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INTENSIONAL LOGIC TRANSLATION FOR QUANTITATIVE
NATURAL LANGUAGE SENTENCES

ADRIAN ONEŢ, DOINA TĂTAR

Abstract. The performance of some natural language processing tasks im-
proves if semantic processing is involved. Moreover, some tasks ( database
query) cannot be carried out at all without semantic processing. The first
semantic description was developed by Montague and all later approach to
semantic in the frame of discourse representation theory follow Montague in
using more powerful logic language. The present paper is a contribution in
treatment of quantitative natural sentences.

1. Introduction

At present, there doesn’t exists a general theory of the semantics of natural
language. A rigorous analysis of natural language can’t be realized without the
intensional logic introduced in computational linguistic by Montague. The inten-
sional logic is a further development from the model provided by first order logic.
In his semantic analysis of a sentence, Montague distinguishes two elements: inten-
sion (or sense) and extension (or reference). The intension of a sentence is even the
proposition it expresses, and the extension is its truth value. An extensional logic
can only assign truth value to sentences while an intensional logic can, in addition,
assign a meaning to these sentences. Moreover, Montague saw in type theory a
powerful system which could correspond to the system of syntactic categories of a
natural language.

The following sections aim at acquainting the reader with the fundamentals
of intensional logic. The last section introduces some proposals in treatment of
quantitative natural sentences.

2. Intensional logic

The intensional logic [7] contains, besides new ones, all the concepts in a pred-
icate logic of first order, L1.
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2.1. A type-theoretic version of the language L1. Let t and e be two ba-
sic symbols that respectively represent ’truth’ and ’entity’. The set of types is
recursively defined as follows:

Definition:

• t and e are types (base);
• If a and b are types, then 〈a, b〉 is a type;
• All types are obtained by applying the base and induction rule a finite

number of times.

Example:
〈e, 〈t, e〉〉 is a type.
In the following the symbol Da will represent the set of all denotations for the

expressions of type a, with respect to a given interpretation domain A. The sets
Da are recursively defined as:

• De = A;
• Dt = 0, 1 or T, F ;
• D〈a,b〉 = the set of functions from Da toDb.

If the type is 〈a1, 〈a2, 〈· · · 〈an, b〉 · · · ..〉 then D〈a1,〉a2,〈···〈an,b〉··· ..〉 is the set of
functions from Da1 ×Da2 · · · ×Dan to Db.

The syntactic categories are set of expressions in this logic language. We shall
assign to each of these categories a syntactic label (a type). The rule of this
labeling is denoted cancellation rule and can be stated formally as follows [7]:

If α is an expression of type 〈a, b〉 and β is an expression of type a then the
juxtaposition α(β) is of the type b.

Let us remark that the rule is conform with the denotation of types: If α is a
function from Da to Db and β is an element from Da then juxtaposition α(β) is
an element from Db.

We can now define the language L1 with types, denoted Lt, as follows:
Definition:

• The type of the constants ci, and variables xj is e;
• The type for one-place predicate constant Pi is 〈e, t〉 (a function from

De to Dt = {T, F});
• The type for two-place predicate constant Pi is 〈e, 〈e, t〉〉 (a function from

De ×De to Dt = {T, F});
• The type for n-place predicate constant Pi is 〈e, 〈e, · · · 〈e, t〉 · · · 〉〉, with

n occurrences of e; (a function from De · · · ×De to Dt = {T, F});
• If α is an expression of type 〈a, b〉 and β is an expression of type a then

the juxtaposition α(β) is of the type b.
• The type of the formulas is t;
• The type of the connective ¬ is 〈t, t〉 ;
• The type of the connectives ∧,∨,→ is 〈t, 〈t, t〉〉;
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• If A is a formula (of type t) and x is a variable (of type e), then [∀xA],
[∃xA] are of type t.

2.2. Lambda calculus. The language Lt will be expanded by adding the lambda
operator (λ-operator). The lambda calculus was introduced in the linguistic’s
community by Montague, and in the logic by Alonzo Church (1941). Replacing the
well known notation for the sets as: {x|x has a certain propriety} the following
notation is used: λx[formula containing x]. The expression

λx[formula containing x]

is called λ-expression or λx-abstraction.
The type of a λ-expression as above is 〈e, t〉. If we shall combine this expression

with a constant (of type e), from the cancellation rule results a formula ( of type
t. This process is named λ-conversion and may be written as follows:

λx[· · ·x · · · ](α) = [· · ·α · · · ].
In the formula [· · ·α · · · ] each free occurrence of x is replaced with α, the result

is [· · ·α · · · ] .
Most of the time, in the language Lt, x and A can be of types more general

than e and t. The rule is:
If α is an expression of the type a and x is a variable of the type b, then λx[α]

is an expression of type 〈b, a〉.
For example the type of x can be 〈e, t〉, and in this case λ- operator make a λ

abstraction after a predicate (not a variable).
Montague gave some examples of λ-operator in natural language sentences in

English [7]. Let us consider two sentences: Every student walks and Every students
reads. Their usual translation in predicate logic is:
∀x(S(x) → W (x)) and ∀x(S(x) → R(x)).
These sentences are instances of a more general sentence whose translation is a

second-order logic formula, i.e. they are λ-conversions of the λ-expression:

λY [∀x(S(x) → Y (x))].

The first conversion is

λY [∀x(S(x) → Y (x))](W )

and the second one is
λY [∀x(S(x) → Y (x))](R).

Therefore, the λ -expression λY [∀x(S(x) → Y (x))] will have the type 〈〈e, t〉, t〉
and it is equivalent to the English sentence every student.

Analogously, we can obtain a λ expression for every: if every student is λY [∀x
(S(x) → Y (x))], then this expression may be seen as conversion of the more gen-
eral expression: λZ[λY [∀x(Z(x) → Y (x))]] for S, that means λZ[λY [∀x(Z(x) →
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Y (x))]](S). So every can be translated in λZ[λY [∀x(Z(x) → Y (x))]] with the
type 〈〈e, t〉, 〈〈e, t〉, t〉〉.

Analogously, some student or a student is translated in expression λY [∃x(S(x)∧
Y (x))] with the type 〈〈e, t〉, t〉, and some, a, an, in expression λZ[λY [∃x(S(x) ∧
Y (x))]] with the type 〈〈e, t〉, 〈〈e, t〉, t〉〉.

2.3. Intensionality. In his theory Montague make a distinction between the
sense ( intention) of an expression and reference ( extension): the reference of
an expression corresponds to semantic ( truth) value of this expression, the sense
corresponds to the meaning of the expression. The distinction between sense and
reference is important when the operators ¤ ( necessarily) and ♦ (possibly) are
used. For example, ¤A cannot be described as function of the references of its
parts (¤) and A) but can be described as a function of the senses of these parts.
The intensionality in natural language is induced by propositional attitude verbs
as: think, believe, regret, etc.

In the following we shall denote by αi and αe, intension and extension of
an expression α, respectively. There is a cancellation rule e,i very important
in simplification of the expressions produced by the translation of sentences in
natural language: αi,e = αe,i = α.

The expressions for determinants every and a, some will be, considering the
intensionality:

λZ[λY [∀x(Ze(x) → Y e(x))]]

respectively

λZ[λY [∃x(Ze(x) ∧ Y e(x))]].

As in the case of type-theoretic version of the language L1, Lt, the syntax
contains recursive definitions of the types. The basic types are, as above t, e .
Additionally, is used the symbol s for sense, which will allow to associate with
every type a a new type 〈s, a〉.

Observation:
The expression of type 〈s, a〉 have as extension, intension of expression of type

a.
The formation rules for types are as follows:
Definition:

• t and e are types;
• If a and b are types, then 〈a, b〉 is a type;
• If a is a type, then 〈s, a〉 is a type;
• All types are obtained by applying the induction rules of a finite number

of times.
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3. Montague’s grammar

In his paper “The proper treatment of quantification in ordinary Englis” (1973),
Montague formulated a syntax and a semantics for natural language (NL) which
has the same rigor and precision as the syntax and semantics of formal languages.
He introduced for NL a categorial grammar with the name PTQ, from the name
of the paper. This grammar PTQ uses 11 types (syntactic categories) of words:
sentences, intransitive verbs, term(en)s (NP, proper nouns, pronouns,etc), tran-
sitive verbs, adverbs of type VP, sentence adverbs, common nouns, prepositions,
sentence complement verbs, (believe, assert, etc, used with “that”), infinitive com-
plement verbs (try, wish, etc) , determiners (every, the, a, an).

In the categorial grammar PTQ of Montague, the type (syntactic categorie) is
defined as [7, 8, 3]

• t is a syntactic category, of the expressions to which a truth value can
be assigned, i.e. the category of sentences;

• e is a syntactic category, of the expressions to which entities can be
assigned;

• if A is a syntactic category, and B is a syntactic category then A/B is a
syntactic category.

The rule of the categorial cancellation is the following: if an expression of cate-
gory A/B combines with an expression of category B then is proceeded an expres-
sion of category A.

The nine categories above have “predefinited” types: for example, intransitive
verbs are of type t/e, terms have the type t/(t/e), “believes that” have the type
(t/e)/t, etc (as in the bellow figure).

If we would analyses how the sentences John walks or John believes that Mary
walks, are obtained by the categorial cancellation rule we shall obtain sentences of
type t. Indeed, denoting by + juxtaposition, we have:

Johnt/(t,e) + walkst/e = (John walks)t

Johnt/(t,e)+(believes that)(t/e)/t+(Mary walks)t = (John believes that Mary walks)t.

Definition:
A sentence is any recursive combination of basic expressions that produces, after

a finite number of applications of the categorial cancellation rule, an expression of
category t.

In Table 1 we will present the syntactic categories of the PTQ grammar.

3.1. Syntactic rules in the PTQ categorial grammar. In the following we
will use the notation: if A is a syntactic category then BA is the set of words in
the dictionary(lexical entries) of category A and PA is the set of groups of words
of category A. For A = t, Bt is the empty set.

The first of the syntactic rules is the following:
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Name Categorial definition Denotation Example
t − sentence −

IV t/e V P ; intrans. verb run, walk, talk
T (term) t/IV or t/(t/e) NP ; proper name John,Mary

TV IV/Tor(t/e)/(t/(t/e)) transitive verb find, eat, love
IAV IV/IV V P adverb rapidly, slowly
CN t//e commonnoun man, woman
SA t/t sentence adverb necessarily

Prep IAV/T preposition in, about
SCV IV/t sentence compl. verb believe, assert
ICV IV//IV infinitive compl. verb try, wish
DET T/CN determiner every, the, a, an

Table 1. The syntactic categories of the PTQ grammar

• S1. For each syntactic category A, the set BA is included in PA.
All the syntactic rules forming complex expressions have the general

form:
• Si: If α ∈ PA/B and if β ∈ PB then Fi(α, β) ∈ PA.

Some examples of the rules proposed by Montague are given hereafter :
• S2 (Complex expressions of category Term):

If α ∈ PT/CN and if β ∈ PCN then F2(α, β) ∈ PT .
The function F2(α, β) is α∗β where α∗ is α except in the case where

α is a and the first word in β begins with a vowel; in this case α∗ = an.
• S4 (Complex expressions of category t, sentences):

If α ∈ PT and if β ∈ PIV then F4(α, β) ∈ Pt.
The function F4(α, β) is αβ∗ where β∗ is the result of replacing the

first verb from β by its third person singular present form.
The rules introduced by Montague permit the translation in de dicto (non-

specific) mode and also in de re (specific) mode for a sentence.
He first defined a correspondence between syntactic category and the types in

the form of a function f .
Definition:

• f(t) = t;
• f(CN) = f(IV ) = 〈e, t〉;
• f(A/B) = 〈〈s, f(B)〉, f(A)〉 for all syntactic category A and B.

The correspondence between syntactic categories and types is indicated in Table
2.

Beside the types, the expressions themselves are translated. Let us observe first
that basic expressions (lexical entries) are translated in constants of type 〈e, t〉
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Syntactic category Type
t t

IV 〈e, t〉
CN 〈e, t〉

T (term) = t/IV 〈〈s, 〈e, t〉〉, t〉
TV = IV/T 〈〈s, 〈〈s, 〈e, t〉〉, t〉〉, 〈e, t〉〉

IAV = IV/IV 〈〈s, 〈e, t〉〉, 〈e, t〉〉
T/CN 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉

t/t 〈〈s, t〉, t〉
SCV = IV/t 〈〈s, t〉, 〈e, t〉〉

ICV = IV//IV 〈〈s, 〈e, t〉〉, 〈e, t〉〉
IAV/T −

Table 2

Formal expression Associated type
P 〈s, 〈e, t〉〉
P e 〈e, t〉
j e

P e(j) t(categorial cancellation rule)
λP [P e(j)] 〈〈s, 〈e, t〉〉, t〉( cancellation rule forλexpressions)

Table 3

as for example: lexical entries man and walk are translated in man’ and walk’.
The translation of proper nouns is defined as follows: John has as translation
John′ = λP [P e(j)] where P is a predicate variable and j is a constant which
represents John. Let us verify that λP [P e(j)] is of type specific for terms, that
means 〈〈s, 〈e, t〉〉, t〉. See Table 3.

For translation formalism is enough to define for each syntactic functional ap-
plication rule Sj (j=1,...14 ) of the form:

Sj: If α ∈ PA/B and if β ∈ PB then Fj(α, β) ∈ PA

a translation rule Tj of the form:
Tj: If α ∈ PA/B and β ∈ PB , and if α and β translate into α′ and β′ respectively,

then Fj(α, β) translates into α′(β′i).
Example:
Let us compute translation of Mary talks. In grammar PTQ we have:
Mary ∈ BT so, by S1, Mary ∈ PT .
talk ∈ BIV and, by S1, talk ∈ PIV .
By S4, Mary talks ∈ Pt.
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The translation of Mary is λP [P e(m)], and the translation of talk este talk′.
Henceforth, the translation of F4(Mary, talk) is α′(β′i) = λP [P e(m)](talk′i). This
last formula may be simplified to

λP [P e(m)](talk′i) = talk′e,i(m) = talk′(m).
The first simplification is a λ conversion, the second is by the rule i,e.
Example
We can verify that the determiner every ( an expression of the category T/CN)

has the appropriate type:
f(T/CN) = f((t/IV )/CN) = 〈〈s, f(CN)〉, f(t/IV )〉 = 〈〈s, 〈e, t〉〉, 〈〈s, f(IV )〉,

f(t)〉〉 = 〈〈s, 〉e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉.
Indeed, for every, which is translated in λZ[λY [∀x(Ze(x) → Y e(x))]] we have:

expression ∀x(Ze(x) → Y e(x)) is of type t. As Y is of type 〈s, 〈e, t〉〉, expression
λY [∀x(Ze(x) → Y e(x)) is of type 〈〈s, 〈e, t〉〉, t〉. Z is also of type 〈s, 〈e, t〉〉, and
then λZ[λY [∀x(Ze(x) → Y e(x))]] is of 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉.

4. The treatment of quantitative sentences

In the following we will try to explain the utility of intensional logic for the
semantic representation of some significant quantitative sentences. This kind of
natural language sentences presents a special importance because of it’s mostly use
as query language over the internet and most of these sentences refer to quantity
(products, money). On the other hand these types of sentences can also be used for
the acquisition of new knowledge in a knowledge base which has as input natural
language sentences.

For an easier exemplification we split the quantitative sentences in three cate-
gories:
• Definite quantity sentences (those sentences of which quantifiers represent

exactly the expressed quantity). Example: Four men cry. John eats an apple.
• Indefinite quantity sentences (the quantifiers of these sentences gives us an ap-

proximation of the expressed quantity without specify it). Example: Most women
cry. A number of people read.
• Restrictive quantity sentences (in this case the quantifiers restrict with preci-

sion the expressed quantity). Example: Maximum five children answer.
Generally speaking, the quantitative sentences are generated by the presence of

numerals, but there are also cases when there aren’t any numeral in these sentences
(for example, the indefinite quantity sentences). This is why we will first try to
present the way that these numerals are translated in the intensional logic.

There are two types of numerals with more importance in the construction of
quantitative sentences, numerals which will be translated in different way:

a) Singles numerals which are determinants of the sentences where they belong
(e.g. Five man laugh).
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b) Numerals which are preceded by an adverb with the role of pre-determinant,
with which it forms the sentence determinant. (e.g. Maximum eleven people left
the room).

In the first case the numerals represent the sentence determinant, so their type
is T/CN and their translation in the intensional logic will be:

λZ[λY [∃NX(Ze(X)∧ Y e(X)∧N = j))]] - where j represents the number indi-
cated by the numeral

In the construction of this expression we used the notation given in [3]. In the
following we will prove that this expression is of type T/CN:

– Ze is of type 〈e, t〉 and X is of type e ⇒ (with the use of cancellation rule)
Ze(X) is of type t;

– in the same way we can prove that the expression Y e(X) is of type t;
– N and j are of the same type e ⇒ (using the definition of the intensional logic)

the expression N=j is of type t;
– again using the definition of intensional logic which says that: if two expres-

sions A and B have the same type t, then the expression A∧B is also of type t. Us-
ing this definition on the above expression⇒ the expression Ze(X)∧Y e(X)∧N = j
is of type t;

– if the expression Ze(X) ∧ Y e(X) ∧ N = j is of type t ⇒ the expression
∃NX(Ze(X) ∧ Y e(X) ∧N = j) is also of type t;

– the expression Y is of type 〈s, 〈e, t〉〉 ⇒ λY [∃NX(Ze(X) ∧ Y e(X) ∧ N = j)]
has the type 〈〈s, 〈e, t〉〉, t〉;

– the expression Z is of type 〈s, 〈e, t〉〉 ⇒ λZ[λY [∃NX(Ze(X)∧Y e(X)∧N = j)]]
has the type 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉, type which is T/CN ¤

In the second situation the numerals will be translated such as base expression
by their semantics (value for the numeral). For example, the numeral four has the
translation 4’.

In the following we will explain (based on an example) the way that definite
quantity sentences will be translated in the intensional logic form (in this example,
we will also show the way that differed type of ambiguities are solved and how we
represent the a and the the determinants). Let us consider the following natural
language sentence that we have to translate in its corresponding intensional logic
formula:

Five men enter a room.

First of all we observe that the sentence is composed by the following atoms:
five – numeral with determinant role
men – common noun;
enter – transitive verb;
a – determinant;
room – common noun;
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Figure 1. The derivation tree for the sentence: Five men enter a room

First we prove that this sentence is semantically correct (which is equivalent
to prove that the sentence type is t). Next we will show that we can map this
sentence in an intensional logic formula.

To prove that the type of this sentence is t, we used a bottom-up algorithm
which constructs the sentence from its atomic parts and then, using the cancella-
tion rule, groups these atoms (see Figure 1).

It can be notice that this is not the only derivation three which we can construct
(at the second step of the construction we could apply the cancellation rule to
couple enter with five men instead with the sequence a man - this is named the
de re interpretation). This two way interpretation of the sentence is caused by its
ambiguity introduced by the scope of the quantifiers.

Now we try to translate this sentence. As we saw earlier, there are two inter-
pretations for this sentence: de dicto and de re. Each type of interpretation will
gives us another formula of the intensional logic (this is possible because of the
semantic ambiguity introduced by this sentence).

To translate this sentence we have to add a new cancellation rule for the com-
position of the sequence α of any type and the sequence β of type T. Thus, the
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cancellation rule for the sequence αβ is (FT ) FT (α, β) = β′(α′i) where α′, β′

represents the translation of the α, β respectively.
First, we will analyze the de dicto interpretation for the sentence translation.

For the sentence translation we have to follow the steps below:
• five∈ PT/CN and this expression translation is (with the respect of what we

had shown at the beginning of this chapter) λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧N =
5)]];
• men∈ PCN and its translation is men’. Thus, the expression five men will be

translated (after the use of the λ-conversion and the i,e-rule) as:
λY [∃NX(men′(X) ∧ Y e(X) ∧N = 5)]] (which has the type T );

• a∈ PT/CN and the translation of this expression is λA[λB[∃1J(Ae(J) ∧
Be(J))]] (to be more specific, we use another set of variables - the notation is
taken from [4]); room ∈ PCN and its translation is room’. Thus, after applying
the cancellation rule and after the use of the λ-conversion and the i,e-rule, the
expression a room will be λB[∈1 J(room′(J) ∧Be(J))] whose type is T .
• enter∈ PIV/T with the translation enter′2 (where the numeral 2 means that

this predicate needs two arguments - this can be also expressed with the help of
lambda calculus:λA[λB(enter(A,B))]). After the use of the cancellation rule to
the expressions enter (of type IV/T) and a room (of type T ) we receive (we use the
FT cancellation rule because the type of the expression a room is T ) - after applying
the λ-conversion and the i,e-rule - the expression ∃1J(room′(J)∧enter′1(J)) whose
type is IV (the predicate enter′1 means that the predicate enter’ needs another
argument)
• Now we only have to couple the remaining two expression: five men (whose

type is T ) and enter a room (whose type is IV ), which has the following trans-
lations λY [∃NX(men′(X) ∧ Y e(X) ∧ N = 5)]] and ∃1J(room′(J) ∧ enter′1(J))
respectively. After applying the λ-conversion and after applying the i,e-rule we
will obtain the following expression of the intensional logic:

∃NX(men′(X) ∧ ∃1J(room′(J) ∧ enter′1(J))(X) ∧N = 5) ⇐⇒

∃NX(men′(X) ∧ (∃1J(room′(J) ∧ enter′(J,X))) ∧N = 5)

The semantic of this formula express the fact that there are exactly five men
who enter in a room (not necessarily the same room).

To obtain the other translation of the sentence we must follow the de re inter-
pretation (we will give only the important steps of the process - the steps which
was excluded are the same with the previous interpretation):
• five ∈ PT/CN and this expression translation is (with the respect of what we

had shown at the beginning of this chapter) λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧N =
5)]];
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• men ∈ PCN and its translation is men’. Thus, the expression five men will be
translated (after applying the λ-conversion and the i,e-rule) as:

λY [λNX(men′(X) ∧ Y e(X) ∧N = 5)]]

(which has the type T);
• enter ∈ PIV/T with the translation enter ′2. This, the expression Five men

enter will be mapped in:

∃NX(men′(X) ∧ enter′1(X) ∧N = 5)]

(whose type is t/T); (I)
• a ∈ PT/CN and the translation of this expression is λA[λB[∃1J(Ae(J) ∧

Be(J))]] (to be more specific, we use another set of variables - the notation is
taken from [4]); room ∈ PCN and its translation is room’. Thus, after applying
the cancellation rule and after the use of the λ-conversion and the i , e-rule, the
expression a room will be λB[∃1J(room′(J) ∧Be(J))]whose type is T ; (II)
• after the combining the two expressions (I) and (II) and after using the can-

cellation rule FT we will obtain the following formula:

∃1J(room′(J) ∧ (∃NX(men′(X) ∧ enter′1(X) ∧N = 5))(J)) ⇐⇒
∃1J(room′(J) ∧ (∃NX(men′(X) ∧ enter′(X,J) ∧N = 5)))

The semantic of this formula express the fact that there is exactly one room in
which five men enter. In the same way we can translate the sentence Five men
enter the room (formula which is obtained by replacing the “a” determinant with
the “the” determinant) which has the following to translation (corresponding to
the de dicto and de re interpretation):

∃NX(men′(X) ∧ (∃1J(∀K(room′(J) ≡ J = K) ∧ enter′(J,X))) ∧N = 5)

(de re) and

∃1J((∀K(room′(J) ≡ J = K) ∧ (∃NX(men′(X) ∧ enter′(X,J) ∧N = 5)))

(de dicto)
As it may be seen these two expressions are equivalent semantically speaking.
Now we show how we can map another type of quantitative sentences: the

restrictive quantity sentences. As we had done in the previous case we will start
to analyze an example sentence. Thus, let consider the sentence: Minimum ten
men laugh, where:

minimum – adverb (pre-determinant) with the type T/CN/T/CN ;
ten – numeral;
men – noun;
laugh – intransitive verb.
It can be prove that this sentence is correct (from the syntactic point of view)

in a similar way as it was proved for the exact quantity sentence.
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For the formula translation we have to follow the following steps (as we had
done earlier with the other example):
• minimum ∈ PT/CN/T/CN and its translation:

λK[λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧minimum′(N,Ke))]]]

Which has the type T/CN/T/CN (to prove the type we must do the steps
shown for the numeral)
• ten ∈ PT/CN and its translation will be 10’. After applying the cancellation

rule for the above two expression (after applying the λ-conversion and the i,e-rule)
we obtain:

λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧minimum′(N, 10′))]];

• men ∈ PCN which translation is men’. Thus, the translation of the expression
minimum ten men (after applying the λ-conversion and the i,e-rule) is:

λY [∃NX(men′(X) ∧ Y e(X) ∧minimum′(N, 10′))];

• laugh ∈ PIV with the translation laugh’. Thus the final translation of the
sentence minimum ten men laugh (after applying the λ-conversion and the i,e-
rule) will be:

∃NX(men′(X) ∧ laugh′(X) ∧minimum′(N, 10′))

- with the type t;
The semantic of this formula means that there are minimum ten men who laugh.

It must be remarked that in this case we had also a λ-variable (K) which took
place as a predicate argument (predicate which is also expressed by an λ-variable).

The last type of sentences which will be discussed here is the indefinite quantity
sentences. This type of sentences does not need the presence of the numeral. For
this kind of sentences we choose the following sentence: Most people run where
the syntactic types of its atoms are:

most – determinant;
people – noun
run – intransitive verb
Similarly to the previous two formulas we can prove that this formula type is t

(this, the sentence is correct in the syntactic point of view).
As we have already seen in the other cases, we will follow the next steps:
• most ∈ PT/CN with the translation:

λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧most′(N))]]

- of the type T/CN
• people ∈ PCN its translation is people’. After applying the cancellation rule

with the expression most (after applying the λ-conversion and the i,e-rule) we
obtain:

λY [∃NX(people(X) ∧ Y e(X) ∧most′(N))]
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- of type T
• run ∈ PIV with the translation run’. After applying the cancellation rule

with the above expression (after applying the λ-conversion and the i,e-rule) we
obtain the final formula:∃NX(people(X)∧ run′(X)∧most′(N)) - which expresses
the fact that there are N people who run and N follows the most’ predicate.

By the previous three examples we wanted to show the importance of the cate-
gorical grammars and of the intensional logic in the natural language representa-
tion in general and of the quantitative sentences in particular. As we have seen,
this translation technique of the natural language semantic can be used success-
fully in real life. It can also be applied to express more complex sentences that
can hardly solved with the use of other grammars.
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