STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

PARALLEL VERIFICATION AND ENUMERATION OF
TOURNAMENTS

GABOR PECSY AND LASZLO SzUCS

ABSTRACT. The area of tournaments is extensively discussed in literature.
In this article the authors introduce asymptotically optimal sequential algo-
rithms for the verification of score vectors and score sequences and a sequen-
tial polynomial algorithm for enumeration of complete tournaments. The
extensions of these algorithms to different parallel architectures including
CREW PRAM, linear array, mesh and hypercube are also presented. It is
shown that most of the parallel algorithms discussed here are work-optimal
extensions of the sequential ones.

1. INTRODUCTION

Round-robin tournaments are popular in the world of sport, games or elections
and they are very much discussed in computer science as well. A tournament is
an n X n real matrix. The elements of the main diagonal ¢;; equal to zero and the
pairs of symmetric elements ¢;; : t;; give the result of the match between P; (the
i-th player) and P;. The sum of the elements of the i-th row (s;) is called the score
of the i-th player. A non-decreasingly ordered sequence of the scores is the score
sequence of the tournament.

The most usually discussed problems regarding tournaments include:

e Verification of a score sequence/score vector means the decision if there
exists a tournament for a given score sequence/score vector.

e Enumeration of score sequences means the counting of the possible dif-
ferent score sequences for a given number of players (n).

The outline of the paper is as follows. The following section describes the
problems and the used computational models more formally. Section 3 deals with
verification problems and their sequential and parallel solutions.Then Section 4

2000 Mathematics Subject Classification. 05C20, 68Q25, 65Y05.

1998 CR Categories and Descriptors. G.2.1 [Discrete mathematics]: Combinatorics —
Counting problems; F.2.2 [Analysis of algorithms and problem complexity]: Nonnumer-
ical algorithms and problems — Computations on discrete structures C.1.4 [Processor archi-
tectures|: Parallel architectures — Distributed architectures .

11

12 GABOR PECSY AND LASZLO SzUCS

presents our results about enumeration. Finally, a table summarizes the results
with possible future works.

2. BASIC NOTIONS

2.1. Tournaments.

Tournament: A round-robin tournament is an nxn real matrix T, = [t;;]
(n > 2). The elements of the main diagonal ¢;; equal to zero and the
pairs of symmetric elements ¢;; : ¢;; give the result of the match between
P; (the i-th player) and P;. ¢;; = t;; means a draw, while ¢;; > ¢;; means
the win of P; against P;.

Score vector: The sum of the elements of the i-th row (s;) is called the
score of the i-th player and the vector (si,...,s,) is called the score
vector of the tournament.

Score sequence: A non-decreasingly ordered sequence of the scores is de-
noted by ¢ =< ¢1,...,q, > and is called the score sequence of the
tournament.

Complete tournament: We call a tournament complete if in it the per-
mitted elements are 0 and 1 and the sum of the symmetric elements
(tij+t;i, where i # j) is always 1. A set of tournaments is called complete
for a given n if it contains all possible n player complete tournaments.

2.2. Computational models.

Sequential model: A RAM running pseudo-code similar to structured
programming languages.

PRAM: Parallel RAM, consists of a shared memory and possibly infi-
nite number of RAMs which operate with the same pseudo code as in
the sequential case. Depending on the methods of accessing the shared
memory there are different types of PRAM.

EREW: Exclusive Read Exclusive Write

ERCW: Exclusive Read Concurrent Write

CREW: Concurrent Read Exclusive Write

CRCW: Concurrent Read Concurrent Write
As concurrent read of shared memory is usually allowed while the result
of concurrent write is ambigous we decided to use CREW PRAM in our
study.

Linear array: A linear array consists of p processors (named 1,2,...,p).
Processor ¢ has two direct bidirectional interconnection links to its neigh-
bouring processors (i — 1 and 7 + 1) except processor 1 and p which has
only one neighbour.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 13

Mesh: A mesh is an a x b grid in which there is a processor at each grid
point. The edges correspond to communication links and are bidirec-
tional. In this paper we consider only square meshes, where a = b.

Hypercube: A hypercube of dimension d has p = 2% processors. Each
processor can be labeled with a d-bit binary number. A processor is
connected only to those processors which label differs in only one bit.

Work-optimal: We call a parallel algorithm work-optimal compared to a
given sequential algorithm if % = O(1), where S, is the run time of
the sequential algorithm, P, is the run time of the parallel algorithm
and p is the number of processors.

Notice that if a parallel algorithm is work-optimal compared to a given asymp-
totically optimal sequential algorithm then the parallel algorithm itself is asymp-
totically optimal as well.

3. VERIFICATION

Verification of a score sequence/score vector means the decision if there exists
a tournament for a given score sequence/score vector. Landau [5] proved the
following theorem which gives necessary and sufficient condition for the existence
of a complete tournament for a particular score sequence.

Theorem 1. A non-decreasing sequence of n integers < qi,...,qn > 1S a score
sequence if and only if

ng’ > (g)

for each k =1,2,...,n with equality for k = n.

3.1. Sequential algorithm. Theorem 1 can be directly applied to verify score
sequences as they are ordered non-decreasingly. The following algorithm solves
this problem in @(n) time and with O(1) auxiliary memory.

1 s:=0; i:=1; ok:=(gn<n);

2 while i<n and ok loop

3 S:=s+q;;

4 ok:=s>(i*(i-1)/2);

) ii=i+1;

6 end loop

7 ok:=ok and (s+g¢,)=(n*(n-1)/2);
8 return ok;

Algorithm 1: Sequential algorithm for score sequence verification

14 GABOR PECSY AND LASZLO SzUCS

As the trivial lower bound for the verification problem is 2(n) — the algorithm
has to read the input — Algorithm 1 is asymptotically optimal for score sequence
verification.

In case of score vectors the input is not ordered properly so Theorem 1 (and
Algorithm 1) can not be applied directly. One possible solution is to sort the input
and then apply Algorithm 1 to the result. It is known that sorting of general keys
takes Q(nlogn) time but if keys are integer numbers from the range [0..k] then
they can be sorted in O(max(n, k)) time. Such algorithm can be found in chapter 9
of [1]. In case of a score vector all elements must belong to range [0..n-1] so the
vector can be sorted in O(n) time. This condition can also be verified in O(n)
time, so we get the following algorithm.

Step 1: Verify whether all elements in the vector fall in the range [0..n-1].
If not then the input can not be a score vector.

Step 2: Sort the input.

Step 3: Use Algorithm 1.

Algorithm 2: Sequential verification of score vectors

Note that Algorithm 2 is asymptotically optimal for the same reason as Algo-
rithm 1.

3.2. Parallel algorithms. In this section we provide an efficient way to imple-
ment Algorithm 1 and Algorithm 2 on different parallel architectures. *

3.2.1. PRAM. On a CREW PRAM Algorithm 1 can be implemented in a very
straightforward way.

Step 1: For all processors compute the prefix-sums (r;) of the input se-
quence.

Step 2: Processor p; (i := 1,2,...,n — 1) calculates [; := (r; > (i * (i —
1)/2)) while p,, calculates l,, := (r, = (n* (n — 1)/2)).

Step 3: Calculate OK :=1; A ... Al, using the prefix computation algo-
rithm with all processors.

Algorithm 3: Simple parallel algorithm for score sequence verification

Step 1 can be done in O(logn) time, Step 2 takes O(1) time and Step 3 is
O(logn) again. Note that in case of CRCW PRAM Step 3 takes only O(1) time.
This algorithm uses O(n) processors and operates in O(logn) time therefore
it is not work-optimal, but it can be improved to run on O(logn) processors
in O(logn) time which is work-optimal. To achieve this we divide the input

1t is assumed that the reader is familiar with the prefix-sum computation and other
well-known parallel algorithms summarized in [2] as they are building blocks of the following
algorithms.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 15

into logn long pieces. Processor p; will sequentially calculate prefix-sums of
S(i—1)lognt1s - - -» Silogn- Lhen the processors will apply the original prefix compu-
tation algorithm on the sums of the pieces. In the third step each processor will
update the prefix-sums of the corresponding piece by adding the sum of all the
previous pieces. After this the processors will calculate I; values sequentially for all
elements belonging to them and finally they perform a prefix computation using the
same algorithm as for the prefix-sum calculation to determine OK :=1; A... Al,.

Step 1: For all processors compute sequentially the prefix-sums
(ti,j, wherei :=1,2,..., ﬁ;j :=1,2,...,logn) of the corresponding
piece of input sequence.

Step 2: For all processors compute the prefix-sums (rjiogn) Of i logn-

Step 3: For all processors compute sequentially 7;_1)i0gnt; =
r(ifl)logn + ti7j ('L = 1,2, cey ﬁ,] = 1,2, . ,logn).

Step 4: Processor p; (i := 1,2,...,logn) calculates l;_1)iognt; =
(ri-1)10gn+j = (1 = 1)logn + j) * ((i — 1) xlogn + j — 1)/2)) using
equality at the last position.

Step 5: Calculate OK :=1; A ... Al, using the prefix computation algo-
rithm described in Step 1-3, with all processors.

Algorithm 4: Work-optimal verification of score sequences on CREW PRAM

In this algorithm all steps take O(logn) time so the whole algorithm works
in O(logn) time as well. It uses O(z) processors so this is a work-optimal
parallelization of Algorithm 1. As Algorithm 1 is asymptotically optimal algorithm
for the score sequence verification problem the same holds for Algorithm 4 as well.

Notice that in this algorithm only the parallel steps (Step 2 and 5) require

interprocessor communication and these steps are all parts of prefix computations.

3.2.2. Linear array. A lower bound on every interconnection networks for a prob-
lem is the diameter of the network if all processors of the network contributes to
the computation of the result. As the diameter of a linear array of n processors is
n — 1, 2(n) is a lower bound for the score sequence and score vector verification
problems. These problems can be solved in O(n) time on a single processor as
well, the trivial (and optimal) solution is to send all data to the first processor of
the array — this can be done in O(n) time — and do the verification there, using the
sequential algorithms. These solution are work-optimal if and only if the number
of processors in the array is O(1).

3.2.3. Mesh. The diameter of a p processor mesh is /p, so £2(,/p) is a lower bound
to an algorithm. The mesh adaptation of Algorithm 3 solves the problem in O(y/n)
if p = n. But we can apply the same technique as in Algorithm 4. If we assign ns
element for each processor of a ns x n3 mesh then both the sequential and the

16 GABOR PECSY AND LASZLO SzUCS

parallel steps work in O(n7) time. The number of processors in this case is n3 so
the algorithm is work-optimal.

3.2.4. Hypercube. In a p processor hypercube, prefix computation can be per-
formed in O(logp) time, which means that adoptations of Algorithm 3 and Algo-
rithm 4 can work in the same time bounds as in case of CREW PRAM.

3.2.5. Parallel score vector verification. Unfortunately there is no known work-
optimal parallel sorting algorithm for integer key from a given domain. This
means that the most difficult step in the parallel adoptation of Algorithm 2 is the
sorting. The complexity of sorting usually exceeds the complexity of the other
steps so the overall complexity of the algorithm equals the complexity of sorting
the input. For PRAM and hypercube there are algorithms which can sort general
keys in O(log® n) time.

4. ENUMERATION

Enumeration of score sequences means the counting of the possible different
score sequences for a given number of players (n).

For n > 1 let f,(T, E) be the number of non-decreasing sequences of integers
satisfying

n k

k

Zqi =T,q, = F and Zqi > <2>,k: 1,2,...,n—1.
i=1 i=1

Narayana and Bent in [7] presented a recursive formula for determining f,, (T, E):

1, fT=E>0
0, otherwise.

fi(T, E) :{

forn > 2

E
_(T—-E,k), fT—E>(*
£, By = { It T BB 2 ()
0, otherwise.

Let ¢,, be the number of possible score sequences in case of n players. For n > 1
we have the following formula for t,:

n—1
tn = ;fn((g),E),where r= [gJ .

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 17

TIn] = F[n,(n* (n-1)/2),1] +...+ F[n,(n* (n-1)/2),n-1]

Fi-1,T-E0], ..., Fli-LT-EE]

Level i
Level i-1

FIGURE 1. Array element dependencies in the non-optimized formula

4.1. Units of measure. The experimental results indicate that the value of ¢,, is
increasing exponentially with n (¢, = £2(2")) which implies that we need logt, =
O(n) memory to store a single number. This also implies that addition of such
numbers takes @(n). In the next parts of the article we will count the number
of operations (addition, send, receive and assignment) on the elements of the
array during the analysis of the algorithms. In a real implementation all of these
operations can be done in O(n) time.

4.2. Sequential algorithms. The most straightforward recursive calculation of
t,, using the recursive formula (1) has exponential run time so it is not applicable
for bigger n values. Using dynamic programming the run time can be reduced
significantly into polynomial domain.

4.2.1. Algorithm using dynamic programming. The following algorithm uses array
of size n x n x (n(n —1)/2+ 1) elements and works in ©(n®) time.
The operation of the algorithms can be divided into two phases. First phase

is filling in the array F which contains the values of f;(T,E) for i = 1..n,T =

0..@ and E = 0..n—1, thus the dimensions of the array are n x @—H xXn =

O(n*). Calculating a particular F[i,T, E] element takes ©(1) time for i = 1 —

18 GABOR PECSY AND LASZLO SzUCS

1 for i:=1 to n loop

2 for T:=0 to (n*(n-1)/2) loop

3 for E:=0 to n-1 loop

4 if i=1 then

5 if T=E then

6 F[i,T,E]:=1;

7 else

8 F[i,T,E]:=0;

9 end if;

10 else

11 F[i,T,E]:=0;

12 if (T-E)> ((i-1)*(i-2)/2) then
13 for k:=0 to E loop
14 F[i,T,E]:=F[i,T,E]+F[i-1,T-E k];
15 end loop;

16 end if;

17 end if;

18 end loop;

19 end loop;

20 end loop;

21 TN:=0;

22 for E:=(n div 2) to n-1 loop
23 TN:=TN+F[n,(n*(n-1)/2,E];
24 end loop;

25 return TN;

Algorithm 5: Calculating the number of score sequences using dynamic
programming

lines 5-9 — and O(n) otherwise — lines 11-16 (see Figure 1). This means that the
whole algorithm runs in O(n®) time. The second phase is to calculate the number
of score sequences (TN) using the filled array F' (see Figure 1).

4.2.2. Improved algorithm. In Algorithm 5 the number of the used array elements
is @(n*) so O(n%) is a lower bound to the run time of any solution using this
approach, but the run time is O(n®). We show that using a proper reformulation
of equation (1) the run time of the algorithms can be reduced to ©(n*).

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 19

F[i,T-1E-1]
F[i-1T-EE]

Level i
Level i-1

E

FIGURE 2. Dependencies of elements in the array in case of the
optimized formula

E
fi(T,B) =Y fi1(T — E,k)

k=0
=> fia((T=1) = (E—1),k) + fi (T - E, E)

=fiT-1L,E-1)+ fia(T - E,E)

Notice that when we compute f;(T, E) we already know f;(T'—1,E — 1) so we
can replace the loop in lines 13-15 of Algorithm 5 with a simple assignment (see
Figure 2).

4.3. Parallel algorithms.

4.3.1. PRAM. A straightforward parallel implementation of the non-optimized
formula is the following. We fill in one level of the array in one round. We
have 1o§n processors for each element in the level (figure 3). These processors
perform a prefix computation to calculate the value using the original formula (1).
This takes O(logn) time. The array has n levels so the whole algorithm runs in
O(nlogn). On asingle level of the array there are n(7) elements, which means that
n_ n®(n-1) _ (n*
logn 2logn logn
this solution is not work-optimal as the amount of work done is O(n*logn) *
O(nlogn) = O(n®).

This algorithm used the property of (1) that the value of a particular element in
a certain level depends on other elements from a lower level only. This way we could
avoid the synchronization overhead between the processors working on different
elements. Using the optimized formula we have to use results from the same level

we need n (%)) processors to achieve this. Unfortunately

20 GABOR PECSY AND LASZLO SzUCS

[=n/log n processors

F1GURE 3. Using brute-force approach on PRAM architecture

as well. More accurately the value of f;(T, E) depends on f;(T — 1, E — 1) which
in turn depends on f;(T — 2, E — 2) etc. This dependency limits the maximum
number of processors that a work-optimal algorithm can utilize.

Here we present three possible work-optimal algorithms, using n, n? and 2?1?:)—;&
processors.

Each algorithm calculates the values level by level. The first version assigns a
processor to each possible values of T and these processors calculate f;(T, E) for
the different E values one by one. As the value of T belongs to the domain [0..(})]
so we need (%) + 1 processors and each calculates f;(T,E) for E = 0,...,n — 1
which requires ©(n) time. There are n levels in the array so the whole run time
of the algorithm is ©(n?).

FIGURE 4. PRAM algorithm using n? processors

The second algorithm assigns processors to each possible values of F and these
processors calculate f;(T, E) for the different T' values one by one. This means

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 21

that we need n processors and due to symmetry the run time of this algorithm is

O(n?).

[] = 1 processor

Level i

FI1GURE 5. PRAM algorithm using n processors

The third algorithm uses a bit different approach. For this algorithm, compu-
tation of one level takes two steps. During the first step the processors set the

elements of the level to 0. There are ”32_ elements in a level, we have 2?130—_” pro-
gn]

cessors so it takes O(logn) time to accomplish. In the second step the algorithm
calculates f;(T'+j,E+j),(j = 1..n) using prefix computation algorithm with logn
processors on f;_1(T — E,j). This also takes logn time, so a single level can be
calculated in logn time, the array has n levels so the whole algorithm works in

O(nlogn).

E‘:\:‘:\l:\j: n/log n processors.

FIGURE 6. PRAM algorithm using % processors

22 GABOR PECSY AND LASZLO SzUCS

4.3.2. Linear array. The second work-optimal algorithm given for PRAM can be
adapted to n processor linear array as well. Each processor is assigned a possible
value of E. The processor stores the two-dimensional subarray belonging to that
particular value . The processors use Algorithm 6.

Step 1: For i:=1 each processor calculates F[i,T, E] := (T = E)?1: 0.
Step 2: For i:=2..n each processor performs Algorithm 7.
Step 3: The processors perform a prefix computation to determine ¢,,.

Algorithm 6: Enumeration of score sequences on n processor linear array

Each processor (E:=0..n-1) on level i (i:=2..n) does the following:
1 for T:=1 to n*(n-1)/2 loop
2 if E>0and T > 0) then

3 receive Z:=F[i,T-1,E-1] from processor E-1;
4 else

5 Z:=(i=2 and T=0 and E=0)71:0;
6 end if;

7 if T-E > ((i-1)*(i-2)/2) then

8 F[i,T,E]:=Z+F[i-1,T-E,E];

9 else

10 F[i,T,E]:=0;

11 end if;

12 if E<n-1and T < n*(n-1)/2 then
13 send F[i,T,E] to processor E+1;
14 end if;

15 end loop;

Algorithm 7: Calculating f;(T, E) values on an n processor linear array

4.3.3. Mesh. As linear array can be embedded to a mesh the algorithm given in
the previous section can be applied for meshes as well.

However there exists another work-optimal algorithm using n? processors. Let
the processors be indexed from 1 to n (i) and from 0 to n — 1 (E). Processor
(i, E) has a one-dimensional subarray containing f;(T, E) for the possible different
T values. This way to calculate f;(T,E) for a particular value of T it has to
communicate with two of its neighbours.

The enumeration problem can be solved using the following algorithms:

4.3.4. Hypercube. As mesh can be embedded to a hypercube the same algorithms
given for meshes can be applied.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS

Step 1: For i:=1 and E:=0..n-1 each processor performs Algorithm 9. For

[=1 processor

-
/

_-<><><

N

FIGURE 7. Mesh algorithm using n? processors

i:=2..n and E:=0..n-1 each processor performs Algorithm 10.

Step 2: The processors (n,0), ..., (n,n — 1) perform a prefix computation

to determine %,,.
Algorithm 8: Enumeration of score sequences on n? processor mesh

The algorithms given in the previous section use @(n?) array elements. It’s
easy to see that each algorithm (except the last one) at a given time uses only
two levels of the array. Calculating the ith level we need the (i-1)th one for
that. This means that we don’t have to store all levels only the current and the
previous one. This optimization will reduce the number of necessary elements to
2xnxn*(n—1)/2=n—-n?=0(n?).

6.1. Summary. The table below summarizes our results for p processors and

5. FURTHER OPTIMIZATIONS

n-player tournaments:

6. CONCLUSIONS

23

Problem | Sequential | Linear | Mesh Hypercube | PRAM
array
Score O(n) YWweN |p=n3: |[p= - p= 2
sequence O(n) O(n?) O(log n) O(log n)
work-opt. | work-opt. work-opt.

24

GABOR PECSY AND LASZLO SzUCS

Score

O(n) Vp €N p=n p=n p=n
vector O(n) (0] n%) O(log® n) O(log® n)
p=n’ p=n’
O(log n) O(log n)
Enume- Recursive p=n p=0(n) | p=0(n) p=mn
ration of | formula with | @(n?) O(n®) e(n?) o(n?)
score dynamic work-opt. | work-opt. | work-opt. work-opt.
sequences | programming: p=n’ p = 0(n?) p=n’
o(n*) O(n?) O(n?) o(n?)
work-opt. | work-opt. work-opt.
P = steeaT
O(nlogn)
work-opt.

The notion of completeness of tournaments can be extended to k-completeness.

k-complete: We call a tournament k-complete if its elements are non-

negative integers and the sum of the symmetric elements is always k
(tij +t5 = k,where i # j) . A set of tournaments is called k-complete
for a given n if it contains all possible n player k-complete tournaments.

From the definition it follows that a complete tournament is 1-complete. The
theorems and algorithms presented above can be easily extended to k-complete
tournaments.

6.2. Future Works. In this section we try to identify some possible directions to
do further research.

Fine-tuning the presented non work-optimal algorithms if possible or
design new ones.

As we saw the value of ¢, increases exponentially this also implies that
fi(T, E) values are increasing in similar order. Storing such values re-
quires O(n) bits. However it is possible that the average size of the
elements in the array is smaller.

The task of reconstruction means that for a given score sequence we con-
struct a tournament. The asimptotically optimal sequential algorithms
solve this problem in ©(n?) time. Parallel reconstructing algorithms for
the problem are to be considered.

Parallel algorithm for calculating the lexicographical successor of a given
score sequence.

Parallel listing of score sequences for a given n.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS

Each processor (i,E) (i:=2..n; E:=0..n-1) does the following;:
1 for T:=0 to n*(n-1)/2 loop

2 if E>0 and T>0 then

3 receive Z:=F[i,T-1,E-1] from processor (i,E-1);
4 else

5 Z:=(i=2 and T=0 and E=0)71:0;

6 end if;

7 if T-E>((i-1)*(i-2)/2) then

8 if T=0 then

9 Y:=(i=2 and E=0)71:0;

10 else

11 receive Y:=F[i-1,T-E,E] from processor (i-1,E);
12 end if;

13 F[i,T,E:=2+Y;

14 else

15 F[i,T,E]:=0;

16 end if;

17 if T<n*(n-1)/2 then

18 if E<n-1 then

19 send F[i,T,E] to processor (i,E+1);
20 end if;

21 send F[i,T-E,E] to processor (i+1,E);
22 end if;

23 end loop;

Algorithm 9: Calculating f;(T, E) values for ¢ > 2

Each processor (1,E) (E:=0..n-1) does the following;:
1 for T:=0 to n*(n-1)/2 loop

2 F[1,T,E]:=(E=T)71:0;

3 if T<n*(n-1)/2 and T>E then

4 send F[1,T-E,E] to processor (2,E);

5 end if;

6 end loop;

Algorithm 10: Calculating f1 (T, E) values

25

The techniques that were used in the presented algorithms aimed the parallel
adoption of a sequential dynamic programming solution. These techniques should
be extended to other algorithms using dynamic programming.

26 GABOR PECSY AND LASZLO SzUCS

Acknowledgement. The authors would like to thank Antal Ivényi for sharing
his knowledge about tournaments and being open to discuss our ideas.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introduction to Algorithms, McGraw-Hill,
MIT Press, New York.

[2] E. Horowitz, S. Sahni, S. Rajasekaran (1998), Computer Algorithms, Computer Science Press,
New York.

[3] A. Ivanyi, Good tournaments, submitted to Annales Univ. Sci. Budapest., Sectio Math.

[4] A.Ivéanyi, Mazimal tournaments, In: Fourth Join Conf. on Math. and Comp. Sci. Felix, June
5-10, 2001, submitted to Pure Math. and Appl.

[5] H. G. Landau (1953), The condition for a score structure III, Bull. Math. Biophysics, pp.
153—-158.

(6] J. W. Moon (1968), Topics on Tournaments, Holt, Rinehart & Winston, New York.

[7] T.V. Narayana, D. H. Bent (1964), Computation of the number of score sequences in round-
robin tournaments, Canad. Math. Bull. 7 (1), pp. 133-136.

[8] K. B. Reid (1996), Tournaments: scores, kings, generalizations and special topics, Congressus
Numerantium 115, pp. 171-211.

DEPARTMENT OF GENERAL COMPUTER SCIENCE, EOTVOS LORAND UNIVERSITY, 1117 Bu-
DAPEST, PAZMANY PETER SETANY 1/B., HUNGARY
E-mail address: pici@elte.hu and slice@elte.hu

