Shared Memory
Systems, 8" EUROMICRO Workshop on Parallel and Distributed Processing, Rhodos,
Greece, IEEE Press, pp. 317-324, 2000.

A. Rowstron, A.M. Wood, Solving the Linda multiple rd problem, Coordination Languages
and Models, Proc. Coordination ’96, eds. P. Ciancarini, C. Hankin, Springer-Verlag, LNCS
1061, 1996, pp. 357-367.

A. Rowstron, Using asyncronous tuple space access primitives (BONITA primitives) for
process co-ordination, Coordination Languages and Models, eds. D. Garlan, D. Le Metayer,
Springer-Verlag LNCS 1282, pp. 426—429, 1997.

A. Rowstron, Mobile Co-ordination: Providing fault tolerance in tuple space based co- ordi-
nation languages, Coordination Languages and Models, Coordination ’99, eds. P. Ciancarini,
P. Wolf, Springer-Verlag, LNCS 1594, 1999, pp. 196-210.

G. Shao, Adaptive Scheduling of Master/Worker Applications on Distributed Computational
Resources, Phd Thesis, Univ. California, San Diego, 2001.

Sun Microsystems, Jini Specifications, Available from Sun Microsystems WWW Site
(http://java.sun.com/products/javaspaces/), 1998.

Sun Microsystems, Jini Specifications, Available from Sun Microsystems WWW Site
(http://www.sun.com/jini/specs/), 2000.

P. Wyckoff, S. McLaughry, T. Lehman, D. Ford, T'Spaces, IBM System Journal, 1998. 1994.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

BABES-BoLyAl UNIVERSITY, RO-3400 CLUJ-NAPOCA, ROMANIA

E-mail address: ilazar@cs.ubbcluj.ro



