
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000SOME PARALLEL NONDETERMINISTIC ALGORITHMSVIRGINIA NICULESCUAbstrat. Nondeterminism is useful in two ways. First, it is employed toderive simple and general programs, where the simpliity is ahieved by avoid-ing unneessary determinism; suh programs an be optimized by limitingthe nondeterminism. Seond, some systems are inherently nondeterministi;programs that represent suh systems have to employ some nondeterministionstrut. Nondeterministi programs an be mapped more easier on parallelmahine, sine parallelism brings some nondeterminism by itself.In this artile, there are onstruted some nondeterministi programs,for some numerial methods, using the UNITY notation[3℄. The orretnessof the algorithms is proven, and some possible mappings are disussed.1. IntrodutionNondeterminism is useful in two ways. First, it is employed to derive simpleand general programs, where the simpliity is ahieved by avoiding unneessarydeterminism; suh programs an be optimized by limiting the nondeterminism.Seond, some systems are inherently nondeterministi; programs that representsuh systems have to employ some nondeterministi onstrut.There is a variety of parallel arhitetures, though parallel programs have to bedeveloped suh that they an be mapped in di�erent ways, on di�erent arhite-tures. A solution is to speify little in the early stages of design, and speify enoughin the �nal stages to ensure eÆient exeution on target arhiteture. Speifyinglittle about program exeution means that the programs may be nondeterministi.To express the nondeterministi programs, the model used for the developingthe programs is UNITY [3℄: "Unbounded Nondeterministi Iterative Transforma-tions", whih is briey desribed in the next setion.2. A Programming NotationThe UNITY program struture is2000 Mathematis Subjet Classi�ation. 68N19.1998 CR Categories and Desriptors. G.1.3. [Mathematis of Computing℄ : Numeri-al Analysis { Numerial Linear Algebra; G.4. [Mathematis of Computing℄ : MathematialSoftware; D.1.3 [Software℄ : Programming Tehniques { Conurrent Programming .51



52 VIRGINIA NICULESCUprogram ! Program program� namedelare delare� setionalways always� setioninitially initially� setionassign assign� setionendThe delare � setion, names the variables used in the program and their types.The syntax is similar to that used in Pasal. The always�setion is used to de�neertain variables as funtion of others. This setion is not neessary for writingUNITY programs, but it is onvenient. The initially � setion is used to de�neinitial values of some of the variables; uninitialized variables have arbitrary initialvalues. The assign� setion ontains a set of assignment statements.The program exeution starts in a state where the values of variables are asspei�ed in the initially-setion. (A state is haraterized by the values of allvariables.) In eah step, any one statement is exeuted. Statements are seletedarbitrarily for exeution, though in an in�nite exeution of the program eah state-ment is exeuted in�nitely often. A state of a program is alled a �xed point if andonly if exeution of any statement of the program, in this state, leaves the stateunhanged. A prediate, alled FP, haraterize the �xed points of the program.One FP holds, ontinued exeution leaves values of all variables unhanged, andtherefore it makes no di�erene whether the exeution ontinues or terminates.The termination of a program is regarded as a feature of an implementation. Aprogram exeution is an in�nite sequene of statement exeutions and an imple-mentation is a �nite pre�x of the sequene.2.1. Mapping Programs to Arhitetures. One way to implement a programis to halt it after it reahes a �xed point.A mapping to a von Neumann mahine spei�es the shedule for exeutingassignments and the manner in whih a program exeution terminates.In a synhronous shared-memory system, a �xed number of idential proessorsshare a ommon memory that an be read and written by any proessors. Thesynhronism inherent in a multiple-assignment makes it onvenient to map suh astatement to this arhiteture.A UNITY program an be mapped to asynhronous shared-memory system,by partitioning the statements of the program among the proessors. In addition,a shedule of exeution for eah proessor should be spei�ed that guarantees afair exeution for eah partition. If the exeution for every partition is fair, thenany fair interleaving of these exeutions determines a fair exeution of the entireprogram. Two statements are not exeuted onurrently if one modi�es a variablethat the other uses.Other arhitetures an be onsidered for mappings.



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 532.2. Assignment Statement. It is allowed that a number of variables to beassigned simultaneously in a multiple assignment, as inx; y; z := 0; 1; 2:Suh an assignment an also be written as a set of assignment-omponents sepa-rated by k, as in x; y := 0; 1kz := 2or x := 0ky := 1kz := 2:The variables to be assigned and the values to be assigned to them may be de-sribed using quanti�ation, rather than enumeration:< ki : 0 � i < N :: A[i℄ := B[i℄ > :A notation like the following is used for a onditional assignment:x := �1 if y < 0 �0 if y = 1 �1 if y > 0 :2.3. Assign-setion. The symbol z ats as a separator between the statements.A quanti�ed-statement-list denotes a set of statements obtained by instantiatingthe statement-list with the appropriate instanes of bounded variables; if there isno instane, quanti�ed-statement-list denotes an empty set of statements. Thenumber of the instanes must be �nite. The boolean expression in the quanti�a-tion should no name program variables whose values may hange during programexeution.2.4. Initially-setion. The syntax of this setion is the same as that of the assign-setion exept that symbol := is replaed with =. The equations de�ning the initialvalues should not be irular.2.5. Always-setion. An always-setion is used to de�ne ertain program vari-ables as funtion of other variables. The syntax used in the always-setion is thesame as in the initially-setion.3. Nondeterministi Gauss EliminationWe onsider the Gaussian elimination sheme for solving a set of linear equa-tions, A �X = B;where A[0::n � 1; 0::n � 1℄ and B[0::n � 1℄ are given and the solution is to bestored in X [0::n� 1℄. Gaussian elimination is presented typially as a sequene ofn pivot steps. The following UNITY program allows nondeterministi hoies inthe seletions of the pivot rows.



54 VIRGINIA NICULESCU3.1. A Solution. LetM(A;B) (orM for short) the matrix with n rows and n+1olumns, where the �rst n olumns are from A and the last olumn is from B. Inthe Gaussian elimination M(A;B) is modi�ed to M(A0 ;B0) by ertain operationssuh that A �X = Band A0 �X = B0have the same solutions for X . The goal of the algorithm is to apply a sequeneof these operations to onvert M(A;B) to M(In;XF ), where In is the identitymatrix; then XF is the desired solution vetor. This goal an be realized if therank of A is n, whih we assume to be the ase.The program onsists of two kinds of statements:(1) Pivot with row u, provided thatM [u; u℄ 6= 0; this has the e�et of settingM [u; u℄ to 1 and M [v; u℄ to 0, for all v; v 6= u(2) Exhange two rows u and v, provided that both M [u; u℄ and M [v; v℄ arezero and at least one of M [u; v℄;M [v; u℄ is nonzero; this has the e�et ofreplaing a zero diagonal with a nonzero element.Due to the fat that there are some possible exhanges between the rows, theelements of the solution vetor will be exhanged also. The permutation of theelements is stored in an array p.Program GaussdelareM : array[0::n� 1; 0::n℄ of realp : array[0::n� 1℄ of integerinitially< i : 0 � i < n : p[i℄ = i >assignfpivot with row u if M [u; u℄ 6= 0g< zu : 0 � u < n ::< kv; j : 0 � j < n ^ 0 � v < n ^ v 6= u ::M [v; j℄ :=M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>k < kj : 0 � j < n ::M [u; j℄ :=M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>>



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 55zfexhange two rows if both have zero diagonal elements and theexhange results in at least one of these elements being set to nonzerog< zu; v : 0 � u < n ^ 0 � v < n ^ u 6= v ::< kj : 0 � j < n ::M [u; j℄;M [v; j℄; p[u℄; p[v℄ :=M [v; j℄;M [u; j℄; p[v℄; p[u℄if M [u; u℄ = 0 ^M [v; v℄ = 0 ^ (M [u; v℄ 6= 0 _M [v; u℄ 6= 0)>>endfGaussg3.2. Corretness. Let M0 denote the initial Z matrix. Sine eah statement inthe program modi�es M suh that the solutions to the given linear equations arepreserved, we have the following invariant:invariant M0;M have the same solution:In the following, A refers to the n � n matrix in the left part of M , and B,to the last olumn of M . First, it is proven that the program Gauss reahes a�xed point and that at any �xed point, A is an identity matrix. Then, from theinvariant, B is the desired solution vetor. In the following, a unit olumn is aolumn in whih the diagonal element is 1 and all other elements are 0. That is,olumn u is a unit olumn means thatM [v; u℄ = 0 if u 6= v � 1 if u = v:To show that a �xed point is reahed, it is proven that the pair (p; q), wherep = number of unit olumns in Aq = number of nonzero diagonal elements in A;inreases lexiographially with every state hange.We onsider eah statement in turn. Pivoting with row u, where olumn u is aunit olumn, ause no state hange. A state hange results from a pivot operationwith row u only if olumn u is not a unit olumn; the e�et of the pivot operationis to set u to a unit olumn, thus inreasing p.Two rows u and v are exhanged only when M [u; u℄ = 0 ^ M [v; v℄ = 0 ^(M [u; v℄ 6= 0_M [v; u℄ 6= 0). Hene neither of the olumns u or v is a unit olumn.The exhange preserves all the unit olumns, also preserving p. In addition, atleast one diagonal element, M [u; u℄ or M [v; v℄ is set to nonzero. Sine both ofthese elements were previously zero, q inreases. Therefore, every state hangein program Gauss inreases (p; q) lexiographially. Sine eah of p; q is boundedfrom above by n, Gauss reahes a �x point.Now, it must be proved that A is an identity matrix at any �x point. The proofis as follows. Lemma 1 proves that if any diagonal element M [u; u℄ is nonzero at a�xed point, u is a unit olumn. Lemma 2 proves that if some diagonal element iszero at a �x point, all elements in the row are zero. This ontradits the assumption



56 VIRGINIA NICULESCUthat the determinant of A is nonzero. (Note that exeution of any statement inGauss preserves the determinant.) Therefore every diagonal element is nonzeroand, using Lemma 1, A is an identity matrix.Lemma 1. At any �xed point of program Gauss,M [u; u℄ 6= 0) u is a unit olumn:Proof: Consider the statement for a pivot orresponding to row u. At any �xpoint, given that M [u; u℄ 6= 0, for any j and v; u 6= v,M [v; j℄ =M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄and M [u; j℄ =M [u; j℄=M [u; u℄:In partiular, with j = u,M [v; u℄ =M [v; u℄�M [v; u℄ �M [u; u℄=M [u; u℄ = 0and M [u; u℄ =M [u; u℄=M [u; u℄ = 1:Therefore u is a unit olumn.Lemma 2. At any �xed point of program Gauss,M [u; u℄ = 0)M [u; v℄ = 0;8v 6= u:Proof: Consider two ases: M [v; v℄ = 0 and M [v; v℄ 6= 0.In the �rst ase, onsider the exhange statement for rows u; v. At any �x point,given that M [u; u℄ = 0 ^M [v; v℄ = 0:(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (^j ::M [u; j℄ =M [v; j℄):Consider the partiular ase, j = v. Then,(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (M [u; v℄ =M [v; v℄):Using the fat that M [v; v℄ = 0 we onlude that M [u; v℄ = 0.In the seond ase, if M [v; v℄ 6= 0 from Lemma 1, M [u; v℄ = 0.3.3. Mappings. Program Gauss an be implemented in a variety of ways ondi�erent arhitetures. For a sequential mahine, it may be more eÆient to hoosethe pivot rows in a partiular order. The orretness of this sheme is obviousfrom the proof beause it is obtained from the given program by restriting thenondeterministi hoies in statement exeutions. For an asynhronous shared-memory or distributed arhiteture, the given program admits several possibleimplementations; the simplest one is to assign a proess to a row. To failitatethe exhange operation, it is possible to allow the row number at a proess tobe hanged. Two rows an be then exhanged simply by exhanging their rownumbers. A parallel synhronous arhiteture with O(n) proessors an omplete



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 57eah exhange operation in a onstant time and eah pivot operation in O(n) steps;with O(n2) proessors, a pivot operation takes onstant time.4. The Inverse of a MatrixThe method we use for the omputation of the inverse matrix use Gauss-Jordansteps. A Gauss-Jordan step with the pivot element a[u; v℄ 6= 0 transforms thematrix A elements, in the following way:a[i; j℄ = 8>>>><>>>>: 1a[u;v℄ ; i = u ^ j = v�a[i;j℄a[u;v℄ ; i = u ^ j 6= va[i;j℄a[u;v℄ ; i 6= u ^ j = va[i;j℄�a[u;v℄�a[i;v℄�a[u;j℄a[u;v℄ ; i 6= u ^ j 6= v :If we apply a Gauss-Jordan step n times on matrix A[0::n� 1; 0::n� 1℄ we obtainthe inverse matrix A�1 [2℄. We assume that the rank of matrix A is n.4.1. A Solution. The hoie of the pivot element it is done in nondeterministiway, provided that it is nonzero. Sine, a pivot operation have to be done onlyone time for a partiular row u and a partiular olumn v, after the exeution of apivot operation with the pivot element a[u; v℄ we set ind1[u℄ = 1 and ind2[v℄ = 1.The ind1 and ind2 are two arrays whih indiate the possible pivot steps. Anelimination step with the pivot a[u; v℄ an be exeuted only if ind1[u℄ = 0 ^ind2[v℄ = 0.Beause we not hoose every time pivot elements from the diagonal, a permu-tations of the rows of the inverse matrix results. The permutation p depends ofthe hoies of the pivot elements.Program inversedelarea : array[0::n� 1; 0::n� 1℄ of realind1; ind2 : array[0::n� 1℄ of integerp : array[0::n� 1℄ of integerinitially< u : 0 � u < n :: ind1[u℄; ind2[u℄ = 0; 0 >assignfpivot operation with the element u; v if a[u; v℄ 6= 0g< zu; v : 0 � u < n ^ 0 � v < n ::< ki; j : 0 � i < n ^ 0 � j < n ::



58 VIRGINIA NICULESCUa[i; j℄ := 1=a[u; v℄ if i = u ^ j = v �:= �a[u; j℄=a[u; v℄ if i = u ^ j 6= v �:= a[i; v℄=a[u; v℄ if i 6= u ^ j = v �:= (a[i; j℄ � a[u; v℄� a[u; j℄ � a[i; v℄)=a[u; v℄ if i 6= u ^ j 6= v>kind1[u℄; ind2[v℄; p[u℄ := 1; 1; vif a[u; v℄ 6= 0 ^ ind1[u℄ = 0 ^ ind2[v℄ = 0>endfinverseg4.2. Corretness. If we denote by p the following sum p = (Pu : 0 � u < n :ind1[u℄), and by q the sum q = (Pu : 0 � u < n : ind2[u℄), it an be easy provedthat the for the pair (p; q) the equality p = q holds at any moment of the exeution.So, we an write: invariant p = q:The number p(p = q) inrease after the exeution of any statement. The valuesfor p and q are bounded from above by n, hene the program inverse reahes ata �x point, where p = q = n.The equality p = q = n whih holds at any �x point shows that there areexeuted exat n Gauss-Jordan steps with pivot elements from di�erent rows andolumns. Therefore the matrix A at any �x point is the inverse matrix of theinitial matrix, possible with the rows permuted.To transform the result to the true inverse matrix the following program anbe used. Program transformdelarea : array[0::n� 1; 0::n� 1℄ of realp : array[0::n� 1℄ of iutegerassign< zu; v : 0 � u < n ^ 0 � v < n ::frows exhange g< kj : 0 � j < n :: a[u; j℄; a[v; j℄ := a[v; j℄; a[u; j℄ >k p[u℄; p[v℄ := p[v℄; p[u℄if p[u℄ = v _ p[v℄ = u>endftransformg4.3. Mappings. On a sequential arhiteture the program inverse an be mappedby hoosing the �rst pivot element founded; the searh of the element is made de-pending in ind1 and ind2.



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 59The program an be implemented on an asynhronous shared-memory system,by assigning a proessor to a row, or by assigning a proessor to eah matrixelement (and so the operations assoiated with it), provided that there are enoughproessors.On a parallel synhronous arhiteture with n2 proessors the exeution of theprogram takes O(n) time.4.4. Other Appliations. The program inverse an be used to �nd the rank ofa matrix. The rank it will be equal to p = q, whih represents the number of theGauss-Jordan steps, whih were exeuted.With slight modi�ations, this program an be used to resolve a system oflinear equations. The matrix A is replaed with the matrix M de�ned for theGauss program M = [AjB℄ and �nally the result (the solution vetor)is the lastolumn of the matrix at the �x point. A permutation of the elements it is done inthis ase also.The appliation of n Gauss-Jordan steps represents also the seond stage of thealgorithm SIMPLEX. 5. ConlusionsThere are presented some nondeterministi algorithms from numerial analysis.Their orretness was proved, and di�erent mappings are disussed.Nondeterministi programs an be mapped more easier on parallel mahine,beause the parallelism brings some nondeterminism by itself.Interesting algorithms an be developed using the onept of nondeterminism.Nondeterministi programs an be implemented on di�erent arhitetures, in eÆ-ient ways. Referenes[1℄ G. E. Blelloh, B. M. Maggs , Parallel Algorithms, ACM Computing Surveys, Vol. 28, No.1, Marh 1996, pg. 51-54.[2℄ W.W. Brekner, Operational Researh, "Babe�s-Bolyai\ University, Cluj-Napoa, 1981 (inRomanian).[3℄ K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.[4℄ Gh. Coman, Numerial Analysis, Libris, Cluj-Napoa, 1995 (in Romanian).[5℄ I. Foster, Designing and Building Parallel Programs, 1995.[6℄ Carrol Morgan, Programming from Spei�ations, Prentie Hall, 1990.Department of Computer Siene, \Babes�-Bolyai" University, RO-3400 Cluj-Napoa,1 Kog�alnieanu St., RO-3400 Cluj-Napoa, RomaniaE-mail address: gina�s.ubbluj.ro


