
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 1, 2001

CHARACTER RECOGNITION USING MORPHOLOGICAL
TRANSFORMATIONS

VASILE PREJMEREAN AND SIMONA MOTOGNA

Abstract. Starting from a digital image representing a character (or, more
general, an object), we will obtain formal descriptions of the object structures,
formed from primitives and the relations between them, using morphological
transformations (thinning, prunning, determining the corners, determining
the primitives). From such a description we will construct a description
grammar for the object under study, grammars that are used in the syntac-
tical recognition of similar objects. The object being recognized has a corre-
sponding description through morphological transformations that allows us
to study if the description belongs to the language generated by the designed
grammar.

1. Introduction

Generally speaking, we can say that an image transformation is dedicated to
human eyes or is made for a pattern recognition reason.

This paper presents a method for character recognition using morphological
transformations, whose purpose is to obtain certain structures formed from lines
and curves (type 3 images [6]) needed for pattern recognition. The notion of
morphology comes from animal and plants form study, but for us morphological
processing ([3, 5]), means the determination of the object structures from their
images.

2. Morphological Processing

Morphological processings consist in operations through which an object X is
modified by a structuring element B, yielding to a form convenient for future
processing (pattern recognition). The two interacting elements (X and B) are
represented as sets in the Euclidian bidimensional space.

Most of the morphological operations can be defined by two basic operations,
erosion and dilation described in the following.

2000 Mathematics Subject Classification. 68Q45, 68T10.
1998 CR Categories and Descriptors. F.4.2 [Theory of Computation]: Mathematical

Logic and Formal Languages – Grammars and Other Rewriting Systems; I.5.2 [Computing
Methodologies]: Pattern Recognition – Design Methodology.

87

88 VASILE PREJMEREAN AND SIMONA MOTOGNA

Notation 2.1.
The translation of B in x denoted by Bx, is the translation of the structural

element B such that the origin OB is located in x.
Definition 2.1.
The erosion of X by B, denoted by X ª B, is the set of all points x such that

Bx is included in X:
X ªB = {x|Bx ⊂ X}.

Remark : Erosion is an operation that decreases the object.
Definition 1.2.
The dilation of X by B, denoted by X ⊕B, is the set of all points x such that

Bx and X have a nonempty intersection:

X ⊕B = {x|Bx ∩X 6= ∅}.
Remark : Dilation is an operation that increases the object.
The two presented basic operations have the following properties: translation

invariant, distributivity, local knowledge, iteration, increasing, duality, and so on
[3].

Next, we shall present some usual transformations obtained from the two basic
operations described above (XC denotes the complement of X).
a. Hit-Miss, denoted by X ∗B, verifies if a structure B ∈ X and BC ∈ XC :

X ∗B = (X ªB) ∩ (XC ªBC) = (X ªB) ∩ (X ⊕BC)C =
= (X ªBOb)\(X ⊕BBk) (we denote B by BOb, and BC by BBk)

because from:(XC ⊕ B) = (X ª B)C (duality property for all X and all B) it
results that

(1) (X ⊕BC) = (XC ªBC)C (applied to XC and BC).

BOb must be matched with the object X, and BBk with the Background ;
b. Open of X relative to B, denoted by XB is the domain scanned by all of the

translations of B included in X:

XB = (X ªB)⊕B

c. Close of X relative to B, denoted by XB , is the reverse operation to open:

XB = (X ⊕B)ªB

d. Boundary determination (δX):

δX = X\(X ªG)

The usual structuring element is G =
o o o
o O o
o o o

where o - object
O - origin

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 89

e. Thinning, using morphological transformation, is defined as follows:

X ⊗B = X\(X ∗B)

The usual structuring element is B =
o o o
∗ O ∗
o o o

where

o - object
o - background
O - origin
∗ - don’t care

To obtain a simetrical thinning we must apply successively the operation
described above, using as structuring element the rotate object B:

X ⊗s B = ((...((X ⊗B1)⊗B2)⊗ ...)⊗Bn),

where B1 = B and Bi = Rotate(Bi−1), 2 ≤ i ≤ n.
f. Thicking of X through B, denoted X ¯B, is the reverse operation to thinning

and is defined as follows:

X ¯B = X ∪ (X ∗B)

g. The skeleton of an object X, denoted by S(X), is defined as:

S(X) =
nmax⋃
n=0

sn(x) =
nmax⋃
n=0

[(X ª nG)\(X ª nG)G],

where nmax is the smallest n such that X ª nG = ∅.
The reconstructed object X is:

X =
nmax⋃
n=0

[sn(x)⊕ nG],

where X ª nG = (((X ªG)ªG)ª . . .)ªG.
h. Prunning deletes (suppresses) the parasite branches, that can be the results

after a thinning operation:

Xpn = X1 ∪ [(X2 ⊕G) ∩X], where

X1 = X ⊗s E;

X2 =
8⋃

j=1

[X1 ∗ Ej];

E =
∗ ∗ ∗
o o o
o o o

90 VASILE PREJMEREAN AND SIMONA MOTOGNA

3. Character Recognition

There are several types of recognitions, and we use syntactical recognition be-
cause it has the advantage of being able to identify an infinity set of complex
forms using a small number of production rules. Syntactical recognition of a form
assumes the identification of the primitives that compund the form (these primi-
tives must be easy to recognise) which is achieved with morphological processing,
then syntactical analysis of the form in order to identify and perphaps obtain its
structure, which will be presented in the next paragraph.

Figure 1. Chracter ’A’ during recognitin: original, thinned and prunned

Character recognition can be divided in the following steps, as shown in Figure
1:

a) Thinning, described in Section 2, paragraph e;

Figure 2. The significance of signs from Figure 1

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 91

Figure 3. The junction zones for character ’A’

b) Then the object is prunned, according to the rules described in Section 2,
paragraph h;

c) To obtain the corners (Junction zone) we may apply successively the hit-miss
operation, using as structuring element the rotate object B, as in 3:

B =
∗ o ∗
o O ∗
∗ o ∗

where
o − object
O − Origin
∗ − don’t care

X ⊗B =
4⋃

i=1

(X ∗Bi) where : B1 = B and Bi = Rotate(Bi−1), 2 ≤ i ≤ 4.

d) To obtain the primitives that compose the image of the character we apply the
hit-miss operation with the following structuring elements B:

− vertical lines : X|B =
3⋃

i=1

(X ⊗B
|
i), 1 ≤ i ≤ 3, with :

B
|
1 B

|
2 B

|
3

∗ o ∗
o O ∗
∗ o ∗

∗ o ∗
o O ∗
∗ o ∗

∗ o ∗
o O ∗
∗ o ∗

92 VASILE PREJMEREAN AND SIMONA MOTOGNA

Figure 4. The primitives for character ’A’

where the notations have the same significance as in c).

− horizontal lines : X −B =
3⋃

i=1

(X ⊗B−
i), where B−

i = Rotate(B|
i), 1 ≤ i ≤ 3

− diagonal − down lines : X\B =
2⋃

i=1

(X ⊗B
\
i), where

B
\
2 = Rotate2(B\

1) and B
\
1 =

∗ o ∗
∗ O o
∗ ∗ ∗

− diagonal − up lines : X/B =
2⋃

i=1

(X ⊗B
/
i), whereB

/
i = Rotate(B\

i), 1 ≤ i ≤ 2.

Now, it is easy for someone to recognise the primitives that compose the picture
and after that to describe the character. It’s not difficult to find the relations of
relative positions of these primitives (see Figure 4).

4. Gramamtical Description

A form will be the result of several concatenation operations, that unifies the
simplest forms in subforms more and more complex.

A form description language defines their structure, and a form description
grammar defines the subform compounding rules.

Structural representations of a form is recommended when there exist complex
concatenation relations between the primitives that have been used, because this
representation gives us a graphical image of the way in which the primitives are
interconnected.

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 93

Figure 5. Forms built with ’diagonal’ primitives

In order to build a form representation, we choose a starting point, which will
be the initial node in the structural descrition. This node is then decomposed in
two subforms together with the relation between them, as shown in Figure 8. If
these subforms are also compound from other subforms, then we will continue the
description until all the nodes will contain only primitives.

The syntactical recognition process assumes the following three steps:

• the selection of the primitives in order to obtain the form description
alphabet;

• the form representation using a description language;
• the definition of a grammar, such that it will generate the description

language.

The first two steps have already been discussed. We will focus next on some
grammar classes, which are used for certain form representation methods.

The forms that can be represented through a primitive sequence (using primitive
concatenation operation) are called one-dimension forms, and their corresponding
grammars are called one-dimension grammars.

The grammar G1 = ({S, A,C, D}, {a, b, c, d, (,), +, ∗,¬}, P, S), with the produc-
tion rules: P = {S → A/C,D → (a+b)∗c, A → a+D+b, C → ((¬d)+c+d)∗D},
generates the language L(G1) = {a + (a + b) ∗ c + b, ((¬d) + c + d) ∗ (a + b) ∗ c},
where + is the usual concatenation operator, ∗ is for parallel concatenation, and
¬ is the operator for extremes inversion [4, 1].

This language describes the two forms from Figure 5, built with the primitives
{a, b, c, d} = {↗,↘,→, ↑}.

We will present now the image desciption model that uses grammars whose
terminal symbols are graphical primitives (horizontal, vertical and diagonal lines,
as shown in Figure 4) and predicates [2]. To each primitives we attach char-
acteristics regarding their position in the image frame (framework coordinates).
The predicates express relations that can exist between certain image components
(primitives and compound forms). The compound forms correspond to the non-
terminal symbols from a traditional grammar. For example, on(x, y) (“x is over

94 VASILE PREJMEREAN AND SIMONA MOTOGNA

y”) is a predicat that has the value true if and only if all the components of ob-
ject x are on all the components of object y. The relative positions of the image
components can be obtained from their attached coordinates (as we shall see in
the next section).

Such a grammar G = (N, Σ, P, S) consists of the set of nonterminal symbols
N(S ∈ N), the set Σ of terminal symbols containing primitives and predicates,
the set P of production rules (each of them defining a form) and the start symbol
S. A production of this grammar has the form A → (ω) : α;π, where A ∈ N
is a nonterminal representing the name of the defining graphical form, ω is a list
of arguments of the production, α is a list of objects (primitives or compound
objects), and π is a predicate (α and π are statements that should be true for
arguments from the list ω.

In order to ilustrate these concepts, we will use as example the ’A’ character
from Figure 4. Suppose that the terminal alphabet is:

• types of graphical primitives: /, \, |,−;
• predicates: ‘in’,‘on’,‘near’,‘right’.

The productions described above can be represented in a parsing tree. For this
example, the corresponding tree is shown in Figure 8.

We shall present now an algorithm for generating graphical subforms and for
building the production rules (corresponding to the first step of the syntactical
recognition process).

At the begining, the description list (ObIni) contains the graphical primitives
from the drawing (we denote by GPNo the total number of graphical primitives),
storing for each primitive p its type (PrimitiveType(p)), the window in which is
framed (Domainp = (x1, y1, x2, y2)) and the set of components (MObp = {p}).
For each graphical primitive from the analized drawing we will store the following
information:

(p, PrimitiveType(p), Domainp,MObp = {p}), (for each p = 1, 2, ..., GPNo).

This list is enriched with new compound objects (NewOb) formed from the
ones existing in the list ObIni and are in a convenient relative position, denoted
by relation φ (for example, (s, d), if s is inside d, i.e. Domains ⊂ Domaind). For
a compound object o we will store:

(o, (s, d), φ(s, d), Domaino,MObo = MObs ∪MObd),
where Domaino is computed using the following formula:

x1 := Minim(s.x1, d.x1), x2 := Maxim(s.x2, d.x2),
y1 := Minim(s.y1, d.y1), y2 := Maxim(s.y2, d.y2).

(see Figure 6).
The addition of new elements is continued until it is no more possible (NewOb =

∅).

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 95

Figure 6. Coordinates specification for an object

Those objects o that contain all the graphical primitives of the drawing (MObo ⊃
{1, 2, ..., GPNo}), represent drawing descriptions.

Algorithm 3.1.
Initialize ObIni = {Obp, p = 1, GPNo}; {List of graphical primitives}

ObAd := ObIni; LPrim := ObIni; o := m;
Repeat

NewOb := ∅; LOb := ObIni ∪ObAd;
For each α = (s, d) ∈ LOb×ObAd ∪ObAd× LOb execute

For each relation φ execute { see the Table 1 }
If φ(s, d) and Obs ∩Obd = ∅ then {s φ d and no common primitives}

o := o + 1; Compute Domaino;
NewObi := NewOb ∪ {(o, (s, d), φ(s, d), Domaino,MObs ∪MObd)};
ObIni := LOb; ObAd := NewOb;

Until NewOb = ∅; {no more new objects}
The set of descriptions: = {o|{1, 2, ..., GPNo} ⊂ MObo}.
Two objects can be in the relations presented in 1, representing relations be-

tween their coordinates (specified in 6).

φ O1 in O2 O1 on O2 O1 near O2 O1 left O2

O2.x1 < O1.x1 O1.y2 ≤ O2.y1 O1.x2 ≤ O2.x1 O1.x2 < O2.x1

O1.x2 < O2.x2 O1.y2 ≈ O2.y1 O1.x2 ≈ O2.x1 O1.x2 6≈ O2.x1

O2.y1 < O1.y1 O1.x1 ≈ O2.x1 O1.y1 ≈ O2.y1 O1.y1 ≈ O2.y1

O1.y2 < O2.y2 O1.x2 ≈ O2.x2 O1.y2 ≈ O2.y2 O1.y2 ≈ O2.y2

Table 1. Definition of relations φ, where α ≈ β means |α−β| ≤
ε, namely are very close to each other.

96 VASILE PREJMEREAN AND SIMONA MOTOGNA

Figure 7. The numbers associated to primitives

Example 4.1.
We consider the drawing from Figure 4, and we will number the primitives (as

in 7) in order to build the initial subform list, as presented in Table 2.

Pr. x1 y1 x2 y2

1. / 3 2 7 5
2. \ 8 2 11 4
3. | 3 6 3 9
4. | 11 5 11 9
5. | 3 11 3 16
6. | 11 11 11 16
7. - 6 10 9 10

Table 2. The primitives used in Example 4.1

Applying the predicates ’in’, ’on’, ’near’ and ’left’ to all object pairs from the
initial list we will obtain the following list (when we add new elements, we also
determine information regarding the new objects postions):
8-(1,2):near(1,2); 11-(4,6):on(4,6);
9-(3,4):left(3,4); 12-(5,6):left(5,6)
10-(3,5):on(3,5);

The process is repeated using the extended list (1-12). The new list elements
obtained in the third step are:
13-(8,9):on(8,9); 15-(10,11):left(10,11);
14-(9,12):on(9,12);

The next step will produce the following elements:

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 97

Figure 8. The parsing tree for character ’A’

16-(7,14):in(7,14); 19-(8,15):on(8,15);
17-(7,15):in(7,15); 20-(12,13):on(13,12);
18-(8,14):on(8,14);

Since there is no object that contains all the primitives, the process will continue,
adding the last elements:
21-(7,18):in(7,18); 24-(8,16):on(8,16);
22-(7,19):in(7,19); 25-(8,17):on(8,17).
23-(7,20):in(7,20);

We notice that these last objects (21–25) contain all the primitives as com-
ponents. The parsing tree corresponding to the object 25 is shown in Figure 8.

Next, we will replace variables with constant names, in three steps:
1) symbols from 8 to 20, representing intermediary compound objects will be

replaced with nonterminals (from A to M):
A=8-(1 near 2) E=12-(5 left 6) I=16-(h in G)
B=9-(3 left 4) F=13-(8 on 9) J=17-(h in H)
C=10-(3 on 5) G=14-(9 on 12) K=18-(A on G)
D=11-(4 on 6) H=15-(10 left 11) L=19-(A on H)

M=20-(F on E)

98 VASILE PREJMEREAN AND SIMONA MOTOGNA

2) symbols from 1 to 7, representing the primitives will be replaced with the
primitive names:

A=8-(p near q) E=12-(v left v) I=16-(7 in 14)
B=9-(v left v) F=13-(A on B) J=17-(7 in 15)
C=10-(v on v) G=14-(B on E) K=18-(8 on 14)
D=11-(v on v) H=15-(C left D) L=19-(8 on 15)

M=20-(13 pe 12)

3) symbols from 21 to 25, representing final objects have the following associated
grammar:

21: S → h in K; 22: S → h in L; 23:S → h in M;
K → A on G; L → A on H; M → F on E;
A → p near q; A → p near q; E → v left v;
G → B on E; H → C left D; F → A on B;
B → v left v; C → v on v ; A → p near q;
E → v left v. D → v on v. B → v left v.

24: S → A on I; 25: S → A on J;
A → p near q; A → p near q;
I → h in G; J → h in H;
G → B on E; H → C left D;
B → v left v; C → v on v;
E → v left v. D → v on v.

We will proceed now with the reduction of the grammar, in order to obtain a
simpler one. The reduction takes into consideration the following remarks:

a. we have some identical rules: C and D, B and E, respectively;
b. rules for K and L, I and J differ only by a symbol (G, respectively H), and we

will use unification;
c. rules for M and F differ only by a symbol (F, respectively A), so we will use

unification.

The final grammar, capable of generating the original sample is:

S → h in K | h in M | A on I;
K → A on G; A → p near q;
G → B on B | C left C; B → v left v;

C → v on v ;
M → M on B | A on B; I → h in G;

Since the rule for the symbol M generates sequences of the form A(on B)n, n >
0, we can extend it even more such that n ≥ 0, yielding, eventually, to M →
M on B|A. This grammar generates character of the form shown in 9.

CHARACTER RECOGNITION USING MORPHOLOGICAL TRANSFORMATIONS 99

Figure 9. Forms obtained for different values of n with the de-
termined grammar

As it can be seen in the figure 9, the proposed method allows us to obtain
classes of generalized images, starting from an initial pattern, images that satisfy
the same rules.

The ability of understanding an image will be increased if we know the rules
under which they were generated (if the images had been defined by relations
between components, and not by static or semantic rules). In such cases, the
importance of lingvistical methods is obvious, since these methods represent tools
useful in solving recognition problems.

The final step in pattern recognition process is the parsing (syntactical analysis),
in which the forms are classified according to the description grammars of the form
classes. The parsing decides if a certain form belongs or not to a form class, and
when the answer is afirmative it will provide information about the form structure.

In our case, a form is a drawing, and a form class is a picture language. The
problem of recognising a drawing d (representing the studied form) from a picture
language P (a given form class) is: ”d ∈ P?”. Consequently, we have presented
here a method of solving this problem.

References

[1] K.S. Fu, Syntactic Pattern Recognition, Application, Springer-Verlag, New York, 1977.
[2] E.B. Hunt, Artificial Intelligence, Pattern Recognition, Grammatical Pattern Classification,

Academic Press, New York, San Francisco, London, 1975, pg. 144-182.
[3] A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, London, 1989.
[4] A.C. Shaw, A formal picture description scheme as a basis for picture processing system,

Inform. and Control, 14, 9, 1969.
[5] A. Vlaicu, Prelucrarea digitală a imaginilor, Editura Albastră, Cluj-Napoca, 1997.
[6] T. Pavlidis, Algorithms for Graphics and Image Processing, Springer-Verlag (Berlin, Heildel-

berg), 1982.

100 VASILE PREJMEREAN AND SIMONA MOTOGNA

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO 3400
Cluj-Napoca, Str. Kogălniceanu 1, Romania

E-mail address: per|motogna@cs.ubbcluj.ro

