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THE MV-ALGEBRA STRUCTURE OF RGB MODEL

DAN NOJE AND BARNABÁS BEDE

Abstract. The aim of this paper is to explore the MV-algebra structure of
RGB colour space (see [5]). We start with the construction of the MV-algebra
structure of one component of the RGB model (this component represents
one colour of the three that gives us the colour of a pixel on the screen). Then
we define an MV-algebra structure on RGB model. Using Chang’s Subdirect
Representation Theorem we prove that RGB model is a subdirect product of
MV-algebras of one component.

1. Introduction

Fuzzy sets are well known for their applications to image processing. It is also
well known that the fuzzy sets have an MV-algebra structure (see [4]). We intend
to develop an similar structure on RGB model (see[5]). This will allows us to use
MV-algebras in image processing.

First we recall some definitions and properties of MV-algebras (see e.g. [2], [3])
that will be used later.

Definition 1.1. An MV-algebra is an algebra 〈A,⊕,¬, 0A〉 with a binary opera-
tion ⊕, a unary operation ¬ and a constant 0A satisfying the following equations:

(MVi) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(MVii) x⊕ y = y ⊕ x;
(MViii) x⊕ 0A = x;
(MViv) ¬¬x = x;
(MVv) x⊕ ¬0A = ¬0A;
(MVvi) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Remark 1.2. In particular, axioms (MV1)-(MV3) state that 〈A,⊕, 0A〉 is a commu-
tative monoid. As usually, we denote an MV-algebra 〈A,⊕,¬, 0A〉 by its universe
A.

Remark 1.3. The constant 1A and the operations ¯ and ª are defined on each
MV-algebra A as follows:
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i) 1A =def ¬0A;
ii) x¯ y =def ¬(¬x⊕ ¬y);
iii) xª y =def x¯ ¬y.

The following identities are immediate consequences of (MV4):
(MV7) ¬1A = 0A;
(MV8) x⊕ y = ¬(¬x¯ ¬y).
Axioms (MV5) and (MV6) can now be written as:

(MV5’) x⊕ 1A = 1A;
(MV6’) (xª y)⊕ y = (y ª x)⊕ x.

Setting y = ¬0A in MV6) we obtain:
(MV9) x⊕ ¬x = 1A.
Following common usage, we consider that ¬ operation is more binding than

any other operation. Also we consider that ¯ operation is more binding than ⊕
operation and ª operation.

Definition 1.4. Let A be an MV-algebra and x, y ∈ A. We say that x ≤ y if and
only if x and y satisfy one of the bellow equivalent conditions:

i) ¬x⊕ y = 1A;
ii) x¯ ¬y = 0A;
iii) y = x⊕ (y ª x);
iv) there is an element z ∈ A such that x⊕ z = y.

Remark 1.5. It follows that ≤ is a partial order, called the natural order of A.

Definition 1.6. An MV-algebra whose natural order is total is called an MV-
chain.

Lemma 1.7. In every MV-algebra A the natural order ≤ has the following prop-
erties:

i) x ≤ y if and only if ¬y ≤ ¬x;
ii) if x ≤ y then for each z ∈ A, x⊕ z ≤ y ⊕ z and x¯ z ≤ y ¯ z;
iii) x¯ y ≤ z if and only if x ≤ ¬y ⊕ z.

Proposition 1.8. On each MV-algebra A the natural order determines a lattice
structure. Specifically, the join x ∨ y and the meet x ∧ y of the elements x and y
are given by

i) x ∨ y = (xª y)⊕ y;
ii) x ∧ y = x¯ (¬x⊕ y).

Definition 1.9. The distance function d : A×A → A is defined by

d(x, y) =def (xª y)⊕ (y ª x).

Proposition 1.10. In every MV-algebra A we have:
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i) d(x, y) = 0A if and only if x = y;
ii) d(x, y) = d(y, x);
iii) d(x, z) ≤ d(x, y)⊕ d(y, z);
iv) d(x, y) = d(¬x,¬y);
v) d(x⊕ s, y ⊕ t) ≤ d(x, y)⊕ d(s, t).

2. Construction of MV-algebra structure of one component of
RGB model.

RGB model represents one of the most used models to determin a pixel’s colour
on the screen. The number of colours that can be displayed is directly influenced
by the number of bits on which the colours are stored in the computers memory.
Also it is influenced by the properties of the screen.

RGB (see [5]) is defined as the set of triplets (red, green, blue) or (r, g, b). The
numbers form triplets represent how much red, green, respectively blue contains
the pixel’s colour.

We consider the number that represents one component of the triplet, stored
on t bits. Therefore as the set of possible values for one colour component of RGB
model we consider the set

C =def

{
x ∈ R | 0 ≤ x ≤ 2t−1

}
.

We introduce a binary operation ⊕, a unary operation ¬ and a constant 0C as
follows (when x, y ∈ C):

(2.1) x⊕ y =def min(2t−1, x + y);

(2.2) ¬x =def 2t−1 − x;

and 0C is represented by the real number 0.

Lemma 2.1. The quadruple 〈C,⊕,¬, 0〉 is an MV-algebra.

Proof. For proving that 〈C,⊕,¬, 0〉 is an MV-algebra we have to show that the
axioms (MV1)-(MV6) are satisfied.

(MV1): From equation (2.1) we have

x⊕ (y ⊕ z) = x⊕min(2t−1, y + z)

= min(2t−1, x + min(2t−1, y + z)) = min(2t−1, x + y + z)

= min(2t−1, min(2t−1, x + y) + z) = min(2t−1, x + y)⊕ z = (x⊕ y)⊕ z.

(MV2): Also by equation (2.1) we have

x⊕ y = min(2t−1, x + y) = min(2t−1, y + x) = y ⊕ x.
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(MV3): Using equation (2.1) we obtain

x⊕ 0 = min(2t−1, x + 0) = min(2t−1, x) = x.

(MV4):From equation (2.2) we obtain

¬¬x = ¬(2t−1 − x) = 2t−1 − (2t−1 − x) = x.

(MV5): By equations (2.1) and (2.2) it is easy to see that

x⊕ ¬0 = x⊕ (2t−1 − 0) = x⊕ 2t−1 = min(2t−1, x + 2t−1)

= 2t−1 = 2t−1 − 0 = ¬0.

(MV6): For proving (MV6) we will transform each side of equation to the same
expression.

Using equation (2.2) the left side of axiom (MV6) is

¬(¬x⊕ y)⊕ y = ¬((2t−1 − x)⊕ y)⊕ y.

Then applying equation (2.1) we obtain

¬(¬x⊕ y)⊕ y = ¬min(2t−1, 2t−1 − x + y)⊕ y.

Applying now several times the equations (2.1) and (2.2) we have

¬(¬x⊕ y)⊕ y = (2t−1 −min(2t−1, 2t−1 − x + y))⊕ y = max(0, x− y)⊕ y

= min(2t−1, max(0, x− y) + y) = min(2t−1,max(y, x)).
Since both x and y are less or equals then 2t−1we have

max(y, x) ≤ 2t−1

and then we obtain
¬(¬x⊕ y)⊕ y = max(y, x).

Using now the commutativity of max function we obtain

¬(¬x⊕ y)⊕ y = max(x, y) (1).

Using equation (2.2) the right side of axiom (MV6) is

¬(¬y ⊕ x)⊕ x = ¬((2t−1 − y)⊕ x)⊕ x.

Then applying equation (2.1) we obtain

¬(¬y ⊕ x)⊕ x = ¬min(2t−1, 2t−1 − y + x)⊕ x.

Applying now several times the equations (2.1) and (2.2) we have

¬(¬y ⊕ x)⊕ x = (2t−1 −min(2t−1, 2t−1 − y + x))⊕ x = max(0, y − x)⊕ x

= min(2t−1,max(0, y − x) + x) = min(2t−1, max(x, y)).
Since both x and y are less or equals then 2t−1 we have

max(x, y) ≤ 2t−1
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and then we obtain

¬(¬y ⊕ x)⊕ x = max(x, y) (2).

From the equations (1) and (2) we obtain

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

The constant 1C and the operations ¯ and ª are defined on MV-algebra C as
follows:

i) 1C =def ¬0.
From equation (2.2) we obtain

(2.3) 1C = 2t−1.

ii) x¯ y =def ¬(¬x⊕ ¬y).
Also by equation (2.2) we obtain

x¯ y = 2t−1 − ((2t−1 − x)⊕ (2t−1 − y)).

From equation (2.1) we have

x¯ y = 2t−1 −min(2t−1, 2t−1 − x + 2t−1 − y).

After calculations we obtain

x¯ y = max(0, x + y − 2t−1).

From equation (2.3) we have

(2.4) x¯ y = max(0, x + y − 1C).

iii) xª y =def x¯ ¬y.
From equation (2.2) we obtain

xª y = x¯ (2t−1 − y).

By the equations (2.3) and (2.4) we have

(2.5) xª y = max(0, x− y).

Remark 2.2. We can introduce an order relation ≤ on 〈C,⊕,¬, 0〉 in the same way
like in the general case (see Definition 1.4).

It is easy to see that the natural order on 〈C,⊕,¬, 0〉 is a total order and thus
the MV-algebra C is an MV-chain. Since C ⊆ R, it is obvious that C is a complete
latice.

The order relation on MV-algebra C is induced by the order relation of real
numbers.
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The distance function d : C × C → C is defined by:

d(x, y) =def (xª y)⊕ (y ª x)

Using equation (2.5) we obtain

d(x, y) = min(1C ,max(0, x− y) + max(0, y − x)) = min(1C , |x− y|).
Since both x and y are less or equals then 1C we have

|x− y| ≤ 1C

and then we obtain

(2.6) d(x, y) = |x− y| .
Remark 2.3. The distance function is defined following the general case (See Def-
inition 1.9). It is obvious that all the properties of the distance are fullfiled (see
Proposition 1.10).

Observe also that we obtain the classical Euclidean distance.

3. Construction of MV-Algebra structure of RGB model

In the previous section we have considered the set C as the set of possible
values for one colour component of RGB model (see [5]). We also have proved
that 〈C,⊕,¬, 0〉 is an MV-algebra.

In this section we will introduce on RGB model an MV-algebra structure. Let
consider the set:

RGB =def {(c1, c2, c3) | ci ∈ C, i ∈ {1, 2, 3}} .

In other words RGB is the direct product of family {Ci}i∈{1,2,3}, where

Ci = C for all i ∈ {1, 2, 3} .

On RGB set we introduce the operations ⊕, ¬ and the constant 0 as follows:

(3.1) (c1, c2, c3)⊕ (d1, d2, d3) =def (c1 ⊕ d1, c2 ⊕ d2, c3 ⊕ d3)

for each (c1, c2, c3) and (d1, d2, d3) from RGB;

(3.2) ¬(c1, c2, c3) =def (¬c1,¬c2,¬c3)

for each (c1, c2, c3) from RGB;

(3.3) 0RGB =def (0, 0, 0)

where 0 is the constant 0 on MV-algebra C.

Theorem 3.1. The quadruple 〈RGB,⊕,¬, 0RGB〉 is an MV-algebra.
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Proof. For proving that 〈RGB,⊕,¬, 0RGB〉 is an MV-algebra we have to show
that the axioms (MV1)-(MV6) are satisfied.

(MV1): From equation (3.1) we have

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3))
= (a1, a2, a3)⊕ (b1 ⊕ c1, b2 ⊕ c2, b3 ⊕ c3)

= (a1 ⊕ (b1 ⊕ c1) , a2 ⊕ (b2 ⊕ c2) , a3 ⊕ (b3 ⊕ c3)) .

By Lemma 2.1, the associative law holds in the MV-algebra C

ai ⊕ (bi ⊕ ci) = (ai ⊕ bi)⊕ ci for i = 1, 2, 3.

From this law we have

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3)) =

= ((a1 ⊕ b1)⊕ c1, (a2 ⊕ b2)⊕ c2, (a3 ⊕ b3)⊕ c3) .

From this equality and from equation (3.1) we obtain

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3))

= (a1 ⊕ b1, a2 ⊕ b2, a3 ⊕ b3)⊕ (c1, c2, c3)
= ((a1, a2, a3)⊕ (b1, b2, b3))⊕ (c1, c2, c3) .

(MV2): From equation (3.1) we have

(a1, a2, a3)⊕ (b1, b2, b3) = (a1 ⊕ b1, a2 ⊕ b2, a3 ⊕ b3) .

Using the commutativity of MV-algebra C we obtain

(a1, a2, a3)⊕ (b1, b2, b3) = (b1 ⊕ a1, b2 ⊕ a2, b3 ⊕ a3) .

From equation (3.1) we have

(a1, a2, a3)⊕ (b1, b2, b3) = (b1, b2, b3)⊕ (a1, a2, a3) .

(MV3): From the equations (3.1) and (3.3) it is easy to see that

(a1, a2, a3)⊕ (0, 0, 0) = (a1 ⊕ 0, a2 ⊕ 0, a3 ⊕ 0) = (a1, a2, a3)
since 0 is the neutral element of MV-algebra C.

(MV4): Applying several times the equation (3.2) we obtain

¬¬ (a1, a2, a3) = ¬ (¬a1,¬a2,¬a3)
= (¬¬a1,¬¬a2,¬¬a3) = (a1, a2, a3) ,

since ¬¬a = a in MV-algebra C.
(MV5): From equation (3.2) we have

(a1, a2, a3)⊕ ¬ (0, 0, 0) = (a1, a2, a3)⊕ (¬0,¬0,¬0) .

Using this equality and from equation (3.1) we obtain
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(a1, a2, a3)⊕ ¬ (0, 0, 0) = (a1 ⊕ ¬0, a2 ⊕ ¬0, a3 ⊕ ¬0)

= (¬0,¬0,¬0) = ¬ (0, 0, 0) ,

since a⊕ ¬0 = ¬0, in MV-algebra C.
(MV6): From equation (3.2) we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ ((¬a1,¬a2,¬a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3) .

From equation (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ (¬a1 ⊕ b1,¬a2 ⊕ b2,¬a3 ⊕ b3)⊕ (b1, b2, b3) .

Applying successively equations (3.2) and (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬a1 ⊕ b1)⊕ b1,¬ (¬a2 ⊕ b2)⊕ b2,¬ (¬a1 ⊕ b3)⊕ b3) .

By (MV6) of MV-algebra C applied for each component we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬b1 ⊕ a1)⊕ a1,¬ (¬b2 ⊕ a2)⊕ a2,¬ (¬b3 ⊕ a3)⊕ a3) .

Applying now successively equation (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬b1 ⊕ a1) ,¬ (¬b2 ⊕ a2) ,¬ (¬b3 ⊕ a3))⊕ (a1, a2, a3) .

By equation (3.2) we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ (¬b1 ⊕ a1,¬b2 ⊕ a2,¬b3 ⊕ a3)⊕ (a1, a2, a3) .

Applying equations (3.1) and (3.2) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ ((¬b1,¬b2,¬b3)⊕ (a1, a2, a3))⊕ (a1, a2, a3)

= ¬ (¬ (b1, b2, b3)⊕ (a1, a2, a3))⊕ (a1, a2, a3) .

The constant 1RGB , and the operations ¯ and ª are defined as follows:
i) 1RGB =def ¬ (0, 0, 0).
From equations (2.2) and (3.2) we obtain

1RGB = (¬0,¬0,¬0) =
(
2t−1, 2t−1, 2t−1

)
.
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By equation (2.3) we obtain

1RGB = (1C , 1C , 1C)

ii) (a1, a2, a3)¯ (b1, b2, b3) =def ¬(¬ (a1, a2, a3)⊕ ¬ (b1, b2, b3)).
Applying equation (3.2) we have:

(a1, a2, a3)¯ (b1, b2, b3) = ¬ ((¬a1,¬a2,¬a3)⊕ (¬b1,¬b2,¬b3)) .

By equation (3.1) we obtain

(a1, a2, a3)¯ (b1, b2, b3) = ¬ (¬a1 ⊕ ¬b1,¬a2 ⊕ ¬b2,¬a3 ⊕ ¬b3) .

Applying equation (3.2) we have

(a1, a2, a3)¯ (b1, b2, b3) = (¬ (¬a1 ⊕ ¬b1) ,¬ (¬a2 ⊕ ¬b2) ,¬ (¬a3 ⊕ ¬b3))

By definition of ¯ on MV-algebra C we obtain:

(3.4) (a1, a2, a3)¯ (b1, b2, b3) = (a1 ¯ b1, a2 ¯ b2, a3 ¯ b3)

iii) (a1, a2, a3)ª (b1, b2, b3) =def (a1, a2, a3)¯ ¬ (b1, b2, b3).
By equation (3.1) and 3.4 we have:

(a1, a2, a3)ª (b1, b2, b3) = (a1, a2, a3)¯ (¬b1,¬b2,¬b3) .

From equation (3.4) we obtain

(a1, a2, a3)ª (b1, b2, b3) = (a1 ¯ ¬b1, a2 ¯ ¬b2, a3 ¯ ¬b3) .

By definition of ª on MV-algebra C we obtain:

(3.5) (a1, a2, a3)ª (b1, b2, b3) = (a1 ª b1, a2 ª b2, a3 ª b3) .

Remark 3.2. We can introduce a partial order relation ≤ on 〈RGB,⊕,¬, 0RGB〉
in the same way like in the general case.

It is easy to verify that:

i) (a1, a2, a3) ≤ (b1, b2, b3) if and only if ai ≤ bi, for each i = 1, 2, 3.
ii) (a1, a2, a3) ∨ (b1, b2, b3) = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3)
iii) (a1, a2, a3) ∧ (b1, b2, b3) = (a1 ∧ b1, a2 ∧ b2, a3 ∧ b3).

Proposition 3.3. RGB has a complete lattice structure, and this implies that
RGB is an MV σ-algebra (see [1]).

Remark 3.4. Convergent sequences can be defined on RGB, using MV σ-algebra
properties of RGB (see [1]).
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4. Distance on RGB

To use the MV-algebra structure of RGB model for image processing, we have
to define a distance function d : RGB ×RGB → RGB as follows

d ((a1, a2, a3) , (b1, b2, b3)) =def

= ((a1, a2, a3)ª (b1, b2, b3))⊕ ((b1, b2, b3)ª (a1, a2, a3)) .

From equation (3.5) we have

d ((a1, a2, a3) , (b1, b2, b3))

= (a1 ª b1, a2 ª b2, a3 ª b3)⊕ (b1 ª a1, b2 ª a2, b3 ª a3) .

Applying equation (3.1) we obtain

d ((a1, a2, a3) , (b1, b2, b3))

= ((a1 ª b1)⊕ (b1 ª a1) , (a2 ª b2)⊕ (b2 ª a2) , (a3 ª b3)⊕ (b3 ª a3)) .

From definition of the distance function on MV-algebra C we obtain:

d ((a1, a2, a3) , (b1, b2, b3)) = (d (a1, b1) , d (a2, b2) , d (a3, b3)) .

In Section 2 of this paper we have shown that 〈C,⊕,¬, 0〉 is an MV-chain. In
Section 3 we have defined RGB set as a direct product of C set. It is obviously
that RGB set is also a subdirect product of C set. From Chang’s Subdirect
Representation Theorem (see [2]) we obtain:

Proposition 4.1. The MV-algebra 〈RGB,⊕,¬, 0RGB〉 is a subdirect product of
the MV-chains 〈C,⊕,¬, 0〉.
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