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AN EFFICIENT WAY TO MODEL P SYSTEMS BY
X-MACHINE SYSTEMS

HORIA GEORGESCU

Abstract. Starting from the powerful concept of stream X-machine, the
author proposed in some previous papers an original way to integrate more
stream X-machines with ε-transitions into a system. The communication be-
tween the components is assured by means of a communication matrix, used
as a common memory. It was proved that by introducing an additional com-
ponent, it is possible to achieve communication in a structured way, namely
by channels, with select constructs appearing in each communicating state.
This model was used for proving that P systems may be modelled by com-
municating stream X-machine systems. Even if the proof is a constructive
one, it is not satisfactory due to its low level of concurrency. In this paper
a much more efficient construction, from the concurrency’s point of view, is
presented.

Keywords: P systems, Communicating X-machine systems, concur-
rent processes, communication using channels.

1. Introduction

The concept of X-machines was introduced by Eilenberg in [4] and used by
Holcombe [7] as a possible specification language. Afterwards, a lot of research
has been done in this field.

The new features which differentiate an X-machine from a finite-state one are:
a set of processing functions Φ, an input and an output tape and a set X which
characterizes the internal memory of the machine. The transitions between the
states are performed according to these functions. The X-machine evolves from
one state to another according to the current state, the content of the input tape
and internal memory and the function chosen to be applied. A new item may
be added to the output tape after a transition takes place. In this way both the
system data and the control structure are modelled, while allowing them to be
separated.
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The research performed during the last years concerned mainly their generative
power and their possible use for testing. Very little attention has been paid to the
possible communication between these machines and consequently to their use for
specification of concurrent processes.

In [2] cooperating distributed grammar systems are used for modelling their
concurrent behaviour.

In [5] another approach was proposed, using a communication matrix for the
communication between the X-machines. Using this model, in [1] it was proved
that communicating stream X-machines systems are equivalent (from the genera-
tive power point of view) with a single X-machine.

A different approach from [5] is proposed in [3], where more powerful tools are
added. The new mode allows the use of channels as the mechanism for passing mes-
sages between the X-machines. It also allows implementation of specific constructs
for channels as select with an optional terminate clause. The main idea was to
introduce a new X-machine, called Server, for controlling the communication be-
tween the components of the system; the last column (the one corresponding to
the X-machine Server) of the communication matrix is used too. Following this
model, an automatic scheme for writing concurrent programs (in Pascal-FC or
Ada like style) was proposed.

Any non-trivial biological system is a hierarchical construct, made up of several
organs which are well defined and delimited from their neighbouring organs. Each
organ evolves internally, but also cooperates with neighbour organs in order to keep
alive the system as a whole; cooperation consists in a flow of materials, energy and
information, necessary for the functioning of the system.

A membrane structure is composed of regions delimited by membranes. A
region is a space enclosed by membranes. neighbour regions communicate through
the membranes separating them. The space outside the skin membrane is called
the outer region.

P systems have been studied mainly from the point of view of their computa-
tional power and it was shown that their generative power is that of the Turing
machines. The main results can be found in [8] and [9].

P systems were used also for solving NP-complete problems in polinomial time.
For this purpose, one approach is to allow the number of membranes to grow
dinamically (see [11]), while another approach is to count only the changes of
configuration (see [10]). Unfortunately, in the first approach the number of mem-
branes grows exponentially, while in the second approach the local time complexity
is exponential too.

In [6] it was shown that P systems may be modelled by communicating stream
X-machine systems.
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In Section 2 and Section 3, the basic results concerning communicating stream
X-machine systems (CSXMS) and P systems are reviewed. In section 4 it is
presented a new construction for modelling P systems by CSXMS; this construction
assures a high degree of concurrency.

2. Communicating Stream X-machine Systems

Definition 1. A stream X-machine with ε-transitions is a tuple:

X = (Σ, Γ, Q,M,Φ, F, I, T,m0),

where:
• Σ and Γ are finite sets called the input and output alphabets, respectively;
• Q is the finite set of states;
• M is a (possibly infinite) set called memory;
• Φ is a finite set of partial functions of the form:

f : M × Σε → Γε ×M ;

• F is the next state function F : Q× Φ → 2Q;
• I and T are the sets of initial and final states;
• m0 is the initial memory value

together with an input tape and an output tape. F must be a total function.

We define a configuration of the X-machine by (m, q, s, g), where m ∈ M, q ∈
Q, s ∈ Σ?, g ∈ Γ?. A machine computation starts from an initial configuration
(m0, q0, s0, ε), where q0 ∈ I and s0 ∈ Σ? is the input sequence.

A change of configuration, denoted by ` : (m, q, s, g) ` (m′, q′, s′, g′) is possible
if:

• s = σs′, σ ∈ Σε;
• there is a function f ∈ Φ with F (q, f) 6= ∅ and q′ ∈ F (q, f) (in which

case we say that f may be applied, f emerges from q and reaches q′), so
that f(m, σ) = (γ, m′) and g′ = gγ, γ ∈ Γε.

The output corresponding to an input sequence s ∈ Σ?, is defined as:

X(s) = {g ∈ Γ?|∃m ∈ M, q0 ∈ I, q ∈ T, so that (m0, q0, s, ε)
?

` (m, q, ε, g)}

where
?

` denotes the reflexive and transitive closure of `.

Definition 2. A Communicating Stream X-machine System (CSXMS for short)
is a system

Sn = ((Xi)i=1,...,n, CMn, C0),

where:
• Xi = (Σi, Γi, Qi,Mi × CMn, Φi, Fi, Ii, Ti,m

0
i ) are X-machines;
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• M = M1 ∪ . . .∪Mn is the set of memory values and M̃ = M ∪SS is the
set of (general) values, where SS is a set of special strings of symbols
different from those in M .

• CMn is the set of all matrices of order n× n with elements in M̃ . This
set defines the possible values of the global memory of the system, which
is used for communication between the component X-machines; therefore
it is referred to as the communication matrix;

• C0 is the initial communication matrix;
• for any i and f ∈ Φi, f : Mi × CMn × Σε

i → Γε
i ×Mi × CMn.

Let Γ = Γ1 ∪ . . . ∪ Γn. A common output tape O is used by all components. It
is initially void and afterwards it contains sequences g ∈ Γ?.

We mention that each X-machine Xi can access (read from or write to) only
+i, where +i denotes the set of all elements in the ith line and ith column of the
communication matrix. An element Cij may receive the value @, meaning that the
connection from Xi to Xj is disabled. A disabled connection can not be enabled
later.

In each X-machine Xi there are two kinds of states: Qi = Q′
i∪Q′′

i , Q′
i∩Q′′i = ∅,

where Q′i contains processing states and Q′′i contains communicating states. The
final states are processing states; there is no function emerging from them.

The functions emerging from a processing state depend only on the local mem-
ory and on the local input tape and are meant to (partially) change the local
memory and possibly add some information to the output tape O.

The functions emerging from a communicating state depend on the local mem-
ory and on +i and are meant to move a value from the internal memory to the
communication matrix and viceversa, as well to assign a special value to the com-
munication matrix.

When an X-machine Xi moves to a final state, all elements in +i have to change
their values into @.

A configuration of a CSXMS system Sn has the form: z = (z1, . . . , zn, C),
where:

• zi = (mi, qi, si, gi), i = 1, . . . , n;
• mi is the current value of the memory Mi of Xi;
• qi is the current state of Xi;
• si ∈ Σ?

i is the current input sequence of Xi;
• gi ∈ Γ?

i is the current output sequence of Xi;
• C is the current value of the communication matrix of the system.

The system starts with all X-machines in their initial states, C = C0 and
Mi = m0

i for all i ∈ {1, . . . , n}. The initial configuration of the system is z0 =
(z0

1 , . . . , z0
n, C0), where z0

i = (m0
i , q

0
i , s0

i , ε) with q0
i ∈ Ii.

We can think about a change of configuration z |= z′ as follows: let t be the time
when the system reached the configuration z and t′ the closest following moment
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Figure 1. The select construct for communicating states

of time at which a component terminates the execution of a function; then z′ is
the configuration of the system at time t′.

A change of configuration:

(1) z = (z1, . . . , zn, C) |= z′ = (z′1, . . . , z
′
n, C ′)

with zi = (mi, qi, si, gi), z′i = (m′
i, q

′
i, s

′
i, g

′
i), si = σis

′
i, σi ∈ Σε

i , g′i = giγi, γi ∈ Γε
i

for any i, may be described as follows. Let C0 = C. For i taking the values
1, 2, . . . , n in this order, there are two possibilities:

• either zi = z′i, or
• there exists a function f ∈ Φi emerging from qi and reaching q′i ∈

Fi(qi, f) and Ci ∈ CMn so that f(mi, Ci−1, σi) = (γi,m
′
i, Ci).

The X-machines act simultaneously. The system stops successfully when all
X-machines reach final states (i.e. all values in C are @).

Let
?

|= be the reflexive and transitive closure of |=. Then the output computed
by a CSXMS Sn corresponding to an input sequence s can be defined as follows:
X(s) = {g = (g1, . . . , gn) ∈ Γ?

1× . . .×Γ?
n |∃z0 an initial configuration and z a final

one, z0
?

|= z, with z = (z1, . . . , zn, C), C ∈ CMn and zi = (mi, qi, ε, gi) for any
i = 1, . . . , n}.

The mechanism introduced above assures only a low level of synchronization.
Therefore channels were intoduced as a higher level of synchronisation.

For this aim, in each communicating state of each X-machine Xi the classical
select construct with guarded alternatives and terminate clause was introduced,
as presented in Fig.1. The alternatives alts, s ∈ {1, . . . , k}, should have the
following forms:

1) [when condk =>] j ! val
2) [when condk =>] j ? v

with the following meanings:

1) if condk is fulfilled, then val has to be sent to the X-machine Xj (via Cij);
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Figure 2. A membrane structure

2) if condk is fulfilled, then v of Mi has to receive a value from the X-machine Xj

(via Cji).

The alternatives are macrofunctions; val is a memory value, conds depends only
on the local memory Mi and on the local input tape, and v is a variable of Mi.
As usual, the square brackets show that the information they include is optional.

The terminate clause acts as follows: if the other alternatives in the select
construct are false and will be false forever, then the X-machine stops. In other
words, if present, the terminate clause applies when all X-machines Xj to/from
which Xi tries to send/receive messages have stopped. Executing terminate
implies moving to a final state.

In the following, the form of functions emerging from a communicating state
can be only as in Fig. 1.

In [3] an implemetation of the select constructs was proposed and it was proved
that this implementation is a correct one.

The above results are important due to the well known power of communication
using channels. A first result appears in [3]: the authors present an automatic
scheme for generating a concurrent program, written in an Pascal-FC or Ada like
style, starting from an arbitrary CSXMS that uses in communicating states only
select constructs. Another result appears in Section 4.

3. P Systems - Membrane Computing

Let us consider the membrane structure in Fig. 2, where the outer region has
the label 0. Due to its intrinsic hierarchical type, a membrane structure may be
represented in a paranthesized form. For the example in Fig. 2, the corresponding
representation is: [1[2]2[3[5]5]3[4[6]6[7]7]4]1.

Membrane structures may be represented also as a special kind of trees, which
we will call P-trees. A P-tree associated to a membrane structure is defined as
follows:
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Figure 3. The tree associated to the membrane structure in
Fig. 2

• each of the n + 1 nodes in the tree corresponds to a region in the mem-
brane structure; the nodes are labeled with 0, 1, ..., n, where 0 is always
the label of the outer region, and 1 is the label of the region just inside
the skin membrane;

• for each node i ∈ {1, ..., n}, edges diverge towards its father and its sons,
corresponding to the membranes which separate the respective region
from the neighbour regions;

• no edge diverges from node 0.

The edges show the way in which information may be sent from one node
(region) to another one.

The P-tree T associated to the membrane structure in Fig. 2 is shown in
Fig. 3. To each node (region in the membrane structure) i we associate a finite
languages Mi over an alphabet V . The elements of these languages are called
objects. Since the sets of objects are changing while the system evolves, we denote
by M0

i their initial content and by Mi their current content: (M0, ..., Mn) is the
current configuration of the system.

Generally, a membrane structure is dynamic: a region may be divided into
several regions or may be dissolved. In this paper we will consider only static
structures, in which their forms are never changed, i.e. no region can be divided
or dissolved.

Let Ri be the set of evolution (developmental, replicated rewriting) rules for
each region i = 1, 2, ..., n. They have the form:
a → (α1, t1) ‖ . . . ‖ (αk, tk)
for some k, where a ∈ V and α1, ..., αk ∈ V ∗, while tj , j = 1, ..., k indicate the
targets of the rule and can be only i, the father of i or one of its sons.

Such a rule can be applied to an object in Mi if the object has the form o = βaγ;
if the rule is applied, o is erased and the new objects βαjγ are created and added
to Mtj respectively.
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A computation starts from the initial configuration (M0
0 , M0

1 , ...M0
n): these sets

are initially associated to the nodes of the tree T .
At each step of the computation, the rules are applied to the objects in parallel;

for each object one of the rules (if any) that can be applied to it is chosen randomly
and the resulting objects are sent to their specified targets. All objects which do
not evolve are passed unchanged to the next step.

A computation is complete if it halts: no rule can be used in the current con-
figuration. In this case, the output of the system for this computation is M0 (the
language associated to the outer region).

We can now summarize the above disscussion concerning the (static) membrane
structure as follows:

Definition 3. A P system (membrane structure) is a construct

Π = (V, µ, (M0
0 ,M0

1 , ..., M0
n), R)

where:
• µ is the membrane structure. Let us consider that it is represented as a

P-tree with the nodes 0, 1, ..., n, where n + 1 is the number of the nodes
in the tree. The root of the tree is 0 and its son is 1;

• V is an alphabet;
• M0

0 ,M0
1 , ..., M0

n are the sets of objects initially associated to the nodes
0, 1, ..., n;

• R is the finite set of evolution (replicated rewriting) rules.
A change of configuration (M0,M1, ..., Mn) 7→ (M ′

0,M
′
1, ...M

′
n) is performed by

applying rules to the objects in M0, M1, ..., Mn in parallel, as described above, and
by sending the resulting objects to the specified targets.

The output of the system is the union L of all the languages M0 in final con-
figurations.

Remark 1. Many variants of the above definitions may be considered. Some of
them are presented below:

• a P system (membrane structure) may be dynamic, not only static. In
dynamic systems, the membranes may be divided, dissolved or thickened
(the communication through them is inhibited);

• priorities may be attached to the evolution rules;
• the membranes may have electric charges (+, - or 0); in this case the

evolution rules involve these electrical charges, too;
• the evolution rules may have more specific forms;
• the ouput can be related to an arbitrary node, not necessarily to the

root of the tree. Moreover, the output may be considered to be L ∩O∗,
where O is a given output alphabet;

• for each node i, a specific set of evolution rules may be considered;



AN EFFICIENT WAY TO MODEL P SYSTEMS BY X-MACHINE SYSTEMS 11

• the sets Mi may be replaced by multisets, i.e. an object may appear
more than once in Mi.

4. Implementing P systems using CSXMS

In [6] it was shown that a communicating X-machine system can be associated
to any P system, which simulates the behaviour of the P system:

Theorem 1. Any P system may be simulated by a CSXMS.

The proof was a constructive one. Starting from a given P system, the corre-
sponding CSXMS was built as follows. An X-machine Pi was associated to each
node i ∈ {0, . . . n}. An additional X-machine Pn+1 was considered too. In order to
use communication through channels, the X-machine Server mentioned in Section
2 was added to the system.

The idea of this construct was quite simple. The process (X-machine) Pn+1

receives first from each of P1, ..., Pn the new created objects that are to be sent
to its neighbours together with their targets, as well as the number of the new
generated objects (including those which remain local) and afterwards sends to
P0, P1, ..., Pn the objects for which they are targets. These two steps are executed
repeatedly until the information which Pn+1 receives at the first step is void.

The above construction has a simple form and solves the problem. However it is
not satisfactory in real implementations, due to its very low degree of parallelism:
Pn+1 waits for all of the components P1, ..., Pn to send their information and only
afterwards executes the second step. Therefore we will present a second and much
more efficient way to associate a CSXMS to a P system.

We will omit some cumbersome details, as those concerning the form of the
local memories of the component of the system of X-machines. The stress will
be put on the actions performed by the components and on the communication
between them.

The components of the system are P0, P1, ..., Pn and Server. A channel is asso-
ciated to each edge of the P-tree. For each Pi let fi be the father of node i and Si

the set of the sons of this node (of course, if i is a leaf, then Si = ∅); Pi is linked
through channels in both directions to Pfi and Ps, for all s in Si.

The basic idea of this new construct is that the nodes have to receive the new
objects sent to them in a postorder manner, i.e. an inner membrane always re-
ceives information before its enveloping membrane does it.

For this purpose each node, after generating new objects, performs the following
actions:

• sends to each of its sons the appropriate information
• receives information from its sons
• receives information from its father
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• sends to its father the appropriate information, together with the number
of new objects generated in the subtree for which it is the root

The new objects process P0 receives at each step are sent to the output tape. As
mentioned above, P0 receives also the total number of the new generated objects.
Only if this number is zero (no new objects were generated in the nodes of the
P-tree), it starts the halting procedure.

The halting procedure is done in a preorder manner, using (of course) the se-
lect construct with a terminate clause. Process P0 merely stops; in this way, the
channel linking him to it unique son is disabled. When the process associate to any
other node tries to receive information from its father and this father has already
stoped, it will stop too; this is ensured by including in the select implementing
this receive operation, the terminate clause. In this way, all channels having this
node as sender are disabled.

The component P0 sends to P1 the number 0 and receives from it the new gener-
ated objects for which it is the target, as well as the number k of all new generated
objects when passing from a configuration to the next one. If k = 0 then P0 halts.
nr ← −1
repeat

if nr = 0
then select

terminate
end

else -
nr ← 0
select

1 ! 0
end
select

1 ? J, k
end
nr ← k

until false

The processes P1, ..., Pn perform the actions described above:
repeat

nr ← 0
generate the new objects, update the current set Mi and collect in Jfi

and {Js|s ∈ Si} the information to be send to the neighbours
for all s ∈ Si

select
s ! Js
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end
endfor
for all s ∈ S

select
s ? J, k

end
Mi ← Mi ∪ J ; nr ← nr + k

endfor
select

fi ? J, k
or terminate
end
Mi ← Mi ∪ J ; nr ← nr + k
select

fi ! Jfi

end
until false

The number of the components in the system is n + 2. The number of chan-
nels used for communication is 4n+2: 2n channels linking the nodes in the P-tree
and 2(n + 1) channels linking these nodes to Server.

The communication matrix may be replaced by a matrix with 4 lines and n+1
columns.

The main enhancement of this new construct consists in the fact that the de-
gree of concurrency is much higher then in the former construct and in this way
corresponds to the model originally designed for P systems.

The halting of the whole CSXM system is ensured (as mentioned) in preorder,
so that some nodes may still perform some actions until they are ”announced” by
their father that they have to halt.

5. Conclusions

In this paper we proposed a new construct for modelling P systems by CXSMS.
The implementation uses communication through channels between components,
as described in [3]. The CSXM associated to a P system has a high degree of
concurrency, which can be exploited when a multiprocessor device is available.
The new construct can be rather easily implemented in programming languages
like Java, so that the evolution of a membrane computing system may also be
implemented in such a language.

Further work includes the study of the different variants of P systems, as de-
scribed in the third section of this paper. A Java implementation of P systems,
using the tools presented in this paper, is in course of development.
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