
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000PARALLEL VERIFICATION AND ENUMERATION OFTOURNAMENTSG�ABOR P�ECSY AND L�ASZL�O SZ}UCSAbstra
t. The area of tournaments is extensively dis
ussed in literature.In this arti
le the authors introdu
e asymptoti
ally optimal sequential algo-rithms for the veri�
ation of s
ore ve
tors and s
ore sequen
es and a sequen-tial polynomial algorithm for enumeration of
omplete tournaments. Theextensions of these algorithms to di�erent parallel ar
hite
tures in
ludingCREW PRAM, linear array, mesh and hyper
ube are also presented. It isshown that most of the parallel algorithms dis
ussed here are work-optimalextensions of the sequential ones.1. Introdu
tionRound-robin tournaments are popular in the world of sport, games or ele
tionsand they are very mu
h dis
ussed in
omputer s
ien
e as well. A tournament isan n�n real matrix. The elements of the main diagonal tii equal to zero and thepairs of symmetri
 elements tij : tji give the result of the mat
h between Pi (thei-th player) and Pj . The sum of the elements of the i-th row (si) is
alled the s
oreof the i-th player. A non-de
reasingly ordered sequen
e of the s
ores is the s
oresequen
e of the tournament.The most usually dis
ussed problems regarding tournaments in
lude:� Veri�
ation of a s
ore sequen
e/s
ore ve
tor means the de
ision if thereexists a tournament for a given s
ore sequen
e/s
ore ve
tor.� Enumeration of s
ore sequen
es means the
ounting of the possible dif-ferent s
ore sequen
es for a given number of players (n).The outline of the paper is as follows. The following se
tion des
ribes theproblems and the used
omputational models more formally. Se
tion 3 deals withveri�
ation problems and their sequential and parallel solutions.Then Se
tion 42000 Mathemati
s Subje
t Classi�
ation. 05C20, 68Q25, 65Y05.1998 CR Categories and Des
riptors. G.2.1 [Dis
rete mathemati
s℄: Combinatori
s {Counting problems; F.2.2 [Analysis of algorithms and problem
omplexity℄: Nonnumer-i
al algorithms and problems { Computations on dis
rete stru
tures C.1.4 [Pro
essor ar
hi-te
tures℄: Parallel ar
hite
tures { Distributed ar
hite
tures .11

12 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSpresents our results about enumeration. Finally, a table summarizes the resultswith possible future works. 2. Basi
 notions2.1. Tournaments.Tournament: A round-robin tournament is an n�n real matrix Tn = [tij ℄(n � 2). The elements of the main diagonal tii equal to zero and thepairs of symmetri
 elements tij : tji give the result of the mat
h betweenPi (the i-th player) and Pj . tij = tji means a draw, while tij > tji meansthe win of Pi against Pj .S
ore ve
tor: The sum of the elements of the i-th row (si) is
alled thes
ore of the i-th player and the ve
tor (s1; : : : ; sn) is
alled the s
oreve
tor of the tournament.S
ore sequen
e: A non-de
reasingly ordered sequen
e of the s
ores is de-noted by q =< q1; : : : ; qn > and is
alled the s
ore sequen
e of thetournament.Complete tournament: We
all a tournament
omplete if in it the per-mitted elements are 0 and 1 and the sum of the symmetri
 elements(tij+tji;where i 6= j) is always 1. A set of tournaments is
alled
ompletefor a given n if it
ontains all possible n player
omplete tournaments.2.2. Computational models.Sequential model: A RAM running pseudo-
ode similar to stru
turedprogramming languages.PRAM: Parallel RAM,
onsists of a shared memory and possibly in�-nite number of RAMs whi
h operate with the same pseudo
ode as inthe sequential
ase. Depending on the methods of a

essing the sharedmemory there are di�erent types of PRAM.EREW: Ex
lusive Read Ex
lusive WriteERCW: Ex
lusive Read Con
urrent WriteCREW: Con
urrent Read Ex
lusive WriteCRCW: Con
urrent Read Con
urrent WriteAs
on
urrent read of shared memory is usually allowed while the resultof
on
urrent write is ambigous we de
ided to use CREW PRAM in ourstudy.Linear array: A linear array
onsists of p pro
essors (named 1; 2; : : : ; p).Pro
essor i has two dire
t bidire
tional inter
onne
tion links to its neigh-bouring pro
essors (i� 1 and i+1) ex
ept pro
essor 1 and p whi
h hasonly one neighbour.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 13Mesh: A mesh is an a � b grid in whi
h there is a pro
essor at ea
h gridpoint. The edges
orrespond to
ommuni
ation links and are bidire
-tional. In this paper we
onsider only square meshes, where a = b.Hyper
ube: A hyper
ube of dimension d has p = 2d pro
essors. Ea
hpro
essor
an be labeled with a d-bit binary number. A pro
essor is
onne
ted only to those pro
essors whi
h label di�ers in only one bit.Work-optimal: We
all a parallel algorithm work-optimal
ompared to agiven sequential algorithm if Pn�pSn = O(1), where Sn is the run time ofthe sequential algorithm, Pn is the run time of the parallel algorithmand p is the number of pro
essors.Noti
e that if a parallel algorithm is work-optimal
ompared to a given asymp-toti
ally optimal sequential algorithm then the parallel algorithm itself is asymp-toti
ally optimal as well. 3. Verifi
ationVeri�
ation of a s
ore sequen
e/s
ore ve
tor means the de
ision if there existsa tournament for a given s
ore sequen
e/s
ore ve
tor. Landau [5℄ proved thefollowing theorem whi
h gives ne
essary and suÆ
ient
ondition for the existen
eof a
omplete tournament for a parti
ular s
ore sequen
e.Theorem 1. A non-de
reasing sequen
e of n integers < q1; : : : ; qn > is a s
oresequen
e if and only if kXi=1 qi � �k2�for ea
h k = 1; 2; : : : ; n with equality for k = n.3.1. Sequential algorithm. Theorem 1
an be dire
tly applied to verify s
oresequen
es as they are ordered non-de
reasingly. The following algorithm solvesthis problem in �(n) time and with O(1) auxiliary memory.1 s:=0; i:=1; ok:=(qn<n);2 while i<n and ok loop3 s:=s+qi;4 ok:=s�(i*(i-1)/2);5 i:=i+1;6 end loop7 ok:=ok and (s+qn)=(n*(n-1)/2);8 return ok;Algorithm 1: Sequential algorithm for s
ore sequen
e veri�
ation

14 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSAs the trivial lower bound for the veri�
ation problem is
(n) | the algorithmhas to read the input | Algorithm 1 is asymptoti
ally optimal for s
ore sequen
everi�
ation.In
ase of s
ore ve
tors the input is not ordered properly so Theorem 1 (andAlgorithm 1)
an not be applied dire
tly. One possible solution is to sort the inputand then apply Algorithm 1 to the result. It is known that sorting of general keystakes
(n logn) time but if keys are integer numbers from the range [0..k℄ thenthey
an be sorted in O(max(n; k)) time. Su
h algorithm
an be found in
hapter 9of [1℄. In
ase of a s
ore ve
tor all elements must belong to range [0..n-1℄ so theve
tor
an be sorted in O(n) time. This
ondition
an also be veri�ed in O(n)time, so we get the following algorithm.Step 1: Verify whether all elements in the ve
tor fall in the range [0..n-1℄.If not then the input
an not be a s
ore ve
tor.Step 2: Sort the input.Step 3: Use Algorithm 1.Algorithm 2: Sequential veri�
ation of s
ore ve
torsNote that Algorithm 2 is asymptoti
ally optimal for the same reason as Algo-rithm 1.3.2. Parallel algorithms. In this se
tion we provide an eÆ
ient way to imple-ment Algorithm 1 and Algorithm 2 on di�erent parallel ar
hite
tures. 13.2.1. PRAM. On a CREW PRAM Algorithm 1
an be implemented in a verystraightforward way.Step 1: For all pro
essors
ompute the pre�x-sums (ri) of the input se-quen
e.Step 2: Pro
essor pi (i := 1; 2; : : : ; n � 1)
al
ulates li := (ri � (i � (i �1)=2)) while pn
al
ulates ln := (rn = (n � (n� 1)=2)).Step 3: Cal
ulate OK := l1 ^ : : : ^ ln using the pre�x
omputation algo-rithm with all pro
essors.Algorithm 3: Simple parallel algorithm for s
ore sequen
e veri�
ationStep 1
an be done in O(log n) time, Step 2 takes O(1) time and Step 3 isO(log n) again. Note that in
ase of CRCW PRAM Step 3 takes only O(1) time.This algorithm uses O(n) pro
essors and operates in O(log n) time thereforeit is not work-optimal, but it
an be improved to run on O(nlogn) pro
essorsin O(log n) time whi
h is work-optimal. To a
hieve this we divide the input1It is assumed that the reader is familiar with the pre�x-sum
omputation and otherwell-known parallel algorithms summarized in [2℄ as they are building blo
ks of the followingalgorithms.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 15into logn long pie
es. Pro
essor pi will sequentially
al
ulate pre�x-sums ofs(i�1) logn+1; : : : ; si logn. Then the pro
essors will apply the original pre�x
ompu-tation algorithm on the sums of the pie
es. In the third step ea
h pro
essor willupdate the pre�x-sums of the
orresponding pie
e by adding the sum of all theprevious pie
es. After this the pro
essors will
al
ulate li values sequentially for allelements belonging to them and �nally they perform a pre�x
omputation using thesame algorithm as for the pre�x-sum
al
ulation to determine OK := l1 ^ : : :^ ln.Step 1: For all pro
essors
ompute sequentially the pre�x-sums(ti;j ; where i := 1; 2; : : : ; nlogn ; j := 1; 2; : : : ; logn) of the
orrespondingpie
e of input sequen
e.Step 2: For all pro
essors
ompute the pre�x-sums (ri logn) of ti;logn.Step 3: For all pro
essors
ompute sequentially r(i�1) logn+j :=r(i�1) logn + ti;j (i := 1; 2; : : : ; nlog n ; j := 1; 2; : : : ; logn).Step 4: Pro
essor pi (i := 1; 2; : : : ; logn)
al
ulates l(i�1) logn+j :=(r(i�1) logn+j � (((i � 1) logn + j) � ((i � 1) � logn + j � 1)=2)) usingequality at the last position.Step 5: Cal
ulate OK := l1 ^ : : : ^ ln using the pre�x
omputation algo-rithm des
ribed in Step 1{3, with all pro
essors.Algorithm 4: Work-optimal veri�
ation of s
ore sequen
es on CREW PRAMIn this algorithm all steps take O(log n) time so the whole algorithm worksin O(logn) time as well. It uses O(nlogn) pro
essors so this is a work-optimalparallelization of Algorithm 1. As Algorithm 1 is asymptoti
ally optimal algorithmfor the s
ore sequen
e veri�
ation problem the same holds for Algorithm 4 as well.Noti
e that in this algorithm only the parallel steps (Step 2 and 5) requireinterpro
essor
ommuni
ation and these steps are all parts of pre�x
omputations.3.2.2. Linear array. A lower bound on every inter
onne
tion networks for a prob-lem is the diameter of the network if all pro
essors of the network
ontributes tothe
omputation of the result. As the diameter of a linear array of n pro
essors isn � 1,
(n) is a lower bound for the s
ore sequen
e and s
ore ve
tor veri�
ationproblems. These problems
an be solved in O(n) time on a single pro
essor aswell, the trivial (and optimal) solution is to send all data to the �rst pro
essor ofthe array { this
an be done in O(n) time { and do the veri�
ation there, using thesequential algorithms. These solution are work-optimal if and only if the numberof pro
essors in the array is O(1).3.2.3. Mesh. The diameter of a p pro
essor mesh is pp, so
(pp) is a lower boundto an algorithm. The mesh adaptation of Algorithm 3 solves the problem in O(pn)if p = n. But we
an apply the same te
hnique as in Algorithm 4. If we assign n 13element for ea
h pro
essor of a n 13 � n 13 mesh then both the sequential and the

16 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSparallel steps work in O(n 13) time. The number of pro
essors in this
ase is n 23 sothe algorithm is work-optimal.3.2.4. Hyper
ube. In a p pro
essor hyper
ube, pre�x
omputation
an be per-formed in O(log p) time, whi
h means that adoptations of Algorithm 3 and Algo-rithm 4
an work in the same time bounds as in
ase of CREW PRAM.3.2.5. Parallel s
ore ve
tor veri�
ation. Unfortunately there is no known work-optimal parallel sorting algorithm for integer key from a given domain. Thismeans that the most diÆ
ult step in the parallel adoptation of Algorithm 2 is thesorting. The
omplexity of sorting usually ex
eeds the
omplexity of the othersteps so the overall
omplexity of the algorithm equals the
omplexity of sortingthe input. For PRAM and hyper
ube there are algorithms whi
h
an sort generalkeys in O(log2 n) time. 4. EnumerationEnumeration of s
ore sequen
es means the
ounting of the possible di�erents
ore sequen
es for a given number of players (n).For n > 1 let fn(T;E) be the number of non-de
reasing sequen
es of integerssatisfying nXi=1 qi = T; qn = E and kXi=1 qi � �k2�; k = 1; 2; : : : ; n� 1:Narayana and Bent in [7℄ presented a re
ursive formula for determining fn(T;E):f1(T;E) = � 1; if T = E � 00; otherwise.for n � 2fn(T;E) = 8><>: EXk=0 fn�1(T �E; k); if T �E � �k2�0; otherwise.(1)Let tn be the number of possible s
ore sequen
es in
ase of n players. For n > 1we have the following formula for tn:tn = n�1XE=r fn(�n2�; E);where r = jn2k :

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 17
i

T[n] = F[n,(n*(n-1)/2),r] +...+ F[n,(n*(n-1)/2),n-1]

Level i-1

Level i

F[i-1,T-E,0], ..., F[i-1,T-E,E]

F[i,T,E]

T

EFigure 1. Array element dependen
ies in the non-optimized formula4.1. Units of measure. The experimental results indi
ate that the value of tn isin
reasing exponentially with n (tn =
(2n)) whi
h implies that we need log tn =�(n) memory to store a single number. This also implies that addition of su
hnumbers takes �(n). In the next parts of the arti
le we will
ount the numberof operations (addition, send, re
eive and assignment) on the elements of thearray during the analysis of the algorithms. In a real implementation all of theseoperations
an be done in O(n) time.4.2. Sequential algorithms. The most straightforward re
ursive
al
ulation oftn using the re
ursive formula (1) has exponential run time so it is not appli
ablefor bigger n values. Using dynami
 programming the run time
an be redu
edsigni�
antly into polynomial domain.4.2.1. Algorithm using dynami
 programming. The following algorithm uses arrayof size n� n� (n(n� 1)=2 + 1) elements and works in �(n5) time.The operation of the algorithms
an be divided into two phases. First phaseis �lling in the array F whi
h
ontains the values of fi(T;E) for i = 1::n; T =0::n(n�1)2 and E = 0::n�1, thus the dimensions of the array are n� n(n�1)2 +1�n =�(n4). Cal
ulating a parti
ular F [i; T; E℄ element takes �(1) time for i = 1 |

18 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS1 for i:=1 to n loop2 for T:=0 to (n*(n-1)/2) loop3 for E:=0 to n-1 loop4 if i=1 then5 if T=E then6 F[i,T,E℄:=1;7 else8 F[i,T,E℄:=0;9 end if ;10 else11 F[i,T,E℄:=0;12 if (T-E)� ((i-1)*(i-2)/2) then13 for k:=0 to E loop14 F[i,T,E℄:=F[i,T,E℄+F[i-1,T-E,k℄;15 end loop;16 end if ;17 end if ;18 end loop;19 end loop;20 end loop;21 TN:=0;22 for E:=(n div 2) to n-1 loop23 TN:=TN+F[n,(n*(n-1)/2,E℄;24 end loop;25 return TN;Algorithm 5: Cal
ulating the number of s
ore sequen
es using dynami
programminglines 5{9 | and O(n) otherwise | lines 11{16 (see Figure 1). This means that thewhole algorithm runs in O(n5) time. The se
ond phase is to
al
ulate the numberof s
ore sequen
es (TN) using the �lled array F (see Figure 1).4.2.2. Improved algorithm. In Algorithm 5 the number of the used array elementsis �(n4) so O(n4) is a lower bound to the run time of any solution using thisapproa
h, but the run time is O(n5). We show that using a proper reformulationof equation (1) the run time of the algorithms
an be redu
ed to �(n4).

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 19
Level i-1

E

i

F[i-1,T-E,E]

F[i,T-1,E-1]

F[i,T,E]

T Level i

Figure 2. Dependen
ies of elements in the array in
ase of theoptimized formulafi(T;E) = EXk=0 fi�1(T �E; k)= E�1Xk=0 fi�1((T � 1)� (E � 1); k) + fi�1(T �E;E)= fi(T � 1; E � 1) + fi�1(T �E;E)(2)Noti
e that when we
ompute fi(T;E) we already know fi(T � 1; E � 1) so we
an repla
e the loop in lines 13{15 of Algorithm 5 with a simple assignment (seeFigure 2).4.3. Parallel algorithms.4.3.1. PRAM. A straightforward parallel implementation of the non-optimizedformula is the following. We �ll in one level of the array in one round. Wehave nlogn pro
essors for ea
h element in the level (�gure 3). These pro
essorsperform a pre�x
omputation to
al
ulate the value using the original formula (1).This takes O(log n) time. The array has n levels so the whole algorithm runs inO(n logn). On a single level of the array there are n�n2� elements, whi
h means thatwe need n�n2� nlog n = n3(n�1)2 logn = O(n4logn) pro
essors to a
hieve this. Unfortunatelythis solution is not work-optimal as the amount of work done is O(n4 logn) �O(n logn) = O(n5).This algorithm used the property of (1) that the value of a parti
ular element ina
ertain level depends on other elements from a lower level only. This way we
ouldavoid the syn
hronization overhead between the pro
essors working on di�erentelements. Using the optimized formula we have to use results from the same level

20 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS
= n/log n processors

E

i

T
Level i

Figure 3. Using brute-for
e approa
h on PRAM ar
hite
tureas well. More a

urately the value of fi(T;E) depends on fi(T � 1; E � 1) whi
hin turn depends on fi(T � 2; E � 2) et
. This dependen
y limits the maximumnumber of pro
essors that a work-optimal algorithm
an utilize.Here we present three possible work-optimal algorithms, using n, n2 and n3�n2blog n
pro
essors.Ea
h algorithm
al
ulates the values level by level. The �rst version assigns apro
essor to ea
h possible values of T and these pro
essors
al
ulate fi(T;E) forthe di�erent E values one by one. As the value of T belongs to the domain [0..�n2�℄so we need �n2� + 1 pro
essors and ea
h
al
ulates fi(T;E) for E = 0; : : : ; n � 1whi
h requires �(n) time. There are n levels in the array so the whole run timeof the algorithm is �(n2).
= 1 processor

E

i

Level i
T

Figure 4. PRAM algorithm using n2 pro
essorsThe se
ond algorithm assigns pro
essors to ea
h possible values of E and thesepro
essors
al
ulate fi(T;E) for the di�erent T values one by one. This means

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 21that we need n pro
essors and due to symmetry the run time of this algorithm is�(n3).
= 1 processor

E

i

T
Level i

Figure 5. PRAM algorithm using n pro
essorsThe third algorithm uses a bit di�erent approa
h. For this algorithm,
ompu-tation of one level takes two steps. During the �rst step the pro
essors set theelements of the level to 0. There are n3�n2 elements in a level, we have n3�n2blog n
 pro-
essors so it takes O(log n) time to a

omplish. In the se
ond step the algorithm
al
ulates fi(T +j; E+j); (j = 1::n) using pre�x
omputation algorithm with nlog npro
essors on fi�1(T � E; j). This also takes logn time, so a single level
an be
al
ulated in logn time, the array has n levels so the whole algorithm works inO(n logn).
E

= n/log n processors

i

T
Level i

Figure 6. PRAM algorithm using n3logn pro
essors

22 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS4.3.2. Linear array. The se
ond work-optimal algorithm given for PRAM
an beadapted to n pro
essor linear array as well. Ea
h pro
essor is assigned a possiblevalue of E. The pro
essor stores the two-dimensional subarray belonging to thatparti
ular value . The pro
essors use Algorithm 6.Step 1: For i:=1 ea
h pro
essor
al
ulates F [i; T; E℄ := (T = E)?1 : 0.Step 2: For i:=2::n ea
h pro
essor performs Algorithm 7.Step 3: The pro
essors perform a pre�x
omputation to determine tn.Algorithm 6: Enumeration of s
ore sequen
es on n pro
essor linear arrayEa
h pro
essor (E:=0..n-1) on level i (i:=2..n) does the following:1 for T:=1 to n*(n-1)/2 loop2 if E > 0 and T > 0) then3 re
eive Z:=F[i,T-1,E-1℄ from pro
essor E-1;4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E � ((i-1)*(i-2)/2) then8 F[i,T,E℄:=Z+F[i-1,T-E,E℄;9 else10 F[i,T,E℄:=0;11 end if ;12 if E < n-1 and T < n*(n-1)/2 then13 send F[i,T,E℄ to pro
essor E+1;14 end if ;15 end loop;Algorithm 7: Cal
ulating fi(T;E) values on an n pro
essor linear array4.3.3. Mesh. As linear array
an be embedded to a mesh the algorithm given inthe previous se
tion
an be applied for meshes as well.However there exists another work-optimal algorithm using n2 pro
essors. Letthe pro
essors be indexed from 1 to n (i) and from 0 to n � 1 (E). Pro
essor(i; E) has a one-dimensional subarray
ontaining fi(T;E) for the possible di�erentT values. This way to
al
ulate fi(T;E) for a parti
ular value of T it has to
ommuni
ate with two of its neighbours.The enumeration problem
an be solved using the following algorithms:4.3.4. Hyper
ube. As mesh
an be embedded to a hyper
ube the same algorithmsgiven for meshes
an be applied.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 23
= 1 processor

E

T

i

Figure 7. Mesh algorithm using n2 pro
essorsStep 1: For i:=1 and E:=0..n-1 ea
h pro
essor performs Algorithm 9. Fori:=2..n and E:=0..n-1 ea
h pro
essor performs Algorithm 10.Step 2: The pro
essors (n; 0); : : : ; (n; n� 1) perform a pre�x
omputationto determine tn.Algorithm 8: Enumeration of s
ore sequen
es on n2 pro
essor mesh5. Further optimizationsThe algorithms given in the previous se
tion use �(n4) array elements. It'seasy to see that ea
h algorithm (ex
ept the last one) at a given time uses onlytwo levels of the array. Cal
ulating the ith level we need the (i-1)th one forthat. This means that we don't have to store all levels only the
urrent and theprevious one. This optimization will redu
e the number of ne
essary elements to2 � n � n � (n� 1)=2 = n3 � n2 = �(n3).6. Con
lusions6.1. Summary. The table below summarizes our results for p pro
essors andn-player tournaments:Problem Sequential Linear Mesh Hyper
ube PRAMarrayS
ore �(n) 8p 2 N p = n 23 p = nlog n p = nlognsequen
e �(n) �(n 13) �(log n) �(log n)work-opt. work-opt. work-opt.

24 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSS
ore �(n) 8p 2 N p = n p = n p = nve
tor �(n) O(n 12) O(log2 n) O(log2 n)p = n2 p = n2O(log n) O(log n)Enume- Re
ursive p = n p = O(n) p = O(n) p = nration of formula with �(n3) �(n3) �(n3) �(n3)s
ore dynami
 work-opt. work-opt. work-opt. work-opt.sequen
es programming: p = n2 p = O(n2) p = n2�(n4) �(n2) �(n2) �(n2)work-opt. work-opt. work-opt.p = n3�n2blogn
�(n log n)work-opt.The notion of
ompleteness of tournaments
an be extended to k-
ompleteness.k-
omplete: We
all a tournament k-
omplete if its elements are non-negative integers and the sum of the symmetri
 elements is always k(tij + tji = k;where i 6= j) . A set of tournaments is
alled k-
ompletefor a given n if it
ontains all possible n player k-
omplete tournaments.From the de�nition it follows that a
omplete tournament is 1-
omplete. Thetheorems and algorithms presented above
an be easily extended to k-
ompletetournaments.6.2. Future Works. In this se
tion we try to identify some possible dire
tions todo further resear
h.� Fine-tuning the presented non work-optimal algorithms if possible ordesign new ones.� As we saw the value of tn in
reases exponentially this also implies thatfi(T;E) values are in
reasing in similar order. Storing su
h values re-quires O(n) bits. However it is possible that the average size of theelements in the array is smaller.� The task of re
onstru
tion means that for a given s
ore sequen
e we
on-stru
t a tournament. The asimptoti
ally optimal sequential algorithmssolve this problem in �(n2) time. Parallel re
onstru
ting algorithms forthe problem are to be
onsidered.� Parallel algorithm for
al
ulating the lexi
ographi
al su

essor of a givens
ore sequen
e.� Parallel listing of s
ore sequen
es for a given n.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 25Ea
h pro
essor (i,E) (i:=2..n; E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 if E>0 and T>0 then3 re
eive Z:=F[i,T-1,E-1℄ from pro
essor (i,E-1);4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E�((i-1)*(i-2)/2) then8 if T=0 then9 Y:=(i=2 and E=0)?1:0;10 else11 re
eive Y:=F[i-1,T-E,E℄ from pro
essor (i-1,E);12 end if ;13 F[i,T,E℄:=Z+Y;14 else15 F[i,T,E℄:=0;16 end if ;17 if T<n*(n-1)/2 then18 if E<n-1 then19 send F[i,T,E℄ to pro
essor (i,E+1);20 end if ;21 send F[i,T-E,E℄ to pro
essor (i+1,E);22 end if ;23 end loop;Algorithm 9: Cal
ulating fi(T;E) values for i > 2Ea
h pro
essor (1,E) (E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 F[1,T,E℄:=(E=T)?1:0;3 if T<n*(n-1)/2 and T�E then4 send F[1,T-E,E℄ to pro
essor (2,E);5 end if ;6 end loop;Algorithm 10: Cal
ulating f1(T;E) valuesThe te
hniques that were used in the presented algorithms aimed the paralleladoption of a sequential dynami
 programming solution. These te
hniques shouldbe extended to other algorithms using dynami
 programming.

26 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSA
knowledgement. The authors would like to thank Antal Iv�anyi for sharinghis knowledge about tournaments and being open to dis
uss our ideas.Referen
es[1℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introdu
tion to Algorithms, M
Graw-Hill,MIT Press, New York.[2℄ E. Horowitz, S. Sahni, S. Rajasekaran (1998), Computer Algorithms, Computer S
ien
e Press,New York.[3℄ A. Iv�anyi, Good tournaments, submitted to Annales Univ. S
i. Budapest., Se
tio Math.[4℄ A. Iv�anyi, Maximal tournaments, In: Fourth Join Conf. on Math. and Comp. S
i. Felix, June5{10, 2001, submitted to Pure Math. and Appl.[5℄ H. G. Landau (1953), The
ondition for a s
ore stru
ture III, Bull. Math. Biophysi
s, pp.153{158.[6℄ J. W. Moon (1968), Topi
s on Tournaments, Holt, Rinehart & Winston, New York.[7℄ T. V. Narayana, D. H. Bent (1964), Computation of the number of s
ore sequen
es in round-robin tournaments, Canad. Math. Bull. 7 (1), pp. 133{136.[8℄ K. B. Reid (1996), Tournaments: s
ores, kings, generalizations and spe
ial topi
s, CongressusNumerantium 115, pp. 171{211.Department of General Computer S
ien
e, E�otv�os Lor�and University, 1117 Bu-dapest, P�azm�any P�eter s�et�any 1/B., HungaryE-mail address: pi
i�elte.hu and sli
e�elte.hu

