
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000TERM REWRITING SYSTEMS IN LOGIC PROGRAMMINGAND IN FUNCTIONAL PROGRAMMINGDOINA T�ATAR, GABRIELA S�ERBANAbstra
t. Automated theorem proving and term rewriting system are �eldswith big interest sin
e some years. Often these �elds have a
ommon devel-opment. Is it not amazingly that logi
 programming and fun
tional program-ming, whi
h belongs to both these �elds, o�ers simple solutions to problemsarising at the frontier of them. In [8℄, the author submitted a
hallenge for"�nding an optimum way to implement the rewriting systems ". This paperpresents the way in that the logi
 programming and fun
tional programmingo�er their
on
ision to realize a sound implementation of the TRS.1. Introdu
tionIn the �rst se
tion we will presents shortly the equation systems, the TRS, the\
riti
al pair" idea and the
ompletion algorithm [1, 5, 7, 10℄. In the followingse
tions we will outline some problems and their solution in our implementationin Prolog (se
tion 2) and in Lisp (se
tion 3).De�nition 1 An equational theory (F,V,E)
onsists of:� a set F of fun
tion symbols (with the same sort, for simpli
ity).� a set V of variables.Let T(F,V) be the set of terms build from F and V.� a set of pairs of equations, s=t,s,t 2 T(F,V).The set of equations E de�nes a synta
ti
al equality relation ==E on T(F,V),usually de�ned as \repla
ing equals by equals".The fundamental problem in an equational theory is the \validity" or \wordproblem", whi
h is unde
idable:\Give s and t 2 T(F,V), does s ==E t ?"The unde
idability (more pre
isely, the semide
idability) of the \word problem"is transferred on the approa
h by the TRS, but this approa
h is, on the our opinion,more algorithmi
ally.2000 Mathemati
s Subje
t Classi�
ation. 68T15.1998 CR Categories and Des
riptors. D.1.6. [Software℄ : Programming Te
hniques {Logi
 Programming ;I.2.3. [Computing Methodologies℄ : Arti�
ial Intelligen
e { Dedu
tionand Theorem Proving. 77

78 DOINA T�ATAR, GABRIELA S�ERBANDe�nition 2. A TRS is a set of rules: R = fl ! r j l; r 2 T(F,V) , everyvariables o

urring in term r also o

urs in term l g.A TRS de�nes a rewrite relation !R:De�nition 3. s!R t i� there is a rule l! r 2 R and an o

urren
e p in s su
hthat the subterm of o

urren
e p, noted s jp and the term t have the property:s jp= �(l); t = s[p �(r)℄for some substitution �. Here notation s[p �(r)℄ represents the term obtainedfrom s by repla
ing the subterm of o

urren
e p by the term �(r).We denote by !�R and !�R the re
exive-transitive and re
exive-transitive-symmetri

losure of !R.In order to solve the \word problem" for an equational theory E,
ompute anTRS RE su
h that s ==E t is a relation equivalent with s !�R t. Let us denoteRE as asso
iated with E.The TRS RE is the
anoni
al (terminating and
on
uent) TRS asso
iatedwith E, obtained as output of the
ompletion pro
edure Knuth -Bendix. Thisalgorithm has as input the set E and a redu
tion order over T(F,V).De�nition 4 The normal form of a term t , denoted t #R , is a term with thefollowings properties: 1:t!�R t #R2:t #R irredu
ible:Observations:1. If a TRS R has the property that every term has a unique normal form,then:s !�R i� s #R= t #R, be
ause s ! t�R is s !�R s #R and t !�R#R. Thus,testing s ! t�R is is the same as testing that s #R= t #R.2. In a
anoni
al TRS ,R, every term has a unique normal form.We won't des
ribe the well known Knuth-Bendix algorithm. Instead, we willsurvey the
riti
al pair idea, staying on the ground of this algorithm.De�nition 5 Let l1 ! r1 and l2 ! r2 be two rules in R. By renaming thevariables we may assume that they do not share
ommon variables. If �1(l1) =�2(l2) , then the pair of terms (�1(l1); �2(l2)) is a
riti
al pair for R.The Knuth-Bendix algorithm
omputes, for every
riti
al pair (t1; t2) of R0,the normal forms t1 #R0 and t2 #R0 . If this normal forms are di�erent, then a rulet1 #R0!0R t2 #R0 or
onverse, (depending of the
ase t1 #R0> t2 #R0 or the
onverse),is added to R0. Let observe that the pro
edure fails if neither t1 #R0> t2 #R0 northe
onverse is true. 2. Implementation in PrologA set of problems for implementation in Turbo Prolog derives from the fa
tthat in this language does not exist the standard predi
ates fun
tor, ==, andop. This fa
t lead as
onstru
t two spe
i�
 domains in se
tion domains of ourprograms as follows:

TERM REWRITING SYSTEMS 79domainsterm=var(symbol);
on(symbol);
mp(symbol,terml)terml=term*termll=terml*For example, if we must introdu
e the term f(x,y,a) , we will write:
mp(f,[var(x),var(y),
on(a)℄), respe
ting the
onventions for syntax of for-mulas in �rst-order logi
. Also,if we must introdu
e the formula p(x,f(y,z)) wewill write:atom(p,[var(x),
mp(f,[var(y),var(z)℄)℄) .A TRS R of I rules, as in de�nition 2, is done by a
ouple of predi
ates l(t,N)and r(t,N) where t is a term and N=1; � � � ;I is the index of the rule. We worked inthis program with the three starting rules asso
iated with the theory E of groups.l(
mp(\f",[
on(e),var(a)℄),1).l(
mp(\f",[
mp(\g",[var(a)℄),var(a)℄),2).l(
mp(\f",[
mp(\f",[var(a),var(b)℄),var(
)℄),3).r(var(a),1).r(
on(e),2).r(
mp(\f",[var(a),
mp(\f",[var(b),var(
)℄)℄),3).The predi
ates whi
h realizes the rewriting relation X ! Y with a rule N inde�nition 3 is the predi
ate rewrite (X,Y,N) .rewrite(X,Y,N):-l(X,N),r(Y,N),!. (1)rewrite(X,Y,N):-member_left(X,L1,L2,N), (2)list_var(X,L_var), (3)lg_list(Lnou,K), (4)l(M_stg,N), (5)apli
_subst(M_stg,Nou_m_stg,L1,L2), (6)tr_term_str(Nou_m_stg,St_stg), (7)apli
_subst(X,NouX,L1,L2), (8)list_var(NouX,L_var_n), (9)lg_list(Lnoun,K), (10)tr_term_str(NouX,St), (11)r(M_dr,N), (12)apli
_subst(M_dr,Nou_m_dr,L1,L2), (13)tr_term_str(Nou_m_dr,St_dr), (14)strsr_first(St,St_stg,St_dr,Nou_string),(15)tr_str_term(Nou_string,Yinterm), (16)s
_lista(L2,L1,L2nou,L1nou), (17)apli
_subst(Yinterm,Y,L2nou,L1nou),!. (18)The predi
ate member-left (denoted by (1)) is de�ned as follows:/* member_left(X,L1,L2,N):-the rule N-th has the property thathis left side unifies with a subterm of term X, and the unifierhas the domain L1 and the
odomain L2. */One of the
lauses for member-left must be:

80 DOINA T�ATAR, GABRIELA S�ERBANmember_left(X,L1,L2,N):-subterm(S,X),l(Z,N),unify(S,Z,L1,L2).The predi
ate apli
-subst(t,s,L1,L2) denoted by (6) applies the substitution� =(L1/L2) to t obtaining s. The predi
ates tr-term-str transforms a term(e.g. f(a,x)) in a string (f2ax). The reason for this transformation is to provide topredi
ate:strsr-�rst (St,St-stg,St-dr,Nou-string), denoted by (15),his �rst three arguments (the lines (7),(11),14)). Thus, one step of the realizationof the relation ! is a

omplished by the predi
ate strsr-�rst. This is de�ned as:/* strsr-first(S1,S2,S3,S):- the string S is obtained byrepla
ing in the string S1 the first o

urren
e of thesubstring S2 by the string S3. */The
onverse transformation of a string into a term is realized by the predi
atetr-str-term (16). A
lause for this one must be:tr_str_term(X,Y):-str_len(X,L),L>0,frontstr(1,X,Z,U),frontstr(1,U,N,W),str_int(N,N1),frontstr(N1,W,WW,WWW),tr_str_terml(WW,V),tr_str_terml(WWW,V1),append(V,V1,V2),Y=
mp(Z,V2),lg_list(V2,N1).The relation !�R de�ned as the re
exive -transitive
losure of !R is realizedby the predi
ate rewrite*. The
lauses for this predi
ate are:rewrite*(X,Y):-rewrite(X,Y,N).res
rie*(X,Y):-rewrite(X,Z,N),!,rewrite*(Z,Y).The predi
ates
riti
al-pair and normal-form are de�ned as:
riti
al-pair(X,Y):-l(X,N),member_left(X,L1,L2,M),l(Z,M),apli
-subst(Z,Y,L1,L2).normal-form(X,Y):-rewrite*(X,Y),not(rewrite(Y,_,_)).At the end of the appli
ation of the Knuth-Bendix algorithm, the
anoni
alTRS is given as usually by 10 rules. (Some intermediary rules are deleted be
ausethey have been rewritten in the same terms.) The obtained
anoni
al TRS
an beused for demonstrate some theorem in group theory. For example, if we want toprove that t1 = i((i(a) + a) + (b+ i(b))) is equal with t2 = b+ (i(a+ b) + a), thenwe run the program with normal-form(t1,X) and normal-form(t2,Y). We willobtain X=Y.

TERM REWRITING SYSTEMS 813. Implementation in LispIn this se
tion our aim is to present how the rewriting relations
ould be de�nedin LISP.3.1. LISP representations. First, we have to establish the way in whi
h theterms are represented in LISP.� a variable x is represented as a list (var x);� a
onstant a is represented as a list (
on a);� a fun
tional symbol f is represented as a list (
mp f);� a fun
tion f(LA) where f is a fun
tional symbol and LA is a list ofarguments, is represented as a list ((the list
orresponding to f)(the list of arguments)); for example, f(a,x) is represented as a list((
mp f) ((
on a) (var x))).With the above
onsiderations, if we must introdu
e the term g(x,f(y,z)) wewill write ((
mp g) ((
mp f) ((var y) (var z)))).A rule l!r from a TRS is represented as a list (list-l list-r), where list-l andlist-r are the representations in LISP of the terms l and r. For example, a rulef(a;x)!x is represented as the list (((
mp f) ((
on a) (var x))) (var x)).A TRS R of N rules is represented as a list of rules (rule-1 rule-2 . . . rule-N),ea
h rule is represented as we des
ribed above.In the followings, we work with the three starting rules asso
iated with thetheory of groups. The list of rules is denoted by LR and is the following:(setq LR '((((
mp f) ((
on e) (var a)))(var a))(((
mp f) (((
mp g) ((var a))) (var a)))(
on e))(((
mp f) (((
mp f) ((var a) (var b))) (var
)))((
mp f) ((
mp f) ((var a) ((
mp f) ((var b) (var
)))))))))3.2. Fun
tions de�ned for rewriting rules. The fun
tions whi
h realize therewriting relation X!Y with a rule N in de�nition 3 is the fun
tion (rewrite XN LR) whi
h returns Y .(defun rewr (X N LR); LR represent the list of rules(prog (RN)

82 DOINA T�ATAR, GABRIELA S�ERBAN(setq RN (rule-N N LR))(
ond((equal (
ar RN) X) (return (
adr RN)))(t (setq Y (
adr RN))(setq UNIF (member-left X (
ar RN)))(
ond((null UNIF) nil)(t (setq L1 (
ar UNIF))(setq L2 (
adr UNIF))(return (apply-subst L1 L2 Y)))))))) The fun
tion (rule-N N LR) returns the N -th rule from the list of rules LR.(defun rule-N (N LR)(
ond((null LR) nil)((= N 1) (
ar LR))(t (rule-N (- N 1) (
dr LR))))) The fun
tion (member-left X Y) is de�ned as follows:� if Y (the left side of a given rule) uni�es with a sub-term of X , andthe uni�er has the domain L1 and the
odomain L2, then the fun
tionreturns the list (L1 L2) (this list is
al
ulated by the fun
tion (unifyX Y));� else the fun
tion returns NIL.(defun member-left (X Y)(
ond((not (equal (length X) (length Y))) nil)(t (unify X Y)))) The fun
tion (apply-subst L1 L2 Y) applies the substitution � = (L1=L2)to Y and returns the result.(defun apply-subst (L1 L2 Y)(subst Y L1 L2))

TERM REWRITING SYSTEMS 83The fun
tion (rewrite X) is de�ned as follows:� returns a list of elements having the form (N Y), where Y is the rightside of the rewriting relation X!Y with the rule N (if it is possible) -this list is
al
ulated by the re
ursive fun
tion (rewrite-rule X N LR)whi
h returns the result of rewriting X with the N -th rule of LR;� returns NIL, if no rewriting relations for X are possible.(defun rewrite-rule(X N LR)(
ond((> N (length LR)) nil)(t (setq RN (rewr X N LR))(
ond((not (null RN)) (
ons (list N RN)(rewrite-rule X (+ N 1) LR)))(t (rewrite-rule X (+ N 1) LR))))))(defun rewrite (X)(rewrite-rule X 1 LR)) The relation de�ned as the re
exive-transitive
losure of the rewriting relationR is de�ned as the fun
tion (rewrite* X).(defun rewrite* (X)(setq Y (rewrite X))(append Y (rewr* Y)))(defun rewr* (Y)(
ond((null Y) nil)(t (append (rewrite (
adar Y)) (rewr* (
dr Y)))))) The normal-form is de�ned as a fun
tion (normal-form X).(defun normal-form (X)(n-form (rewr* X)))

84 DOINA T�ATAR, GABRIELA S�ERBAN(defun n-form (Y)(
ond((null Y) nil)((null (rewrite (
adar Y))) (append (
ar Y) (n-form (
dr Y))))(t (n-form (
dr Y))))) Examples(1) if X is ((
mp f) (((
mp g) ((var b))) (var b))), then the result of rewritingX este ((2 (CON e)));(2) if X is ((
mp f) ((
on e) (var b))), then the result of rewriting X este ((1(VAR b)));(3) if X is ((
mp f) ((
on e) (var a))), then the result of rewriting X este ((1(VAR a))).(4) if X is ((
mp f) (((
mp f) ((var a) (var b))) ((
mp g) ((var
))))), thenthe result of rewriting X este (3 ((
mp f) ((
mp f) ((var a) ((
mp f) ((varb) ((
mp g) ((var
)))))))).Referen
es[1℄ Avenhaus J., Madlener K. : \Term rewriting and Equational Reasoning" in Formal Te
h-niques in A.I., A
oursebook, R.B.Banerdji (ed) 1990.[2℄ K.H. Blasius, H.J. Burkert: \Dedu
tion systems in Arti�
ial Intelligen
e", Ellis HorwoodLtd.,1989.[3℄ Bu
hberger B.: \History and basi
 features of the Criti
al-Pair Completion Pro
edure", J.of symboli
 Computation 3, 1987, pp. 3{38.[4℄ W.F. Clo
ksin, C.S. Mellish : Programming in Prolog, Springer-verlag, 1984.[5℄ Huet G., Oppen D.D.: \Equations and rewrite rules: A survey", in \Formal languages:theory, perspe
tives and open problems", ed. R. Book, 1980.[6℄ Jouannaud J.P., Les
anne P.: \Rewriting Systems", in Te
hnology and S
ien
e of Informat-i
s, 1987, pp. 181{199.[7℄ Knuth D.E., Bendix P.P.: \Simple word problem in Universal Albgebra", Comp. prob. inAbstr. Alg. (ed. J. Lee
h), 1970.[8℄ Les
anne P.: \Current trends in rewriting te
hniques and related Problems", IBM int. symp.on Trends in Computer Algebra, Germany, 1987.[9℄ Rusinowit
h M.: \Demonstration automatique. Te
hniques de ree
riture" Inter. Edition,Paris, 1989.[10℄ Tatar D.: \A new method for the proof of theorems", Studia Universit. Babes-Bolyai,Mathemati
a, 1991, pp. 83{95.[11℄ Tatar D.: \Term rewriting systems and
ompletion theorems proving: a short survey",Studia Univ. Babes-Bolyai, Mathemati
a, 1992, pp. 117{125.Department of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babes�-Bolyai University, 1, M. Kog�alni
eanu St., RO-3400 Cluj-Napo
a, Romania

