STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

USING SCALABLE STATECHARTS FOR ACTIVE OBJECTS
INTERNAL CONCURRENCY MODELING

DAN MIRCEA SUCIU

ABSTRACT. In the last two decades, the design of object models having con-
current features has represented a constant concern for many researchers.
The fundamental abstractions used in this methodology are concurrent (or
active) objects and protocols for passing messages between them. Statecharts
seem to be one of the most appropriate ways of modeling the behavior of con-
current objects. Based on statecharts we will define an executable formalism,
called level 2 scalable statechart (SS2), for modeling of intra-concurrency in
object-oriented concurrent applications.

Key words: object-oriented concurrent programming, reactive sys-
tems, statecharts.

1. INTRODUCTION

In the last two decades, the design of object models having concurrent features
has represented a constant concern for many researchers. This was happening for
mainly two reasons. On the one hand, as an effect of the obtained technological
progress, many object-oriented programming languages having concurrent features
have been designed during this time (over 100 such languages have been discussed
and systemized in [10]).

On the other hand, the fact is known that object-oriented programming has
been developed having as a model our environment (seen as a set of objects among
which several relationships exist and which communicate between them by message
transmission). However, in the real world these objects are naturally concurrent,
which leads to the normal trend of transposing this thing into programming.

It is interesting how two distinct criteria, the first one objective (determined by
the rise of performances and complexities of the calculus systems), and the second
one subjective (actually determined by “decency”, which urges us to solve different
abstract problems looking for similitude with the real world), have finally led to

2000 Mathematics Subject Classification. 68N30.

1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering — Coding
Tools and Techniques D.2.7 [Software] : Software Engineering — Distirbution, Maintenance and
Enhancements .

67

68 DAN MIRCEA SUCIU

the development of some concepts, some programming techniques and implicitly
of some efficient analysis and design methods for developing applications.

The concurrent programming has occurred before the object-oriented program-
ming. It has been applied for the first time within the framework of procedural
languages. Here the main problems studied have been concerned to the syn-
chronization of the parallel execution of some instruction sequences and to the
information transmission among many other concurrent activities.

Once with the appearance of object-oriented programming software develop-
ment has met a qualitative and meaningful leap. In this way, the development of
these programs (or applications) does not involve the decomposition of problems
into algorithmic procedures, but independent objects that interacts among them.
An evaluation of the coordinating primitives of these interactions will be achieved
in a concurrent system.

In the same time, a great interest was accorded to object oriented technology,
especially to the analysis and design methods. The analysis and design methods
may be defined as coherent approaches used to describe a system. Due to the
complexity of the systems, different models are built, each of them containing
another view of the system. Any model emphasize an aspect and neglect all the
others. For instance, the entity- relation model describes the dates involved in
the system and indicates nothing about their processing. In order to cover all the
aspects connected with the design, every method uses more than one model.

spe cifications
natiral languaged

Analysis model desizn
{disgraras)
.
Design model translation
(diagramns)

b

b

corpiling +
[mplementation model | inkediting
(source code)

Heration of /’ -
application
]I;gfﬁycle Executable taodel
(hinarycode)
1 . $esting ;

FI1GURE 1. Iterative model of applications development using an
object-oriented analysis/design method

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 69

The life cycle of an application, represents the stages that are go through in the
process of developing that application. The most important stages are:

Analysis: where are identified the main characteristics of all possible cor-
rect solutions,

Design: that add to analysis models new elements that define a particular
solution, based on some criteria optimizations,

Implementation: where an executable design is built for the particular
solution modeled in design phase,

Testing: where is verified the equivalence of the implementation with the
designed model and validates the fact that the implementation respects
the correctness criteria identified in the analysis phase.

The object oriented analysis and design methods allow an iterative approach of
the phases from applications life cycle (Figure 1).

CASE (Computer Aided Software Engineering) tools are software products able
to support medium or large application development. This support is realised by
automating some of the activities made in an analysis and design method. If
we agree that one of the main goals of an analysis and design method is code
generation and that we should obtain automatically a high rate of application
code, it is obvious that an efficient use of a method cannot be made without an
associated CASE tool.

Typically, the translation of a complex analysis/design model into a program-
ming language takes a long period. A model is called executable if this translation
can be made automatically. The automatization of the translation process allows
running a prototype of an application immediately after building its model.

This paper captures aspects regarding concurrent object oriented application
modeling. We analyzed the main object models developed in literature, insisting
on concurrency aspects. In the center of this analysis is UML (Unified Modeling
Language) version 1.3 [8].

The obtained results and the similarities between active object and reactive
systems drive us to the idea of modeling their behavior through statecharts for-
malism. We extended the scalable statecharts formalism, introduced in [13], which
allow developing executable models and offers support for automatic source code
generation and for simulation of active objects behavior.

The executability is an important feature of scalable statecharts [13], allowing
the automatization of active objects implementation based on their behavioral
models. Furthermore, the executability offers support for simulation, testing and
debugging of active object execution at the same level of abstraction like the built
model.

70

DAN MIRCEA SUCIU

2. LEVEL 2 SCALABLE STATECHARTS (SS2)

SS! statecharts defined in [13] do not allow parallel triggering of transitions.
Thus SS! statecharts cannot be used to model intra-object concurrency. Fur-
thermore, SS' statecharts do not provide mechanisms for modeling conditional
synchronization and synchronization constraints.

We will extent SS' with new elements that allow us to specify state invariants,
conditions for transition triggering and to handle more than one message from

queue.

Definition 1. A level 2 scalable statechart of a class K is a tuple:
SS% = (M,S,0,P,E,sg,Sg, (stSucc, stInit, ortSucc,), inv, T; eval, par, S,, C)

where:

M is a finite set of messages,

S is a finite, non-empty set of states,

O is a finite, non-empty set of orthogonal components,

P is a finite set of properties,

sp € S is the root of the states hierarchy,

SF is a finite set of final states. To preserve the consistency of our model
we will presume that all the final states will be successors of orthogonal
components from the root state sg. Thus we will eliminate the termina-
tion transitions proposed in UML [8] without affect the modeling power
of the statecharts.

functions that defines the states hierarchy:

— stSucc: O — P(SUSF), where stSucc(o) = {s1,S2,...,5n} is the
set of sub-states of the orthogonal component o, with the restriction
that Yo1, 05 € O we have stSucc(o1) N stSucc(oz) = 0;

— stInit : O\{o : stSucc(o) = 0} — S, stInit(o) = so € stSucc(o),
the initial sub-state of the orthogonal component o (stSucc is defined
only for non-empty orthogonal components);

— ortSucc : S = P(O)\{0}, where ortSucc(s) = {01,02,...,0m} is
the set of the orthogonal components owned by state s, with the
restriction that Vsq,s2 € S we have ortSucc(sy) NortSucc(sz) = 0
(a state has at least one orthogonal component);

T C P(S\{sr}) x M x P (S\{sgr}) is a finite set of transitions. A
transition ({s],...,s;},m,{s{,...,s"}) € T means that if an object is in
source states s{,...,s; € S\{sr} (each source state is located in distinct
orthogonal components of a state from S) and receives a message m
then, after executing the operation associated to m, the object will enter
in destination states s,...,s] € S\sg}. The root state can not be
source nor destination for a transition and the sets of source states and
destination states not contain states that includes each other.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 71

e S, C SUSF is the set of active states of the statechart in a given
moment with the restriction that Vs, € Sy, ortSucc(s,) = 0,

e C' € M* is a finite sequence of messages, and models the messages queue
of an active object.

Figure 2 contains an example of a $S° statechart and its visual representation.
The structure of the modeled class (Bottle) is defined in the same figure using
UML notation.

Based on stSucc and ortSucc functions we will define another two functions
that return the parent of a state or orthogonal component.

Definition 2. The function stPred : O — S, where stPred(o) = s € S if o €
ortSucc(s), determines the parent state of an orthogonal component o € O. The
function ortPred : S U Sp\{sgr} — O, ortPred(s) = o € O if s € stSucc(o)
determines the orthogonal component that is parent of a state s € SU Sp\{sr}.

The restrictions stated in definition 1:

Yoi, 00 € O, stSucc(or) N stSucc(os) = (and
Vs1, 82 € S,ortSuce(sy1) N stSuce(se) = 0,

ensure that stPred and ortPred are well defined.

To complete the formal definition of SS! statecharts we will give a formal
specification for valid transitions. For this reason, we will define first the nesting
relation between states and/or orthogonal components.

Definition 3. Two elements soy,s0s € SUO are in nesting relation, denoted by
s01 < s09, iff one of the above affirmations is true:

a) so1 = S0,
b) so € SAsoy €S = Ine Nt :s0y=stPred(ortPred(---so;--+)),

/

n tgrfnes
c) so1 € O Asos €0 = In € N : s0y = ortPred(stPred(---so,--+)),

J

n times
d) sop € SAs02 € O = In € N" :s0y =ortPred(stPred(---ortPred(so;)---))

n times
e) so € O Asoy € S = In € Nt : 50 = stPred(ortPred(- - - stPred(so)--+)).

-~

n times

Proposition 1. The nesting relation is partial order over S U O.

Proof. The reflexivity is assured by the affirmation a) from nesting relation
definition.

72 DAN MIRCEA SUCIU

Let so1, s02, 803 € S be three states such that sol < so, and sos < so3. From
definition 7 we have that In € N* : soo = stPred(ortPred(---so;--+)) and

J

n times
Im € Nt : s03 = stPred(ortPred(---so0y---)). This implies that Ir = n +m €

/

m times
Nt : so3 = stPred(ortPred(---so1---)), so so; < so3. This means that the

r=n-+m times
nesting relation is transitive over S. Analogous it can be proved that the nesting

relation is transitive over S U O for so1, sos, so3 belonging to S and/or O.

We will prove that the nesting relation is anti-symmetrical over S.

Let so1,s02 € S be two states for which so; < soy and sos < so;. This implies
that:

S01 = S02,
or
In,m € NV : s0p = stPred(ortPred(---so; ---))
n times
and

sor = stPred(ortPred(---soy--+)).

/

m times
Let us suppose that so; # sos. Then
Ir =n+m € N' : 501 = stPred(ortPred(---so; --)).

J

r=n-+m times

From definition 1 we have that the above statement is true only for » = 0. This is
obviously impossible because r € N*. We deduce that so; = sos. The other three
cases (s01,802 € O, so; € O and sos € S, so; € S and so, € O) are analogous.

Thus, Vsoy,s02 € SUO, s0; < S09 A S02 < S01 = 501 = S0, i.e. the nesting
relation is anti-symmetrical over S U O.

Because the relation (S U O, <) is reflexive, transitive and anti-symmetrical we
deduce that the nesting relation is partial order over SU O. O

Definition 4. For a state or orthogonal component so € SU O, {so' : so' €

SUO,so < s0'}, denoted by PREDy,, is the set of all its predecessors.
Proposition 2. For all so € SUO, (PREDq,, <) is total order.

Proof. Corresponding to proposition 1, the relation (PRED;,,) is partial
order. Let so',s0" € PRED,, NS be two predecessor states of so. According to
definition 8 we have:

In' € Nt : 50’ = stPred(ortPred(---so---))

/

n' times

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 73

and
In" € Nt : 50" = stPred(ortPred(---so---)).

n' times
We suppose that n’ > n”’. We have:

In" € Nt : 50" = stPred(ortPred(---s0'---))

/

-~

n’'—n” times
that implies so' < so”. The other three cases (so',so"” € PRED,, N O, so' €
PREDg,capO and so" € PRED,,NS, so' € PRED,,NS and so"N"PRED,,NO
) are analogous.
Thus, Vso', so"" € PREDy,, so' < so" or so” < so', which implies (PRED;,, <)
is total order. O

Definition 5. Let (X, <) be a partially ordered set and let Y be a subset of X.
An element x € X is a lower bound forY iff x <y for ally € Y. A lower bound
x for Y is the greatest lower bound for Y iff, for every lower bound x' for Y,
x' < y. Whet it exists, we denote the greatest lower bound for Y by MY,

In the paper we use the following three well known results [9]:
e if z is a lower bound for Y and z € Y then NY = z;
e if MY exists then it is unique;
e if (Y, <) is total order and Y is finite then MY exists and NY € Y.
Because (PRED;,, <) is total order and PRE Dy, is a finite set, we deduce that
the greatest lower bound for PRE Dy, does exist, and MTPREDg, € PRED,,. We
will prove that MPRE Dy, is the parent of so.

Proposition 3. Let so € SUO be a state or orthogonal component. One of the
following affirmations is true:

1) so € S = ortPred(so) = MPRED;,,

2) so € O = stPred(so) = MPRED;,.

Proof. a) Let so € S be a state. It is obvious that so < ortPred(so), and
based on the definition of set PRE D, we have that ortPred(so) € PREDq,.

Let so' € PREDy, be an arbitrary predecessor of the state so. From definition
8 we have that so < so’. If so' is an orthogonal component (so' € O) then:

In € N: 5o’ = ortPred(stPred(- - - ortPred(so) - --)),

-~

n times
which implies that ortPred(so) < so'. The case when so' is a state (so’ € S) is
analogous. Because so’ was arbitrary selected from PREDso we will have:
Vso' € PREDs,,ortPred(so) < so’

. that implies ortPred(so) = MPREDg,.
The proof for statement b) is analogous. O

74 DAN MIRCEA SUCIU

Bottle]
[Marmal (=
Buottle Fill [zortent + 5 < capacity] E
int capacity '
int content :
boolean label E not |abel
woid Fill) | F
void Emph) By E Remowe Label
void Break)) Fill [contert +5 * capacity] ;
woid Capacityl) 1 I Add Label
void AddLabel) ul F] !
woid Remowel abel () i

(0 <= content)) * (content <= capacity)

—
o

FIGURE 2. Graphical representation of SS? statechart

Definition 6. Two states or orthogonal components so',so” € S are orthogonal
iff s0' £ 50", s0" £ s0' and N(PREDsy N PREDg,) € S.

In other words, two states or orthogonal components are orthogonal if they are
not in nesting relation and the closest common ancestor is a state.

Definition 7. Lett = ({s; € S:i=1,...,.n},m,{sf € S:j=1,....m}H) €T

be a transition. We say that t is a valid transition if all the following affirmations

are true:

a) Ps'=n ﬂ;zl PREDg € S (the source states are orthogonal),

b) Ps" =nni-t PREDy; € S (the destination states are orthogonal),

¢) Ps' £ Ps", Ps" A Ps' and N(PREDpgy N PREDpg:) € O (source and desti-
nation states are not orthogonal).

We will call dom; = M(PREDpy NPREDYs,,) € O the domain of transition t.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 75

The domain of a transition represents the “smallest” orthogonal component
that contains all transition’s source and destination states.

In definition 1 function par characterizes the algorithm of choosing a set of
messages from message queue. The specification of par function is not important in
this phase of formalization and is imposed by particular mechanisms implemented
in various concurrent object oriented languages. We consider that this function
will return the maximal set of messages that can be handled concurrently.

Definition 8. Two transitions t',t" € T are textslindependent iff their domains
are orthogonal, i.e., N(PRED jomy N PRED gome) € S.

Definition 9. A configuration of a SS? statechart is a tuple (S,,par(C),C,),
where S, C S is the finite set of active states, par(C) is the set of messages
from queue which will be processed in parallel and C, € M* the rest of messages
queue C after removing messages from par(C). The initial configuration of a SS>
statechart if given by (active(sg), L).

Definition 10. The interpretation of a SS? statechart configuration is a function:
82 :P(S) x P(M) x M* = P(SUSFp) x M*,
82(Sq, {mi,...,my},C,) =
(Activ(Uffl S, CL), if Vi e {1,...,n}3(S; C S, U Sy, and eval(e;) = true

= (Sa,C;.), lfVl S {].,...,TL} ﬁSl,Sz,Sg C Sl,e € E: (Sl,mi,e,Sg) eT
(Se, CLAML A ---Amy,), else

Definition 11. The execution of a SS? statechart is a sequence finite or infi-
nite of configuration interpretations, starting from the initial configuration, and is
denoted:

(active(sg),, 1) LR (S1,par(C),C,1) AN (S, par(C), Crr) KA

where S1,...,8k,...C S, my,...,mg,... € M and Cyq,...,Crp,... € M*. The
execution is finite if the set of activated states contains at least a final state.

3. CONCLUSIONS

We extended the statecharts formalism [7] with new semantically and graphical
elements, in order to allow the specification of active objects behavior with respect
of a general concurrent object model. The extensions are: allowing scalability,
executability and the definition of a precise semantic.

The formalism that is proposed in section two of this paper is called level two
scalable statechart. The scalability of states minimizes the effort of modeling
objects with a complex behavior. In this way, the active objects behavior models
can be analyzed at different levels of detail.

Because the semantic of scalable statecharts was defined regarding a general
concurrent object model, they allow source code generation in various concurrent

76 DAN MIRCEA SUCIU

object-oriented languages that use various modalities and mechanisms for speci-
fication of concurrency and interaction between concurrent activities. This thing
confers a better flexibility in translation of behavioral models in source code.

REFERENCES

[1] F. Barbier, H. Briand, B. Dano, S. Rideau, “The Executability of Object-Oriented Finite
State Machines”, Journal of Object-Oriented Programming, SIGS Publications, 4 (11), pp.
16—24, jul/aug 1998
Michael von der Beeck, “A Comparison of Statecharts Variants”, Formal Techniques in
Real-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil (eds.), Lecture Notes
in Computer Science, vol. 863, pp. 128-148, Springer-Verlag, New York, 1994
[3] S. Cook, J. Daniels, “Designing Object Systems - Object-Oriented Modelling with Syn-
tropy”, Prentice Hall, Englewood Cliffs, NJ, 1994
[4] Bruce Powel Douglas, “UML Statecharts”, Embedded Systems Programming, jan. 1999,
available at http://www.ilogix.com/fs_prod.htm
[5] D. Harel, A. Naamad, “The STATEMATE Semantics of Statecharts”, ACM Transactions
on Software Engineering and Methodology, 5 (4), pp. 293-333, 1996
[6] D. Harel, E. Gery, “Executable Object Modeling with Statecharts”, IEEE Computer, 30
(7): 31-42, Jul. 1997
[7] David Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, vol.8, no. 3, pp. 231-274, June 1987
[8] Object Management Group, OMG Unified Modeling Language Specification, ver. 1.3, June
1999 available on Internet at http://www.rational.com/
[9] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974
[10] Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Report
TR-95- 049, International Computer Science Institute, Berkeley, Aug. 1995
[11] Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, Iulian Ober, Specification of active
objects behavior using statecharts, Studia Universitatis “Babes Bolyai”, Informatica, Vol.
XLII, no. 1, pp. 19-30, 1997
[12] Dan Mircea Suciu, Reuse Anomaly in Object-Oriented Concurrent Programming, Studia
Universitatis “Babes-Bolyai”, Informatica, Vol. XLII, no. 2, pp. 74-89, 1997
[13] Dan Mircea Suciu, Extending Statecharts for Concurrent Objects Modeling, Studia Univer-
sitatis “Babes-Bolyai”, Informatica, Vol. XLIV, No. 1, pp. 37-44, 1999

[2

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAI” UNIVERSITY, 1 M. KOGALNICEANU
ST., RO-3400 CLUJ-NAPOCA, ROMANIA
E-mail address: tzutzu@cs.ubbcluj.ro

