STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

TERM REWRITING SYSTEMS IN LOGIC PROGRAMMING
AND IN FUNCTIONAL PROGRAMMING

DOINA TATAR, GABRIELA SERBAN

ABSTRACT. Automated theorem proving and term rewriting system are fields
with big interest since some years. Often these fields have a common devel-
opment. Is it not amazingly that logic programming and functional program-
ming, which belongs to both these fields, offers simple solutions to problems
arising at the frontier of them. In [8], the author submitted a challenge for
”finding an optimum way to implement the rewriting systems ”. This paper
presents the way in that the logic programming and functional programming
offer their concision to realize a sound implementation of the TRS.

1. INTRODUCTION

In the first section we will presents shortly the equation systems, the TRS, the
“critical pair” idea and the completion algorithm [1, 5, 7, 10]. In the following
sections we will outline some problems and their solution in our implementation
in Prolog (section 2) and in Lisp (section 3).

Definition 1 An equational theory (F,V,E) consists of:

e a set F of function symbols (with the same sort, for simplicity).
e a set V of variables.
Let T(F,V) be the set of terms build from F and V.
e a set of pairs of equations, s=t,s,t € T(F,V).
The set of equations E defines a syntactical equality relation ==g on T(F,V),
usually defined as “replacing equals by equals”.
The fundamental problem in an equational theory is the “validity” or “word
problem”, which is undecidable:
“Give s and t € T(F,V), does s ==g t ?”
The undecidability (more precisely, the semidecidability) of the “word problem”

is transferred on the approach by the TRS, but this approach is, on the our opinion,
more algorithmically.

2000 Mathematics Subject Classification. 68T15.

1998 CR Categories and Descriptors. D.1.6. [Software] : Programming Techniques —
Logic Programming;1.2.3. [Computing Methodologies] : Artificial Intelligence — Deduction
and Theorem Proving.

T



78 DOINA TATAR, GABRIELA SERBAN

Definition 2. A TRS is a set of rules: R = {l — r | [,r € T(F,V) , every
variables occurring in term r also occurs in term 1 }.

A TRS defines a rewrite relation — g:

Definition 3. s —p tiff thereis a rule [ — r € R and an occurrence p in s such
that the subterm of occurrence p, noted s |, and the term ¢ have the property:

s [p=0(l),t = sp < o(r)]
for some substitution o. Here notation s[p < o(r)] represents the term obtained
from s by replacing the subterm of occurrence p by the term o(r).

We denote by =% and <——7% the reflexive-transitive and reflexive-transitive-
symmetric closure of —g.

In order to solve the “word problem” for an equational theory E, compute an
TRS REg such that s == t is a relation equivalent with s <——% t. Let us denote
REg as associated with E.

The TRS Rg is the canonical ( terminating and confluent ) TRS associated
with E, obtained as output of the completion procedure Knuth -Bendix. This
algorithm has as input the set E and a reduction order over T(F,V).

Definition 4 The normal form of a term ¢ , denoted ¢ | g , is a term with the
followings properties:

1.t —)E tlr
2.t g irreducible.

Observations:

1. If a TRS R has the property that every term has a unique normal form,
then:

s <=7 iff s [g=1t g, because s «+—— t} is s =} s Lr and t =% g. Thus,
testing s <—— t}, is is the same as testing that s lg=1 |g.

2. In a canonical TRS ,R, every term has a unique normal form.

We won'’t describe the well known Knuth-Bendix algorithm. Instead, we will
survey the critical pair idea, staying on the ground of this algorithm.

Definition 5 Let Iy — ry and Iy — ro be two rules in R. By renaming the
variables we may assume that they do not share common variables. If o (l1) =
o2(l2) , then the pair of terms (o1 (l1),02(l2)) is a critical pair for R.

The Knuth-Bendix algorithm computes, for every critical pair (¢1,t2) of R/,
the normal forms ¢; | g and ¢y |g:. If this normal forms are different, then a rule
t1 $r = t2 Lr or converse, (depending of the case t1 g > t2 | g or the converse),
is added to R'. Let observe that the procedure fails if neither ¢; | g'> t2 | g nor
the converse is true.

2. IMPLEMENTATION IN PROLOG

A set of problems for implementation in Turbo Prolog derives from the fact
that in this language does not exist the standard predicates functor, ==, and
op. This fact lead as construct two specific domains in section domains of our
programs as follows:



TERM REWRITING SYSTEMS 79

domains
term=var (symbol) ; con(symbol) ; cmp (symbol,terml)
terml=termx
termll=termlx*

For example, if we must introduce the term f(x,y,a) , we will write:

cmp(f,[var(x),var(y),con(a)]), respecting the conventions for syntax of for-
mulas in first-order logic. Also,if we must introduce the formula p(x,f(y,z)) we
will write:

atom(p,[var(x),cmp(f,[var(y),var(z)])]) .

A TRS R of T rules, as in definition 2, is done by a couple of predicates 1(t,IN)
and r(t,N) where t is a term and N=1, - - - ,Tis the index of the rule. We worked in
this program with the three starting rules associated with the theory FE of groups.

1(cmp(“f”,[con(e),var(a)]),1).

1(cmp(“F” [omp(“g” [var(a)]) var(a)]) 2).

I(cmp(“4” Jemp(“F", [var(a) var(b)])var(c)]).3)-

r(var(a),1).

(con(e) 2).
r(cmp(“f”,[var(a),cmp(“f”,[var(b),var(c)])]),3).

The predicates which realizes the rewriting relation X — Y with a rule N in
definition 3 is the predicate rewrite (X,Y,N) .

rewrite(X,Y,N):-1(X,N),r(Y,N),!'. 1)
rewrite(X,Y,N) : -member_left(X,L1,L2,N), 2)
list_var(X,L_var), (3)
lg_list(Lnou,k), (4)
1(M_stg,N), (5)
aplic_subst(M_stg,Nou_m_stg,L1,L2), (6)
tr_term_str (Nou_m_stg,St_stg), 9]
aplic_subst(X,NouX,L1,L2), (8)
list_var (NouX,L_var_n), 9)
lg_list(Lnoun,K), (10)
tr_term_str (NouX,St), (11)
r(M_dr,N), (12)
aplic_subst(M_dr,Nou_m_dr,L1,L2), (13)
tr_term_str (Nou_m_dr,St_dr), (14)
strsr_first(St,St_stg,St_dr,Nou_string), (15)
tr_str_term(Nou_string,Yinterm), (16)
sc_lista(L2,L1,L2nou,Llinou), an
aplic_subst(Yinterm,Y,L2nou,L1inou),!. (18)

The predicate member-left (denoted by (1)) is defined as follows:

/* member_left(X,L1,L2,N):-the rule N-th has the property that
his left side unifies with a subterm of term X, and the unifier
has the domain L1 and the codomain L2. */

One of the clauses for member-left must be:



80 DOINA TATAR, GABRIELA SERBAN

member _left (X,L1,L2,N):-subterm(S,X),
1(zZ,N),
unify(S,Z,L1,L2).

The predicate aplic-subst( t,s,L1,L2) denoted by (6) applies the substitution
o =(L1/L2) to t obtaining s. The predicates tr-term-str transforms a term
(e.g. f(a,x)) in a string (f2ax). The reason for this transformation is to provide to
predicate:

strsr-first (St,St-stg,St-dr,Nou-string), denoted by (15),
his first three arguments (the lines (7),(11),14)). Thus, one step of the realization
of the relation — is accomplished by the predicate strsr-first. This is defined as:

/* strsr-first(S1,52,S3,5):- the string S is obtained by
replacing in the string S1 the first occurrence of the
substring S2 by the string S3. */

The converse transformation of a string into a term is realized by the predicate
tr-str-term (16). A clause for this one must be:

tr_str_term(X,Y):-str_len(X,L),L>0,frontstr(1,X,Z,0),
frontstr(1,U,N,W),
str_int (N,N1),
frontstr(N1,W,WW,WWwWw) ,
tr_str_terml (WW,V),
tr_str_terml (WWW,V1),
append (V,V1,V2),
Y=cmp(Z,V2),1g_list(V2,N1).

The relation —7% defined as the reflexive -transitive closure of —5 is realized
by the predicate rewrite*. The clauses for this predicate are:

rewritex(X,Y) :-rewrite(X,Y,N).

rescriex(X,Y):-rewrite(X,Z,N),!,rewritex(Z,Y).
The predicates critical-pair and normal-form are defined as:

critical-pair(X,Y):-1(X,N) ,member_left (X,L1,L2,M),1(Z,M),
aplic-subst(Z,Y,L1,L2).
normal-form(X,Y) :-rewrite*x(X,Y) ,not(rewrite(Y,_,_)).

At the end of the application of the Knuth-Bendix algorithm, the canonical
TRS is given as usually by 10 rules. (Some intermediary rules are deleted because
they have been rewritten in the same terms.) The obtained canonical TRS can be
used for demonstrate some theorem in group theory. For example, if we want to
prove that t; = i((i(a) + a) + (b+i(b))) is equal with to = b+ (i(a +b) + a), then
we run the program with normal-form(#;,X) and normal-form(#,,Y). We will
obtain X=Y.



TERM REWRITING SYSTEMS 81

3. IMPLEMENTATION IN LISP

In this section our aim is to present how the rewriting relations could be defined
in LISP.

3.1. LISP representations. First, we have to establish the way in which the
terms are represented in LISP.

a variable x is represented as a list (var x);

a constant a is represented as a list (con a);

a functional symbol f is represented as a list (cmp f);

a function f(LA) where f is a functional symbol and LA is a list of
arguments, is represented as a list ((the list corresponding to f)
(the list of arguments)); for example, f(a,x) is represented as a list

((cmp f) ((con a) (var x))).

With the above considerations, if we must introduce the term g(x,f(y,z)) we
will write ((cmp g) ((cmp f) ((var y) (var z)))).

A rule 1-r from a TRS is represented as a list (list-1 list-r), where list-1 and
list-r are the representations in LISP of the terms 1 and r. For example, a rule
f(a,x)—x is represented as the list (((cmp f) ((con a) (var x))) (var x)).

A TRS R of N rules is represented as a list of rules (rule-1 rule-2 ...rule-N),
each rule is represented as we described above.

In the followings, we work with the three starting rules associated with the
theory of groups. The list of rules is denoted by LR and is the following:

(setq LR ’(
( ((cmp £) ((con e) (var a)))
(var a)
)
(
((cmp £) (((cmp g) ((var a))) (var a)))
(con e)
)
(
(Cemp £) (((emp £) ((var a) (var b))) (var c) ))
((cmp £) ((cmp £) ((var a) ((cmp f) ((var b) (var c))))))
)
)
)

3.2. Functions defined for rewriting rules. The functions which realize the
rewriting relation X—Y with a rule N in definition 3 is the function (rewrite X
N LR) which returns Y.

(defun rewr (X N LR)
; LR represent the list of rules
(prog (RN)



82 DOINA TATAR, GABRIELA SERBAN

(setq RN (rule-N N LR))
(cond
((equal (car RN) X) (return (cadr RN)))
(t (setq Y (cadr RN))
(setq UNIF (member-left X (car RN)))
(cond
((null UNIF) nil)
(t
(setq L1 (car UNIF))
(setq L2 (cadr UNIF))
(return (apply-subst L1 L2 Y))

The function (rule-N N LR) returns the N-th rule from the list of rules LR.

(defun rule-N (N LR)
(cond
((null LR) nil)
((= N 1) (car LR))
(t (rule-N (- N 1) (cdr LR)))

The function (member-left X Y) is defined as follows:

e if YV (the left side of a given rule) unifies with a sub-term of X, and
the unifier has the domain L1 and the codomain L2, then the function
returns the list (L1 L2) (this list is calculated by the function (unify
X Y));

e else the function returns NIL.

(defun member-left (X Y)
(cond
((not (equal (length X) (length Y))) nil)
(t (unify X Y))

The function (apply-subst L1 L2 Y) applies the substitution o = (L1/L2)
to Y and returns the result.
(defun apply-subst (L1 L2 Y)

(subst Y L1 L2)
)



TERM REWRITING SYSTEMS 83
The function (rewrite X) is defined as follows:

e returns a list of elements having the form (N Y), where YV is the right
side of the rewriting relation X—Y with the rule N (if it is possible) -
this list is calculated by the recursive function (rewrite-rule X N LR)
which returns the result of rewriting X with the N-th rule of LR;

e returns NIL, if no rewriting relations for X are possible.

(defun rewrite-rule(X N LR)
(cond
((> N (length LR)) nil)
(t
(setq RN (rewr X N LR))
(cond
((not (null RN)) (cons (list N RN)
(rewrite-rule X (+ N 1) LR)
)
)
(t (rewrite-rule X (+ N 1) LR))
)
)
)
)

(defun rewrite (X)
(rewrite-rule X 1 LR)
)

The relation defined as the reflexive-transitive closure of the rewriting relation
R is defined as the function (rewrite* X).

(defun rewritex (X)
(setq Y (rewrite X))
(append Y (rewr* Y))

)

(defun rewrx* (Y)
(cond
((null Y) nil)
(t (append (rewrite (cadar Y)) (rewr* (cdr Y))))
)
)

The normal-form is defined as a function (normal-form X).

(defun normal-form (X)
(n-form (rewr* X))

)



84

DOINA TATAR, GABRIELA SERBAN

(defun n-form (Y)
(cond

((null Y) nil)
((null (rewrite (cadar Y))) (append (car Y) (n-form (cdr Y))))
(t (n-form (cdr Y)))

)
)
Ezamples
(1) if Xis ((cmp f) (((cmp g) ((var b))) (var b))), then the result of rewriting
X este ((2 (CON e)));
(2) if X is ((cmp f) ((con e) (var b))), then the result of rewriting X este ((1
(VAR b)));
(3) if X is ((cmp f) ((con e) (var a))), then the result of rewriting X este ((1
(VAR a))).
(4) if X is ((emp £) (((emp ) ((var @) (var b)) ((emp g) ((var c)))), then
the result of rewriting X este (3 ((cmp f) ((cmp f) ((var a) ((cmp f) ((var
b) ((cmp g) ((var ©)))))))).
REFERENCES
[1] Avenhaus J., Madlener K. : “Term rewriting and Equational Reasoning” in Formal Tech-
niques in A.I., A coursebook, R.B.Banerdji (ed) 1990.
[2] K.H. Blasius, H.J. Burkert: “Deduction systems in Artificial Intelligence”, Ellis Horwood
Ltd.,1989.
[3] Buchberger B.: “History and basic features of the Critical-Pair Completion Procedure”, J.
of symbolic Computation 3, 1987, pp. 3-38.
[4] W.F. Clocksin, C.S. Mellish : Programming in Prolog, Springer-verlag, 1984.
[5] Huet G., Oppen D.D.: “Equations and rewrite rules: A survey”, in “Formal languages:
theory, perspectives and open problems”, ed. R. Book, 1980.
[6] Jouannaud J.P., Lescanne P.: “Rewriting Systems”, in Technology and Science of Informat-
ics, 1987, pp. 181-199.
[7] Knuth D.E., Bendix P.P.: “Simple word problem in Universal Albgebra”, Comp. prob. in
Abstr. Alg. (ed. J. Leech), 1970.
[8] Lescanne P.: “Current trends in rewriting techniques and related Problems”, IBM int. symp.
on Trends in Computer Algebra, Germany, 1987.
[9] Rusinowitch M.: “Demonstration automatique. Techniques de reecriture” Inter. Edition,
Paris, 1989.
[10] Tatar D.: “A new method for the proof of theorems”, Studia Universit. Babes-Bolyai,
Mathematica, 1991, pp. 83-95.
[11] Tatar D.: “Term rewriting systems and completion theorems proving: a short survey”,

Studia Univ. Babes-Bolyai, Mathematica, 1992, pp. 117-125.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

“BABES-BOLYAI UNIVERSITY, 1, M. KOGALNICEANU ST., RO-3400 CLUJ-NAPOCA, ROMANIA



