
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000TERM REWRITING SYSTEMS IN LOGIC PROGRAMMINGAND IN FUNCTIONAL PROGRAMMINGDOINA T�ATAR, GABRIELA S�ERBANAbstrat. Automated theorem proving and term rewriting system are �eldswith big interest sine some years. Often these �elds have a ommon devel-opment. Is it not amazingly that logi programming and funtional program-ming, whih belongs to both these �elds, o�ers simple solutions to problemsarising at the frontier of them. In [8℄, the author submitted a hallenge for"�nding an optimum way to implement the rewriting systems ". This paperpresents the way in that the logi programming and funtional programmingo�er their onision to realize a sound implementation of the TRS.1. IntrodutionIn the �rst setion we will presents shortly the equation systems, the TRS, the\ritial pair" idea and the ompletion algorithm [1, 5, 7, 10℄. In the followingsetions we will outline some problems and their solution in our implementationin Prolog (setion 2) and in Lisp (setion 3).De�nition 1 An equational theory (F,V,E) onsists of:� a set F of funtion symbols (with the same sort, for simpliity).� a set V of variables.Let T(F,V) be the set of terms build from F and V.� a set of pairs of equations, s=t,s,t 2 T(F,V).The set of equations E de�nes a syntatial equality relation ==E on T(F,V),usually de�ned as \replaing equals by equals".The fundamental problem in an equational theory is the \validity" or \wordproblem", whih is undeidable:\Give s and t 2 T(F,V), does s ==E t ?"The undeidability (more preisely, the semideidability) of the \word problem"is transferred on the approah by the TRS, but this approah is, on the our opinion,more algorithmially.2000 Mathematis Subjet Classi�ation. 68T15.1998 CR Categories and Desriptors. D.1.6. [Software℄ : Programming Tehniques {Logi Programming ;I.2.3. [Computing Methodologies℄ : Arti�ial Intelligene { Dedutionand Theorem Proving. 77



78 DOINA T�ATAR, GABRIELA S�ERBANDe�nition 2. A TRS is a set of rules: R = fl ! r j l; r 2 T(F,V) , everyvariables ourring in term r also ours in term l g.A TRS de�nes a rewrite relation !R:De�nition 3. s!R t i� there is a rule l! r 2 R and an ourrene p in s suhthat the subterm of ourrene p, noted s jp and the term t have the property:s jp= �(l); t = s[p �(r)℄for some substitution �. Here notation s[p  �(r)℄ represents the term obtainedfrom s by replaing the subterm of ourrene p by the term �(r).We denote by !�R and  !�R the reexive-transitive and reexive-transitive-symmetri losure of !R.In order to solve the \word problem" for an equational theory E, ompute anTRS RE suh that s ==E t is a relation equivalent with s !�R t. Let us denoteRE as assoiated with E.The TRS RE is the anonial ( terminating and onuent ) TRS assoiatedwith E, obtained as output of the ompletion proedure Knuth -Bendix. Thisalgorithm has as input the set E and a redution order over T(F,V).De�nition 4 The normal form of a term t , denoted t #R , is a term with thefollowings properties: 1:t!�R t #R2:t #R irreduible:Observations:1. If a TRS R has the property that every term has a unique normal form,then:s  !�R i� s #R= t #R, beause s  ! t�R is s !�R s #R and t !�R#R. Thus,testing s ! t�R is is the same as testing that s #R= t #R.2. In a anonial TRS ,R, every term has a unique normal form.We won't desribe the well known Knuth-Bendix algorithm. Instead, we willsurvey the ritial pair idea, staying on the ground of this algorithm.De�nition 5 Let l1 ! r1 and l2 ! r2 be two rules in R. By renaming thevariables we may assume that they do not share ommon variables. If �1(l1) =�2(l2) , then the pair of terms (�1(l1); �2(l2)) is a ritial pair for R.The Knuth-Bendix algorithm omputes, for every ritial pair (t1; t2) of R0,the normal forms t1 #R0 and t2 #R0 . If this normal forms are di�erent, then a rulet1 #R0!0R t2 #R0 or onverse, (depending of the ase t1 #R0> t2 #R0 or the onverse),is added to R0. Let observe that the proedure fails if neither t1 #R0> t2 #R0 northe onverse is true. 2. Implementation in PrologA set of problems for implementation in Turbo Prolog derives from the fatthat in this language does not exist the standard prediates funtor, ==, andop. This fat lead as onstrut two spei� domains in setion domains of ourprograms as follows:



TERM REWRITING SYSTEMS 79domainsterm=var(symbol);on(symbol);mp(symbol,terml)terml=term*termll=terml*For example, if we must introdue the term f(x,y,a) , we will write:mp(f,[var(x),var(y),on(a)℄), respeting the onventions for syntax of for-mulas in �rst-order logi. Also,if we must introdue the formula p(x,f(y,z)) wewill write:atom(p,[var(x),mp(f,[var(y),var(z)℄)℄) .A TRS R of I rules, as in de�nition 2, is done by a ouple of prediates l(t,N)and r(t,N) where t is a term and N=1; � � � ;I is the index of the rule. We worked inthis program with the three starting rules assoiated with the theory E of groups.l(mp(\f",[on(e),var(a)℄),1).l(mp(\f",[mp(\g",[var(a)℄),var(a)℄),2).l(mp(\f",[mp(\f",[var(a),var(b)℄),var()℄),3).r(var(a),1).r(on(e),2).r(mp(\f",[var(a),mp(\f",[var(b),var()℄)℄),3).The prediates whih realizes the rewriting relation X ! Y with a rule N inde�nition 3 is the prediate rewrite (X,Y,N) .rewrite(X,Y,N):-l(X,N),r(Y,N),!. (1)rewrite(X,Y,N):-member_left(X,L1,L2,N), (2)list_var(X,L_var), (3)lg_list(Lnou,K), (4)l(M_stg,N), (5)apli_subst(M_stg,Nou_m_stg,L1,L2), (6)tr_term_str(Nou_m_stg,St_stg), (7)apli_subst(X,NouX,L1,L2), (8)list_var(NouX,L_var_n), (9)lg_list(Lnoun,K), (10)tr_term_str(NouX,St), (11)r(M_dr,N), (12)apli_subst(M_dr,Nou_m_dr,L1,L2), (13)tr_term_str(Nou_m_dr,St_dr), (14)strsr_first(St,St_stg,St_dr,Nou_string),(15)tr_str_term(Nou_string,Yinterm), (16)s_lista(L2,L1,L2nou,L1nou), (17)apli_subst(Yinterm,Y,L2nou,L1nou),!. (18)The prediate member-left (denoted by (1)) is de�ned as follows:/* member_left(X,L1,L2,N):-the rule N-th has the property thathis left side unifies with a subterm of term X, and the unifierhas the domain L1 and the odomain L2. */One of the lauses for member-left must be:



80 DOINA T�ATAR, GABRIELA S�ERBANmember_left(X,L1,L2,N):-subterm(S,X),l(Z,N),unify(S,Z,L1,L2).The prediate apli-subst( t,s,L1,L2) denoted by (6) applies the substitution� =(L1/L2) to t obtaining s. The prediates tr-term-str transforms a term(e.g. f(a,x)) in a string (f2ax). The reason for this transformation is to provide toprediate:strsr-�rst (St,St-stg,St-dr,Nou-string), denoted by (15),his �rst three arguments (the lines (7),(11),14)). Thus, one step of the realizationof the relation ! is aomplished by the prediate strsr-�rst. This is de�ned as:/* strsr-first(S1,S2,S3,S):- the string S is obtained byreplaing in the string S1 the first ourrene of thesubstring S2 by the string S3. */The onverse transformation of a string into a term is realized by the prediatetr-str-term (16). A lause for this one must be:tr_str_term(X,Y):-str_len(X,L),L>0,frontstr(1,X,Z,U),frontstr(1,U,N,W),str_int(N,N1),frontstr(N1,W,WW,WWW),tr_str_terml(WW,V),tr_str_terml(WWW,V1),append(V,V1,V2),Y=mp(Z,V2),lg_list(V2,N1).The relation !�R de�ned as the reexive -transitive losure of !R is realizedby the prediate rewrite*. The lauses for this prediate are:rewrite*(X,Y):-rewrite(X,Y,N).resrie*(X,Y):-rewrite(X,Z,N),!,rewrite*(Z,Y).The prediates ritial-pair and normal-form are de�ned as:ritial-pair(X,Y):-l(X,N),member_left(X,L1,L2,M),l(Z,M),apli-subst(Z,Y,L1,L2).normal-form(X,Y):-rewrite*(X,Y),not(rewrite(Y,_,_)).At the end of the appliation of the Knuth-Bendix algorithm, the anonialTRS is given as usually by 10 rules. (Some intermediary rules are deleted beausethey have been rewritten in the same terms.) The obtained anonial TRS an beused for demonstrate some theorem in group theory. For example, if we want toprove that t1 = i((i(a) + a) + (b+ i(b))) is equal with t2 = b+ (i(a+ b) + a), thenwe run the program with normal-form(t1,X) and normal-form(t2,Y). We willobtain X=Y.



TERM REWRITING SYSTEMS 813. Implementation in LispIn this setion our aim is to present how the rewriting relations ould be de�nedin LISP.3.1. LISP representations. First, we have to establish the way in whih theterms are represented in LISP.� a variable x is represented as a list (var x);� a onstant a is represented as a list (on a);� a funtional symbol f is represented as a list (mp f);� a funtion f(LA) where f is a funtional symbol and LA is a list ofarguments, is represented as a list ((the list orresponding to f)(the list of arguments)); for example, f(a,x) is represented as a list((mp f) ((on a) (var x))).With the above onsiderations, if we must introdue the term g(x,f(y,z)) wewill write ((mp g) ((mp f) ((var y) (var z)))).A rule l!r from a TRS is represented as a list (list-l list-r), where list-l andlist-r are the representations in LISP of the terms l and r. For example, a rulef(a;x)!x is represented as the list (((mp f) ((on a) (var x))) (var x)).A TRS R of N rules is represented as a list of rules (rule-1 rule-2 . . . rule-N),eah rule is represented as we desribed above.In the followings, we work with the three starting rules assoiated with thetheory of groups. The list of rules is denoted by LR and is the following:(setq LR '(( ((mp f) ((on e) (var a)))(var a))( ((mp f) (((mp g) ((var a))) (var a)))(on e))( ((mp f) (((mp f) ((var a) (var b))) (var ) ))((mp f) ((mp f) ((var a) ((mp f) ((var b) (var )))))))))3.2. Funtions de�ned for rewriting rules. The funtions whih realize therewriting relation X!Y with a rule N in de�nition 3 is the funtion (rewrite XN LR) whih returns Y .(defun rewr (X N LR); LR represent the list of rules(prog (RN)



82 DOINA T�ATAR, GABRIELA S�ERBAN(setq RN (rule-N N LR))(ond((equal (ar RN) X) (return (adr RN)))(t (setq Y (adr RN))(setq UNIF (member-left X (ar RN)))(ond((null UNIF) nil)(t (setq L1 (ar UNIF))(setq L2 (adr UNIF))(return (apply-subst L1 L2 Y)))))))) The funtion (rule-N N LR) returns the N -th rule from the list of rules LR.(defun rule-N (N LR)(ond((null LR) nil)((= N 1) (ar LR))(t (rule-N (- N 1) (dr LR))))) The funtion (member-left X Y) is de�ned as follows:� if Y (the left side of a given rule) uni�es with a sub-term of X , andthe uni�er has the domain L1 and the odomain L2, then the funtionreturns the list (L1 L2) (this list is alulated by the funtion (unifyX Y));� else the funtion returns NIL.(defun member-left (X Y)(ond((not (equal (length X) (length Y))) nil)(t (unify X Y)))) The funtion (apply-subst L1 L2 Y) applies the substitution � = (L1=L2)to Y and returns the result.(defun apply-subst (L1 L2 Y)(subst Y L1 L2))



TERM REWRITING SYSTEMS 83The funtion (rewrite X) is de�ned as follows:� returns a list of elements having the form (N Y), where Y is the rightside of the rewriting relation X!Y with the rule N (if it is possible) -this list is alulated by the reursive funtion (rewrite-rule X N LR)whih returns the result of rewriting X with the N -th rule of LR;� returns NIL, if no rewriting relations for X are possible.(defun rewrite-rule(X N LR)(ond((> N (length LR)) nil)(t (setq RN (rewr X N LR))(ond((not (null RN)) (ons (list N RN)(rewrite-rule X (+ N 1) LR)))(t (rewrite-rule X (+ N 1) LR))))))(defun rewrite (X)(rewrite-rule X 1 LR)) The relation de�ned as the reexive-transitive losure of the rewriting relationR is de�ned as the funtion (rewrite* X).(defun rewrite* (X)(setq Y (rewrite X))(append Y (rewr* Y)))(defun rewr* (Y)(ond((null Y) nil)(t (append (rewrite (adar Y)) (rewr* (dr Y)))))) The normal-form is de�ned as a funtion (normal-form X).(defun normal-form (X)(n-form (rewr* X)))



84 DOINA T�ATAR, GABRIELA S�ERBAN(defun n-form (Y)(ond((null Y) nil)((null (rewrite (adar Y))) (append (ar Y) (n-form (dr Y))))(t (n-form (dr Y))))) Examples(1) if X is ((mp f) (((mp g) ((var b))) (var b))), then the result of rewritingX este ((2 (CON e)));(2) if X is ((mp f) ((on e) (var b))), then the result of rewriting X este ((1(VAR b)));(3) if X is ((mp f) ((on e) (var a))), then the result of rewriting X este ((1(VAR a))).(4) if X is ((mp f) (((mp f) ((var a) (var b))) ((mp g) ((var ))))), thenthe result of rewriting X este (3 ((mp f) ((mp f) ((var a) ((mp f) ((varb) ((mp g) ((var )))))))).Referenes[1℄ Avenhaus J., Madlener K. : \Term rewriting and Equational Reasoning" in Formal Teh-niques in A.I., A oursebook, R.B.Banerdji (ed) 1990.[2℄ K.H. Blasius, H.J. Burkert: \Dedution systems in Arti�ial Intelligene", Ellis HorwoodLtd.,1989.[3℄ Buhberger B.: \History and basi features of the Critial-Pair Completion Proedure", J.of symboli Computation 3, 1987, pp. 3{38.[4℄ W.F. Cloksin, C.S. Mellish : Programming in Prolog, Springer-verlag, 1984.[5℄ Huet G., Oppen D.D.: \Equations and rewrite rules: A survey", in \Formal languages:theory, perspetives and open problems", ed. R. Book, 1980.[6℄ Jouannaud J.P., Lesanne P.: \Rewriting Systems", in Tehnology and Siene of Informat-is, 1987, pp. 181{199.[7℄ Knuth D.E., Bendix P.P.: \Simple word problem in Universal Albgebra", Comp. prob. inAbstr. Alg. (ed. J. Leeh), 1970.[8℄ Lesanne P.: \Current trends in rewriting tehniques and related Problems", IBM int. symp.on Trends in Computer Algebra, Germany, 1987.[9℄ Rusinowith M.: \Demonstration automatique. Tehniques de reeriture" Inter. Edition,Paris, 1989.[10℄ Tatar D.: \A new method for the proof of theorems", Studia Universit. Babes-Bolyai,Mathematia, 1991, pp. 83{95.[11℄ Tatar D.: \Term rewriting systems and ompletion theorems proving: a short survey",Studia Univ. Babes-Bolyai, Mathematia, 1992, pp. 117{125.Department of Computer Siene, Faulty of Mathematis and Computer Siene,\Babes�-Bolyai University, 1, M. Kog�alnieanu St., RO-3400 Cluj-Napoa, Romania


