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AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE
LOCATIONS OF UNDISCOVERED HYDROCARBON
ACCUMULATIONS IN SPARSELY DRILLED AREAS

GHEORGHE CIMOCA

ABSTRACT. This paper uses concepts and principles pertaining to a natural
geometrical data structure (the Voronoi diagram) in a theoretical attempt
to estimate the sites and perimeters to really succeed in an exploration for
undiscovered new hydrocarbon accumulations in an oil basin/system. The
proposed algorithm can be applied to oil, methane gas or oil and gas combined
reserves in a natural area of hydrocarbon accumulation, characterized by the
same hydrocarbon source.

1. INTRODUCTION

The starting point of this mathematical experiment was a report [7], published
by the Petroconsultants Group in 1993, on a new method for estimating undiscov-
ered petroleum potential with applications to the giant oil fields of the world, such
as: Arabo-Iranian basin, Campos basin, Gippsland basin, Kutei, South Sumatra,
Niger delta, Timan-Pechora, North Sea grabens, Transylvania basin, as well as
other petroleum systems. Their estimation is based on the best fit with fractal
parabolas of oil field size distributions. Meanwhile, new methodologies meant
to estimate the amount of undiscovered hydrocarbon reserves were announced in
several reports ([11], [5]), whose results haven’t been published so far.

However, a more “delicate” and obviously more difficult problem can be posed:

“Is it possible to make forecasts/estimates, with a certain degree
of plausibility, on the locations (sites, perimeters, extents, zones)
of the “presumably existing” hydrocarbon accumulatios, not yet
discovered in a sparsely drilled oil system?”

Using our knowledge of Voronoi diagrams ([3], [10]) which we had previously
applied to some natural geological data structures (e.g., mineral deposits) we ar-
rived at a first approach of the above problem. The most important question was:
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how to formulate, in mathematical terms, a location principle to find the “most
plausible” sites and corresponding extents of new oil fields in a drilled area?

2. VORONOI DIAGRAMS: GENERAL CONCEPTS

Let X be a non-empty arbitrary set. A function d : X x X — R is said to be a
distance or a metric on X if it satisfies the following conditions:

dz,y) =0 < z =y;
d(z,y) = d(y,z);
d(z,y) <d(z,2z) +d(z,y) Vz,y,z € X.

The pair (X, d) is called a metric space.
A simple example is the real plane R?> with the metric defined by:

d(z,y) =/ (z1 —y1)? + (w2 — y2)> Vo= (x1,22),y = (y1,72) € R°.

This metric is called the Euclidean metric on R?. Let (X, d) be a metric space. A
subset Y of X is said to be bounded (with respect to the metric) if

sup {d(z,y)|z,y €Y} < o0.
Let Y be a non-empty subset of X and z € X. The real number:
d(Y,z) = inf {d(y,z)|y € Y'}

is called distance from = to Y. Let M (X) be the set of all non-empty, bounded
subsets of (X, d) and M'(X) the set of all non-empty and closed subsets of (X, d).
IfY,Z € M(X), then the real number:

e(Y,Z) =sup{d(Y,z)|z € Z}

is called gauge or excess of Y from Z.
If (X, d) is a metric space, then the function p : M'(X) x M'(X) — R defined
by:
p(Y,Z) =max{e(Y,Z),e(Z,Y)} VY,Z e M'(X)

is a metric on M'(X) [8]. This metric is called the Pompeiu-Hausdorff metric.
Suppose now that S = {C,...,C}} is a finite set of distinct points in R? and

f:R2 xS —[0,00] is a given function called the influence or authorithy function.
If i € {1,...,k}, then the subset of R? defined by:

reg(C;) = {z € R*|f(x,Ci) < f(2,0;),¥j € {1,...,k}\ {i}}

is said to be the influence region of C;.

We call the set {reg(Ci),...,reg(Ck)} the Voronoi diagram generated by S
with influence function f. In fact, the Voronoi diagram is a covering of the real
plane by a set of regions associated with members of the point set S and an
influence function f.
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The sets reg(C;),i = {1,...,k} are sometimes called faces of the Voronoi dia-
gram. The intersection of two faces gives a Voronoi edge and the intersection of
two edges is called a Voronoi vertex.

We’ll denote by Vor(S, f) the set consisting of all points of the edges of a
Voronoi diagram generated by S and an influence function f.

Ifi,5 € {1,...,k},i # j, then the subset of R? defined by:

sep(Ci, Cj) = {z € B*|f(x,Ci) = f(x,C;)}
is called the separation curve of C; and Cj, and the set:

defines the dominance region of C; over Cj.
The following relations hold true:

dom(C’j, Cl) = []R2 \ dom(C’i, C])] U sep(C’,», Cj),

reg(Ci) = N{dom(Cy, Cy)lj € {1,..., k} \ {i}}.

If the influence function f is the Euclidean metric d of R?, then the planar (ordi-
nary) Voronoi diagram is obtained. In this case, sep(C;, Cj) is the perpendicular
bisector m;; between C; and C;, and dom(Cj, C;) is the half plane defined by m;;,
containing C;. Therefore, being the intersection of k£ — 1 half planes, reg(C;) is a
convex set.

When f = d, we call the region reg(C%) the (ordinary) Voronoi polygon as-
sociated with C;, or the Voronoi polygon of C; denoted V(C;). Since a Voronoi
polygon is a closed set, it contains its boundary denoted by 0V (C;). The term
polygon is used to denote the union of the boundary and of the interior. The
boundary of a Voronoi polygon may consist of line segments, half lines or infinite
lines, which we call Voronoi edges. Alternatively, we may define a Voronoi edge
as a line segment, a half line or an infinite line shared by two Voronoi polygons.

If V(C;) NV (C;) # 0, then the set V(C;) N V(C;) gives a Voronoi edge which
may degenerate into a point. If V(C;) N V(C};) is neither empty nor a point, we
say that the Voronoi polygons V(C;) and V(C;) are adjacent.

For the sake of simplicity, if f = d, instead of Vor(S, f) we write Vor(S) =
OV (Cy)U...UadV(Cy).

Now let A be a closed subset of R? and ¥ = {T},...,T})}, where each T},i €
{1,...,k} is a closed subset of A. If the elements of the set ¥ satisfy [T} \ 0T;] N
[T;\0T;] = 0,Vi,j € {1,...,k},i # j, then we call the set T a pretessellation of A.
A pretessellation ¥, where all T;,i € {1,...,k} are convex sets is called a convez
pretessellation.

A pretesselation ¥ = {Ty,...,T}} with A = U{T;|i = 1,...,k} becomes a
tesselation. A planar Voronoi diagram is a tessellation which consists of convex
polygons with three or more vertices. A planar tessellation in which any T; in ¥



30 GHEORGHE CIMOCA

is a triangle Vi € {1,...,k} is called a ¢riangulation of A. Two vertices sharing an
edge in a triangulation are called adjacent.

Given a planar Voronoi diagram where generators are not colinear and their
number is three or more, but finite, we join all pairs of generators whose Voronoi
polygons share a common Voronoi edge, thus obtaining a new tessellation. If
the new tessellation consists only of triangles, we call it a Delaunay triangula-
tion; otherwise, we call it a Delaunay pretriangulation. In the case of the De-
launay pretriangulation, we partition the non-triangular polygons into triangles
by non-intersecting line segments joining the vertices. As a result, the Delaunay
pretriangulation becomes a Delaunay triangulation.

3. LOCATIONAL MATHEMATICAL MODEL

Let’s consider an oil system (or a geological-tectonical region) externally delim-
ited, on a geographical map, by the boundary of a simple polygon A. Suppose
that in this oil system k& oil fields have been discovered.

Let the points Ci,...,C be the centers/sites/domes and let the simple poly-
gons @1, ...,01,C; € p; C A,i € {1,...,k} be the extents/contours of these fields,
being situated on the same map. Moreover, p; N...N @ = 0.

We consider the set S = {C4,...,C;}. In addition, let’s denote B; = Ogp;,i €
{1,...,k} and P =U{p;li =1,...,k}.

Now, we formulate the following question: where, in this region A, can the
centers of a given number of new, posible oil fields be most plausibly located ?

In order to get an answer it is important to restate and formalize the above
verbal problem more precisely, in mathematical terms. With that end in view, let
d be the Euclidean metric on R%, M’ the set of all non-empty closed subsets of R?
and p the Pompeiu-Hausdorff metric on M.

In order to mathematically formalize the locational problem, we must adopt an
essential assumption:

Assumption.
Bin..NnB,=Vor(S)NnA

If the above assumption is correct, then we believe the most plausible location
of the centers of m undiscovered oil fields in the oil system A leads to the following
optimization problem:
Location problem. Find m points Cg41,...,Cgtm in A\ P such that:

p(VOT(S U {Ck+1, RN Ck-i—m});Bl U...u Bk) =
min{p(Vor(SUS"),ByU...UBy)|S" € T}

where:
Y ={S" C A\ Pl|card(S"\ S) =m}.
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Remarks.

(1) In fact, the above location problem is to determine within a simple poly-
gon A the locations of a given number (m) of points, outside of a pretes-
sellation of A (in A\ P), so that the Pompeiu-Hausdorff distance between
two Voronoi diagrams having some common generators is minimized.
The distance can be defined as the sum of Pompeiu-Hausdorff distances
between the pairs of Voronoi polygons [2] with common generators.

(2) A couple of location problems are similar, although much easier than
ours: the recognition of a Dirichlet (Voronoi) tessellation [1], [12] and
the geographical optimization problem from [6]. These problems start
from a convex tessellation. By contrast, we start from a more general,
non convex pretesselation, denoted in the following by (A4, S, P).

4. THE APPROXIMATE ALGORITHM

Being fully aware of the difficulty of the above location problem, we have tried to
find only an approximate solution. Our approximate algorithm is of an incremental
type [9] and uses some remarks on distortions of a Voronoi diagram when one point
moves [4].

Let S = {C4,...,Ck} be the set of sites/centers of discovered oil fields and an
arbitrary point Cy € A\ P. In the following, we denote by V(i),i = 1,...,k, the
Voronoi polygon of C; in the Voronoi diagram generated by S and by Vp(i) the
Voronoi polygon in the Voronoi diagram generated by Sop = S U {Cp}. Let T be
the Delaunay triangulation of the set Sp.

For C; € S, we have V(i) = V,(i), if and only if C; and Cj are not adjacent
vertices in Ty [4]. Moreover, if C; and Cy are adjacent and p; C V (i), it doesn’t
follow that gp; C V(7).

We say that the “center” Cy is admissible in pretessellation (A4, .S, P) in respect
to %o, if for every C; € S, such that C; and Cj are adjacent vertices in ¥y, then
pi C Vo(0).

If C,,Cp € A\ S,C, # Cy, let us denote by V,(i), respectively by V, (i), the
Voronoi polygon of C; € S in Vor(S,), respectively Vor(S,), where S, = SUC,
and S, = SUC,. Let T, respectively T, be the Delaunay triangulations of S,
respectively S,. Moreover, let A(p) be the set of points in S which are adjacent
with C,, in ¥, and A(g) the points in S adjacent with C, in ¥,.

Let Cp and C; be two admissible centers in (A, S, P) corresponding to ¥, and
T4, respectively. We say that C), is preferred to Cj if

™ = Z p(Vp(i), Vo(p)) < Z p(Vq(i),Ve(a)) = my,
cieA@) cieA()

where p is the Pompeiu-Hausdorff distance.
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The number 7, evaluates the distortion effect of the point €, on the Voronoi
diagram generated by S. At the same time, 7, represents a measure of plausibility.
The smaller 7, the more plausible C,,.

Let G(p,p) be a uniform rectangular grid with sides parallel to the coordinate
axes, which contains A, and the number p of horizontal and vertical grid lines an
even integer.

The algorithm. Step 1. Let p be the smallest positive even integer such that
m < p? and let G(p, p) be the minimal uniform rectangular grid covering A.

Let n:=0and W% :=S.

Step 2. Scan the grid G(p,p) rectangle-by-rectangle, in a spiral order, start-
ing from the central rectangle of the grid. For each rectangle D,y execute the
following operations:

a. Let Cj := the center of D,11;

b. Construct the Delaunay triangulation ¥, of the set W* = W2 U {Cy}. We
distinguish the cases:

Case I. If there exists a point C; € S which is adjacent to Cp in ¥, and Cy € p;,
take the next rectangle.

Case II. If Cy ¢ P, choose the most preferred point C* between Cp and each
of the four rectangle corners which are not in P. Let W' := W% U {C*} and
n:=n+ 1. If n = m stop, else go to Step 1 with p := 2p.

Remarks.

(1) Infact, this algorithm locates a m-points planar configuration in a pretes-
sellation, each of the m points having only a local plausibility. This
configuration can be a starting point pattern for further, more subtle,
improved algorithms.

(2) Mathematically, it is easier to insert “new” admissible oil fields closer to
the boundary of A, but we have preferred a more “central” configuration
for geological reasons.

(3) The algorithm can be relativized to a subzone of A, called zone of geo-
logical interest.

A software package named EXPLORER has been developed and tested on both
non- and real data. EXPLORER enables users to:

visualize a basin in study with all its fields,

visualize a particular field and its contour,

visualize a field and its adjacent neighbours,

visualize the Voronoi diagram of a basin,

locate a given number of new plausible oil fields and their possible ex-
tents, and

e print the founded pattern of “new” and old fields.
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In the following figures we present an example of EXPLORER outputs for a
fictional basin with 15 active oil fields, their contours or extents (gray polygons)
and the Voronoi diagram of these fields (left); the forecasted sites of 6 possible
new fields (circled dots) and their plausible (in decreasing rank order, #1 having
the highest degree of plausibility) extents as their Voronoi polygons (right).

EXPLORER 5| | EXPLORER

5. AN EXPERIMENT FOR TRANSYLVANIA BASIN

The EXPLORER software application allows the user to “discover” several
“new” oil fields as well, in a real oil basin, Transylvania, with different plausibil-
ities (depending on the number of scanned rectangles).

We can comunicate, to whom may be interested, two tested results:

(1) Using the information regarding the 23 active fields discovered in the
Transylvania basin during 1906-1965, the algorithm proposed 20 “new”
locations of methane gas fields. We were surprised to find out that 15
out of these fields were “confirmed” (their extents having a non-empty
intersection with at least one contour of an actually discovered field)
during 1966-1985 (out of the 29 new fields actually pointed out during
this period). Furthermore, 4 more fields were confirmed during 1986-
1996 (out of 52 new actually discovered fields). Therefore, 19 out of the
20 sites proposed by algorithm have been confirmed.

(2) Forecasting again 20 possible locations of “new” fields by means of the
methane gas field pattern existing in 1985 (i.e., 52 active fields), 17 fields
were confirmed during 1986-1996.
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6. CONCLUSIONS

We are aware that the development of a new method/technology to mathemat-
ically forecast the sites and/or extents of new oil fields in an oil system needs a
strong collaboration between oil geologists, mathematicians and computer engi-
neers. The above algorithm is just a first step toward a new technology. Algo-
rithm’s forecasts zones of possible hydrocarbon accumulations require confirma-
tions by geological parameters. But these forecast perimeters, we believe, are the
most plausible locations for the new possible oil fields in an oil basin.

By superposing quantitative geological parameter (e.g., permeability, porosity,
pressure, &c.) maps, on this prognosticated locations the exploration expenses and
time can be drastically diminished. As the tested results on a real oil basin indicate,
we are optimistic and forsee a successful completion (new natural geometrical data
structures generated by an influence function f # d; new location principles; new
improved algorithms) of this promising research.

Acknowledgments. I am deeply grateful to Tiberiu Trif, from the Faculty of
Mathematics and Computer Science, the Babes-Bolyai University, Cluj-Napoca,
Mihaela Ordean and Ovidiu Pop, from the Computer Science Department, the
Technical University of Cluj-Napoca, who contributed their expertise to the de-
velopment of the EXPLORER software application.

REFERENCES

[1] P.F. Ash, E.D. Bolker, Recognizing Dirichlet tessellations, Geometriae Dedicata, 19 (1985),
pp. 175-206.

[2] M.J. Attallah, A linear time algorithm for the Hausdorff distance between convex polygons,
Inf. Proc. Let., 17 (1983), pp. 207-209.

[3] F. Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometric Data Struc-
ture, ACM Comput. Surveys, 23 (1991), pp. 345-405.

[4] L.-M. Cruz Orive, Distortion of certain Voronoi tessellations when one particle moves, J.
Appl. Prob., 16 (1979), pp. 95-103.

[5] C.C. Barton, G.L. Troussov, Fractal Methodology for Petroleum Resource Assessment and
Fra-A Computer Program That Calculates the Volume and Number of Undiscovered Hy-
drocarbon, U.S. Geological Survey; announced in 1997.

[6] M. Iri, K. Murota, T. Ohya, A Fast Voronoi Diagram Algorithm with Applications to Geo-
graphical Optimization, in Lecture Notes in Control and Information Sciences 59 , Springer
Verlag, Berlin, 1984, pp. 273-288.

[7] J.Laherrere, A. Perrodon, G. Demaison, Undiscovered Petroleum Potential; A new approach
based on distribution of ultimate resources, Petroconsultants S.A., Geneva-London-Houston-
St.Leonards-Singapore-Victoria Park, 1994.

[8] I. Muntean, Analizd functionald, Universitatea “Babeg-Bolyai”, Cluj-Napoca, 1993.

[9] T. Ohya, M. Iri, K. Murota, Improvements of the Incremental Method for the Voronoi
Diagram with Computational Comparison of Various Algorithms, J. Operations Res. Soc.
Japan, 27 (1984), pp. 306-336.

[10] A. Okabe, B. Boots, K. Sugihara, Spatial Tessellations; Concepts and Applications of
Voronoi Diagrams, J.Wiley & Sons Ltd, London, 1992.



AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 35

[11] R.G. Stanley, The “Checkerboard Method”: A New Way to Estimate the Numbers of Undis-
covered Hydrocarbon Accumulations in Sparsely Drilled Areas, U.S. Geological Survey; an-
nounced in 1995; not yet published.

[12] A. Suzuki, M. Iri, Approzimation of a tessellation of the plane by a Voronoi diagram, J.
Operations Res. Soc. Japan, 29 (1986), pp. 69-96.

S.C. SIMBOLIC, STR. BACAU NR. 3, 3400 CLUJ-NAPoCA, ROMANTA, PHONE: +40-64-
431.333, FAX: 440-64-199.895
FE-mail address: ghcimoca@symbolic.com



