
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 1, 2001

PURELY FUNCTIONAL PROGRAMMING AND THE
OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

Abstract. According to the purely functional paradigm, the value of an
expression depends only on the values of its subexpressions, if any.

In this paper we introduce this principle in the object-oriented para-
digm. The simplicity and power of functional languages is due to properties
like pure values, first-class functions, and implicit storage management. We
must extend these properties with a strong type-system.

The values must be typed, the type system used for this purpose is the
higher-order, explicitly-typed, polymorphic λ-calculus with subtyping, called
F ω
≤ .

This type-system must be prepared for basic mechanisms of object-
oriented programming: encapsulation, message passing, subtyping and in-
heritance. Polymorphic functions arise naturally when lists are manipulated
and lists with elements of any types can be accomplished by a straightforward
generalization of inheritance.

Interesting questions are also, how to introduce the object- oriented
inheritance, the subtyping mechanism and the object oriented polymorphism.
Key Words and Phrases: untyped and typed λ-calculus, object-oriented

programming, inheritance, polymorphism.

1. Introduction

In this paper we introduce the principle of purely functional paradigm into the
object-oriented paradigm and we concentrate the solutions of problems related to
each kind of inheritance and polymorphism.

We are going to focus our attention on a simple object model in which an object
has a value that can be modified by messages.

An object has an internal state and methods, the states have unusual feature:
the internal state of all objects is immutable, the result of methods are values
rather side-effects of variables.

The simplicity and power of functional languages are due to properties like pure
values, first-class functions, and implicit storage management. We must extend

2000 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. D.1.1 [Software]: Programming Techniques – Ap-

plicative (Functional) Programming; D.1.5 [Software]: Programming Techniques – Object-
oriented Programming.

101

102 LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

these properties with a strong type system, the type system Fω
≤ is applied. A

summary of this type system is given in the next section.
There are three object models from literature, the record model, the existential-

type model and the axiomatic model [2]. We use the the record model to refer
to the representation of objects by recursively defined records in which a class
is represented by a record of variables and methods. Using λ-calculus and type
system Fω

≤ extended by record structures we have a purely functional model of
object-oriented programming.

We also show how to write well-typed polymorphic functions that operates on
different objects. A polymorphic function can be applied to arguments of more
than one type. We concentrate on parametric polymorphism, a special kind of
polymorphism, in which type expressions are parametrized.

2. Type system Fω
≤

Church’s ordinary typed λ-calculus has the name F1, F2 correspond to Girard’s
and Reynold’s second-order typed λ-calculus. F3 is obtained from F2 by allowing
type constructors that transform existing types into new types, and it follows
that the kind has the form ∗ or ∗ → kind. Using successively higher kind, we
obtain systems F4, F5,. . . The union of all these systems is called Fω. In system
Fω the syntax of kinds has the form

kind := ∗
| kind → kind

One of the natural extension of type system Fω deals with subtyping, a simple
version of such a system is Fω

≤ . The description of this system is described for
example in [3].

A further extension of Fω
≤ introduces records [5], it is mainly used to formulate

models for object-oriented systems [1,4].
The syntax of record type, record term construction and record term selection

are as follows:

< type > := {| < name1 >:< type1 >, . . . , < namen >:< typen > |}
< term > := {< name1 >=< term1 >, . . . , < namen >=< termn >}

| < term > . < name >

Now we will extend the rule-system Fω
≤ to allow records.

(1) The kinding rule for record:

Γ ` < typei > ∈ ∗ for each i

⇒ Γ ` {| < name1 >:< type1 >, . . . , < namen >:< typen > |} ∈ ∗

FUNCTIONAL PROGRAMMING AND OBJECT-ORIENTED 103

(2) The rule of record introduction:

Γ ` < termi >:< typei > for each i

⇒ Γ ` {< name1 >=< term1 >, . . . , < namen >=< termn >}
: {| < name1 >:< type1 >, . . . , < namen >:< typen > |}

(3) The rule of record elimination for the record
< term >≡ {< name1 >=< term1 >, . . . , < namen >=<

termn >}:

Γ ` < term >: {| < name1 >:< type1 >, . . . , < namen >:< typen > |}
⇒< term > . < namei >:< typei >

(4) And finally, the subtype rule has two assumptions,
• the subtype record has at least the same fields as the other record

type,
• each of the types of the fields of the subtype need to be subtypes

of the types of the corresponding fields (if they exist) in the other
type.

{name1,1, . . . , name1,m} ⊇ {name2,1, . . . , name2,n}, m ≥ n

Γ ` < type1,i > ≤ < type2,i > for each < name1,i >=< name2,i >

⇒ Γ ` {| < name1,1 >:< type1,1 >, . . . , < name1,m >:< type1,m > |}
≤ {| < name2,1 >:< type2,1 >, . . . , < name2,n >:< type2,n > |}

3. The object-oriented inheritance

A class (child class) inherits state and behavior from its superclass (parent
class). Inheritance provides a powerful and natural mechanism for organizing and
structuring software programs. The instance variables and the methods of the child
class are an extension of the structure and the behavior of the parent class. The
child class extends the properties, the structure of the parent class, and constitutes
a limitation of the meaning.

Definition 3.1 (The principle of substitutability). An instance of the child class
can imitate the behavior of a parent class and can not be distinguished from an
instance of the parent class if it is used in a similar situation. If C is the child
oclass and P is the parent class, C = subst(P) means that each instance of C may
be used instead of an instance of P .

Definition 3.2 (Subtype). A subtype is a class which fulfills the principle of
substitutability (C = subst(P)).

104 LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

Informally, a type σ is a subtype of τ , written σ ≤ τ , if an expression of type σ
can be used in any context that expects an expression of type τ .

The rule for subtyping functions states that σ → τ ≤ σ′ → τ ′ iff σ′ ≤ σ and
τ ≤ τ ′.

This is formalized by extending our λ-calculus with a subtype relation, written
Γ ` S ≤ T to mean that S is a subtype of T under assumptions Γ.

Definition 3.3 (Subclass). A subclass is an arbitrary class created by inheritance,
regardless of the principle of substitutability (C 6= subst(P)).

A subclass may also override the definitions of methods it would otherwise
inherit by redefining them. Because a subclass inherits code for methods, it also
inherits interface type information for the methods that it does not override.

We write Γ ` S < T to mean that S is not a subtype of T , but is a subclass of
T under assumptions Γ.

In the object-oriented paradigm a class is a prototype that defines the variables
and the methods common to all objects of a certain kind.

Let v1, v2, . . . , vi be the variables and let m1,m2, . . . ,mj be the methods,
let V = {V1, V2, . . . , Vi} be the typeclass of each variable and let M =
{M1,M2, . . . ,Mj} be the typeclass of each method (the signature of methods)
for a given class S, where i is the number of variables and j is the number of
methods for a class S = V ∪M .

In that case, the subtyping rule between classes S and T is:

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,

S = V ∪M, T = V ′ ∪M ′,

T = subst(S),

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i′ : V ′

i′ ,m
′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗

⇒ Γ ` S ≤ T

For a better formalization of T = subst(S) or T 6= subst(S) we must give the
subtyping (or subclassing) rule for each kind of inheritance.

FUNCTIONAL PROGRAMMING AND OBJECT-ORIENTED 105

3.1. Specialization.

Definition 3.4 (Specialization). The child class is a specialized form of the parent
class.

Additional functionalities, principle of substitutability is guaranteed. Does not
change the old variables and methods (from parent class), but brings in new vari-
ables and new methods in child class.

V = {V ′
1 , V ′

2 , . . . , V ′
i′ , . . . , Vi}, M = {M ′

1,M
′
2, . . . , M

′
j′ , . . . , Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i > i′, j > j′,

S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i′ : V ′

i′ ,m
′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗

⇒ Γ ` S ≤ T

3.2. Specification.

Definition 3.5 (Specification). The parent class defines an interface, the child
class gives the implementation.

Changes the old variables of parent class, no additional functionalities, principle
of substitutability is guaranted.

V = {V1, V2, . . . , Vi}, M = {M ′
1,M

′
2, . . . , M

′
j},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V ⊆ V ′, M = M ′,

S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M ′
1, . . . ,mj : M ′

j |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i : V ′

i ,m′
1 : M ′

1, . . . , m
′
j : M ′

j |} ∈ ∗

⇒ Γ ` S ≤ T

106 LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

3.3. Construction.

Definition 3.6 (Construction). The parent class provides the functionality, but
gives no logical context to the child class.

Typical kind of subclassing, changes the old variables, methodes, adds new
variables and methods, no substitutability.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S < T

3.4. Generalization.

Definition 3.7 (Generalization). The child class extends the functionality of the
parent class, creates more general instances.

Like the construction, but we can tell absolutly nothing about substitutability.
It depends on particular cases.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S ≤? < T

3.5. Extension.

Definition 3.8 (Extension). The child class adds further functionalities to the
parent class, but does not change any inherited behavior.

The principle of substitutability is guaranted.

V = {V ′
1 , V ′

2 , . . . , V ′
i }, M = {M1,M2, . . . ,Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V = V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V ′
1 , . . . , vi : V ′

i ,m1 : M1, . . . , mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j |} ∈ ∗
⇒ Γ ` S ≤ T

FUNCTIONAL PROGRAMMING AND OBJECT-ORIENTED 107

3.6. Limitation.

Definition 3.9 (Limitation). The child class restricts the use of some of the
behaviors inherited from the parent class.

The principle of substitutability is not guaranted.

V = {V ′
1 , V ′

2 , . . . , V ′
i }, M = {M1,M2, . . . ,Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V = V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V ′
1 , . . . , vi : V ′

i ,m1 : M1, . . . , mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i ,m′

1 : M ′
1, . . . , m

′
j : M ′

j |} ∈ ∗
⇒ Γ ` S < T

3.7. Variance.

Definition 3.10 (Variance). The parent and the child class are variant of each
other, the class – subclass relationship is arbitrary.

The principle of substitutability is not guaranted.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i }, M ′ = {M ′
1,M

′
2, . . . , M

′
j},

V ⊆ V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i ,m′

1 : M ′
1, . . . , m

′
j : M ′

j |} ∈ ∗
⇒ Γ ` S < T

3.8. Combination.

Definition 3.11 (Combination). The child class inherits features from two or
more parent classes. It is commonly called multiple inheritance.

Changes the old variables, methods, brings in new variables, methods. We can
tell absolutly nothing about substitutability. It depends on particular cases.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S ≤? < T

108 LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

4. Summary - Inheritance

The following table contains a general view of object-oriented inheritance kinds:

Kind New New Substi- Changes Changes
variables methods tutability old old

variables methods
specialization Yes Yes Yes No No
specification No No Yes Yes No
construction Yes Yes No Yes Yes
generalization Yes Yes ?(Yes,No) Yes Yes
extension No Yes Yes No No
limitation No No No No Yes
variance No No No Yes Yes
combination Yes Yes ?(Yes,No) Yes Yes

5. The object-oriented polymorphism

According to the object-oriented polymorphism, one message (the same mes-
sage) can be different interpreted by the objects (Methods with the same names,
signatures and with different bodies). Polymorphism is a natural characteristic of
object-oriented languages based on the principles of message passing, inheritance
and substitutability [6].

For a better formalization we must give the subtyping rule for each kind of
polymorphism.

5.1. Overloading.

Definition 5.1 (Overloading). A function name denotes more than one possible
statement sequence.

Overloading extends the syntax of the programming language. For example,
overloading the ’+’ operator for Complex numbers (Complex is a class). Subtyping
rule: see Overriding.

5.2. Polymorphic parameters.

Definition 5.2 (Polymorphic parameters). One method (function or procedure)
can be called with different type of arguments.

A method can be redeclared with a different parameter signature from its an-
cestor, it overloads the inherited method without hiding it. Calling the method in
a descendant class activates whichever implementation matches the parameters in
the call.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},

FUNCTIONAL PROGRAMMING AND OBJECT-ORIENTED 109

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
∃k ∈ {1, . . . , j} : name(mk) = name(m′

k) ∧ signature(mk) 6= signature(m′
k)

⇒ Γ ` S ≤ T

Where name(m) is the name of the method, and signature(m) is the signature
(name and parameter list) of the method.

5.3. Deferring.

Definition 5.3 (Deffering). The parent class declares only the method, the child
class implements it.

Commonly called abstract polymorphism.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
- no method bodies in M, just the declarations.

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
∀k ∈ {1, . . . , j} : signature(mk) = signature(m′

k)
⇒ Γ ` S ≤ T

5.4. Overriding.

Definition 5.4 (Overriding). A child class changes the meaning of a method,
which was defined in the parent class.

Overriding a method means extending or refining it, rather than replacing it.
A descendant class can override any of its inherited virtual methods. It is the
common and the most used case of polymorphism.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗

110 LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

∃k ∈ {1, . . . , j} : signature(mk) = signature(m′
k)

⇒ Γ ` S ≤ T

6. Summary - Polymorphism

The following table contains a general view of object-oriented polymorphism
kinds:

Kind Same Same Same Abstract Extends
names bodies signatures methods the syntax

overloading Yes No Yes No Yes
parameters Yes No No No No
deferring Yes No Yes Yes No
overriding Yes No Yes No No

References

[1] Atsuchi Igarashi, Benjamin C. Pierce, Foundations for Virtual Types, ECOOP’99, LNCS
1628, 1999, 161–185.

[2] Martin Abadi, Luca Cardelli, A Theory of Objects, Springer-Verlag, 1996.
[3] Luca Cardelli, Notes about F ω

≤ , http://citeseer.nj.nec.com/cs, Unpublished manuscript, Oc-

tober 1990
[4] Kathleen Fisher, John C. Mitchell, The Development of Type Systems for Object-Oriented

Languages, Stanford University, STAN-CS-TN-96-30
[5] Benjamin C. Pierce, Type Systems, Draft, 2000.
[6] Luca Cardelli, Peter Wagner, On Understanding Types, Data Abstraction and Polymorphism,

ACM Computing Surveys, 17 (4), 1995, 471–522

Department of Computer Systems, Babeş-Bolyai University, Cluj-Napoca
E-mail address: klehel@cs.ubbcluj.ro

John von Neumann Faculty of Informatics, Budapest Polytechnic, Budapest
E-mail address: legradi@nik.bmf.hu

Department of General Computer Science, Eötvös Loránd University, Budapest
E-mail address: csz@inf.elte.hu

