
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITIONIUGA MARINAbstra
t. In this paper we have provided a formal model for software sys-tems spe
i�
ation and for the software systems
omposition operation. Usingthe notion of information system as a basis, we
an model any informationsystem using both software servi
es and software interfa
es. Doing this, we
an develop a formal model for software systems
omposition. This formalmodel may be used both in formal spe
i�
ation of software systems (stru
ture,fun
tionality, requirements) and in software systems
omposition expressions.1. An overview of software system notionThe history of \software system" notion is full of
ontroversies and debates overwhat is
entral in the pro
ess of de�ning a software system. At �rst, a softwaresystem was identi�ed with an exe
utable program, but this de�nition has beenenlarged later when a software system was asso
iated with an exe
utable programand its modules. Sooner, this de�nition has proven to be in
omplete be
ause thenotion of software system has a larger range than that given by any program, nomatters how large or
omplex this program is.As a
onsequen
e, the de�nition of a software system has
hanged its
enterfrom the notion of exe
utable programs and modules to the notion of softwareservi
es and software systems inter-relations.A radi
al
hange of perspe
tive over the software systems is presented in [9℄:\Large software systems are non-algorithmi
, open and distributed:non-algorithmi
: they model temporal evolution by systems of intera
t-ing
omponentsopen: they manage in
remental
hange by lo
al
hanges of a

essible openinterfa
esdistributed: requirements as well as
omponents are lo
ally autonomous."A system is generally
onsidered to be a
olle
tion of
omponents organizedto ful�ll a
ertain fun
tion or a
ertain set of fun
tions. A software system isviewed as an entity that requests software servi
es from the external environmentand exports other software servi
es to this environment. We will try to des
ribe asoftware system without any need of information about its internal
onstru
tion.2000 Mathemati
s Subje
t Classi�
ation. 03B70,68N30.1998 CR Categories and Des
riptors. C.0. [Computer Systems Organization℄ :General. 85

86 IUGA MARINIt suÆ
es to say that a software system has an internal state, represented by a setof abstra
t values, but we don't need to know how the state and the me
hanismof state
hanging is implemented inside the system.The
lassi
al software system
on
ept is now repla
ed by the
on
ept of ex-tensible system (see [10℄). An extensible system is
onsidered to be a kind ofsoftware system whose fun
tionality may be freely extended by repla
ing existing
omponents with new ones. Smalltalk is an extensible language/system, and newadditions to Java make it possible to
reate extensible systems in Java. Extensiblesystems
annot be
reated in more traditional languages su
h as Simula and C++.However, A
tive X from Mi
rosoft, allows programming of extensible systems inC++, Visual Basi
 and other languages.2. Modeling software systems using software servi
esWe
an observe now the fa
t that the de�nition of a software system is
enteredover the notion of software servi
e, thus making the de�nition of software servi
ethe key to de�ne the notion of software system. We will de�ne the software servi
eas a set of operations grouped under the same identi�er. This identi�er is thesoftware servi
e's identi�er.An operation is de�ned by a name, and a textual, rather informal, des
riptionof it.Considering this, an operation
ould be represented as:operation = (operation signature; operation des
ription)where: operation signature: is the operation's signature;operation des
ription: is the operation's des
ription.We will provide a formal representation for an operation in this paper.On
e we
an spe
ify an operation, we are able to represent a software servi
eas: servi
e = (servi
e name; fservi
e operationi; i 2 1; : : : ; num operationsg)where: servi
e name: is the name of the software servi
e,servi
e operationi: is the i-th operation of the software servi
enum operations: is the number of operations asso
iated with this soft-ware servi
e.A software servi
e
ould be easily identi�ed as a
ontra
t between a providerand a
lient. It spe
i�es the terms of information ex
hange between the providerand the
lient, it spe
i�es a proto
ol that makes the servi
e provider and the
lientto understand ea
h other and it spe
i�es the
onditions that must be met for theinformation ex
hange pro
ess.As an example let's
onsider the pro
ess of a COM obje
t serialization. Theserialization is de�ned as \the ability of an obje
t to write its state to a persistent

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 87storage" [6℄. So, if we want a persistent COM obje
t then this obje
t must imple-ment the servi
e spe
i�ed by IPersistStorage (at least). We will
all this servi
eas the Persist Storage servi
e, and it is
hara
terized by the following operations:IsDirty: indi
ates whether the obje
t has
hanged sin
e it was last savedto its
urrent storage;InitNew: initializes a new obje
t, providing a handler to the storage tobe used for the obje
t;Save: saves an obje
t, and any nested obje
ts that it
ontains, into storage;SaveCompleted: noti�es the obje
t that it
an revert from NoS
ribbleor HandsO� mode, in whi
h it must not write to its storage obje
t, toNormal mode, in whi
h it
an;HandsO�Storage: instru
ts the obje
t to release all storage obje
ts thathave been passed to it by its
ontainer and to enter HandsO� mode, inwhi
h the obje
t
annot do anything and the only operation that worksis a
lose operation.We
an de�ne a software system by the following quadruple:(IN STATUS;OUT STATUS; IN;OUT)where: IN STATUS: represents the system's internal status;OUT STATUS: represents the external environment's status that is a
-
essed or modi�ed by the system's servi
es;IN: represents the set of imported servi
es that are needed by the systemin order to ful�ll its fun
tionality;OUT: represents the set of the exported servi
es that are used by thesoftware system to express its fun
tionality.As a synthesis of what we have exposed until now, we will
onsider a softwaresystem to be
hara
terized by the following features:� a series of software servi
es exported to an external software environ-ment;� a series of software servi
es imported from an external software environ-ment;� an internal state whi
h
ould be
hanged as a result of a software servi
eful�llment;� a software servi
e exe
ution
ould
hange the status of the external en-vironment.We are
lose to the model for a software
omponent, introdu
ed in [7℄, wherethe
omponent is
hara
terized by a servi
e interfa
e, a
lient interfa
e and animplementation. Sin
e the bla
k-box model is adopted for a software
omponent(ex
luding any information about internal implementation and imported servi
es),we �nd the essen
e of this model appli
able to software systems.We denote by OUT1; : : : ; OUTn the exported software servi
es, where n is thenumber of exported servi
es and we denote by IN1; : : : ; INm the imported software

88 IUGA MARINservi
es where m is the number of the imported software servi
es. Also we willdenote by: IN STATUS = fIN STATE1; : : : ; IN STATEpgthe set of the values of the software system status a�e
ted by the software servi
esexe
ution, and by:OUT STATUS = fOUT STATE 1; : : : ; OUT STATEqgthe set of the values of the external software environment status a�e
ted by thesoftware servi
es exe
ution.We
onsider the external software environment to be divided into two parts,the �rst part denoted by IN exports software servi
es to the software system,denoted by SY STEM , and the se
ond denoted by OUT is the part whi
h importsthe software servi
es exported by SY STEM . Both parts
ould be identi�ed asa standalone software system. The �rst representation of the intera
tion of asoftware system with the external software environment, using software servi
es,is given in Figure 1:
Figure 1. Representation of the intera
tion between a softwaresystem and its external software environment using software ser-vi
esLet's
onsider, as an example, a software system,
alled DataPro
essor, whi
hre
eives data from an external data sour
e, pro
ess it, and displays it to a display.The imported servi
es for this system are DataProvider servi
e (imported forma data sour
e system) and DisplayRenderer (imported from a graphi
al devi
esystem).DataProvider servi
e is
hara
terized by the following operations:OpenConne
tion: opens a
onne
tion with the data sour
e;CloseConne
tion:
loses the
onne
tion with the data sour
e;GetData: obtains the raw input data.DisplayRender servi
e is
hara
terized by the following operations:ClearDevi
e:
lears the
ontent of the graphi
al devi
e;RenderImage: renders a graphi
al image.The DataPro
essor system exports the DataPro
essing servi
e, whi
h is
har-a
terized by the following operations:Che
kValidity:
he
ks the validity of input data;

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 89Pro
essData: pro
esses the input data.The internal status for the system is:IN STATUS = fidle; operation
ompleted; operation readygwhere: idle: DataPro
essor system is idling;operation
ompleted: DataPro
essor system has just �nished an oper-ation and is ready to provide output data;operation ready: DataPro
essor system has re
eived valid input dataand is ready to begin a pro
essing session.The external status for the system's external environment is:OUT STATUS = f(
onne
ted); (not
onne
ted)gwhere:
onne
ted: the data sour
e has a

epted
onne
tion and is ready to pro-vide input data;not
onne
ted: the data sour
e has not a

epted a
onne
tion, the
on-ne
tion is
losed or it is not ready to provide any input data.As we may see from this example, the software servi
e is only a feature that
hara
terizes a software system and a software system
ould be viewed as a nodethat imports some servi
es and exports other servi
es.3. Modeling software systems using software interfa
esBy using a formal spe
i�
ation for a software servi
e (as a interfa
e implemen-tation) we
an obtain a formal representation for a software systems (as a set ofinterfa
e implementations). In this kind of spe
i�
ation we must represent howthe status of the external software environment and the status of the softwaresystem are a�e
ted by the software servi
es exe
ution.The
ontra
t between a software entity and its external environment must bespe
i�ed in a neutral language and there is needed a
ontra
t that will stipulatethe terms and limits of the information transa
tion. In [5℄ we have spe
i�ed thefa
t that the
ontra
t that supervises the information transa
tion should be basedon the notion of software interfa
e and the software interfa
e must be spe
i�ed ina programming language neutral manner.However, other authors have di�erent points of view about the neutrality ofan element spe
i�
ation. They
onsider the spe
i�
ation of an element (type,interfa
e,
lass,
omponent, . . .) as an abstra
t des
ription of it, and a program(or module) as the
on
rete des
ription of this element. In [2℄ it is requested thatany software spe
i�
ation must be in an exe
utable format, but it is hard to agreewith this.For a long time, a software servi
e has been modeled as an interfa
e. Thiskind of model ignores the fa
t that an interfa
e
an be identi�ed only with thespe
i�
ation of a proto
ol for a set of operations (the synta
ti
 part) and
annot

90 IUGA MARIN
apture the meaning of this operation (the semanti
 part). So, it is properly todis
uss a servi
e by the means of the implementation of an interfa
e.So, we will propose to use the interfa
e implementations as a model for a soft-ware servi
e, rather then using only interfa
es. The interfa
es are sets of methodsignatures and
arry only the synta
ti
 information, while the interfa
e implemen-tations are sets of methods and
arry semanti
 information (behavioral spe
i�-
ations). There are many ways to spe
ify a method by using predi
ate
al
ulus,fun
tional methods and non-fun
tional methods.We will propose here a spe
i�
ation model that is based on the predi
ate
al-
ulus. We will spe
ify a method as:(signature; pre
ondition; post
ondition)where: signature: is the method's signature;pre
ondition: is the method's pre
ondition predi
ate;post
ondition: is the method's post
ondition predi
ate.The method's signature is represented as:return typemethod name(in status; out status; [par rolepar name : par type℄)where: return type: is the method's return type;method name: is the method's name;in status: represents the IN STATUS for the software system to whomthe method are bounded to, via its asso
iated interfa
e;out status: represents the OUT STATUS for the software system towhom the method are bounded to, via its asso
iated interfa
e;par role: is the parameter's role (
ould be in, out, inout);par name: is the parameter's name;par type: is the parameter's type.For a method m, we will
onsider the following sets:� IN(m) = fthe set of all in or inout parametersg[fin status, out statusg;� OUT (m) = fthe set of all parametersg[fin status, out statusg[fresult{ the value returned by this methodg.The pre
ondition predi
ate is de�ned over values from IN(m) and it is true ifthese values represents valid input data, and false otherwise.The post
ondition predi
ate
onne
ts the input data with the output data, andis true if the returned values are those expe
ted (if valid input data is
onsideredfor the a
tual parameters of the method).All that we have to remember is the fa
t that an interfa
e implementationspe
i�
ation must
onsider the me
hanism of state
hanging asso
iated with thesystem that implements the interfa
e. As a
onsequen
e of this thing, not allinterfa
e implementations
ould be atta
hed to any software system. A softwaresystem that implements this interfa
e must a

ept the values of the state
hanged

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 91by this interfa
e implementation. We will denote by Ij the interfa
e that has itsimplementation spe
i�ed by the software servi
e INj and with Oi the interfa
e thathas its implementation spe
i�ed by the software servi
e OUTi. Using the name ofthe interfa
e to designate the interfa
e implementation asso
iated with the servi
e,we will have another representation of the intera
tion between a software systemand its asso
iated external environment, as
an be seen in Figure 2.The way an interfa
e implementation is spe
i�ed in has no
riti
al importan
e.Thus, we have provided a fun
tional spe
i�
ation, but it also
an be non-fun
tional(using message sending/re
eiving for example). This spe
i�
ation must take into
onsideration the modi�
ation of the state of the software system and its externalenvironment.
Figure 2. Representation of the intera
tion between a softwaresystem and its external software environment using interfa
e im-plementationFinally, we may synthetize the de�nition of a software system by using thefollowing quadruple:SY STEM = (IN STATUS;OUT STATUS;fFIk; 0 � k � ni; ni 2 Ng; fFOk ; 0 � k � no; no 2 Ng)where the notions involved are:SYSTEM: the software system to be de�ned;IN STATUS: the set of the values of the software system status a�e
tedby the software servi
es exe
ution;OUT STATUS: the set of the values of the external software environmentstatus a�e
ted by the software servi
es exe
ution;FI l: the interfa
e implementation asso
iated with the software servi
eINl;FO l: the interfa
e implementation asso
iated with the software servi
eOUTl;ni: number of the imported servi
es;no: number of the exported servi
es.This quadruple
an
apture the entire des
ription of a software servi
e. It is anopen model though, be
ause of the way an interfa
e implementation is spe
i�edin (but is not �xed be
ause one
an
hoose an alternate way to spe
ify a software

92 IUGA MARINinterfa
e implementation). Any kind of spe
i�
ation (predi
ative, fun
tional ornon- fun
tional)
an be used, the only restri
tion is that the spe
i�
ation must
onsider the me
hanism of status
hanging for a software system and its asso
iatedenvironment. 4. Software systems
ompositionThe idea that a software system must be de
omposed in smaller subsystems,for the purpose of a better handling, is an old idea and it is frequently argued in[1℄. But building a software system form simpler subsystems is an idea embra
edfrom the beginning of 90s, and the advantages of this method is presented inpapers like [8, 4, 3℄. We will spe
ify a formal model, based on our software systemspe
i�
ation, for the operation of software systems
omposition.In the previous paragraphs we have provided a formal model for software sys-tems, model based on servi
es and interfa
es. Using this model we will proposea formal model for the operation of
omposition of two software systems. In aninformal manner, we will
onsider the result of the
omposition of two softwaresystems S1 and S2 as a new software system that follow these rules:� the group of IN servi
es for the result system is obtained by puttingtogether the IN servi
es of both software systems. From this group wewill eliminate all those servi
es that are IN servi
es for one system andOUT servi
es for the other system;� the group of OUT servi
es for the result system is obtained by puttingtogether the OUT servi
es of both software systems. From this groupwe will eliminate all those servi
es that are OUT servi
es for one systemand IN servi
es for the other system;� the IN STATUS is the set of all values of the software system statuswhi
h appear in all of the servi
e des
riptions from IN and OUT groups;� the OUT STATUS is the set of all values of the external environmentstatus whi
h appear in all of the servi
e des
riptions from IN and OUTgroups.For a software system S, we will
onsider the following fun
tions:� the IN(S) fun
tion as the fun
tion that returns all the interfa
e imple-mentations asso
iated with the imported servi
es of this system;� the OUT (S) fun
tion as the fun
tion that returns all the interfa
e im-plementations asso
iated with the exported servi
es of this system;� the Spe
StatusIN(spe
) fun
tion as the fun
tion whi
h returns all thesystem's status values whi
h appear in the interfa
e implementation fromspe
i�
ation set spe
;� the Spe
StatusOUT (spe
) fun
tion as the fun
tion whi
h returns all theexternal environment's status values whi
h appear in the interfa
e im-plementation from spe
i�
ation set spe
.By using the interfa
e-based model, we
an de�ne the software systems
ompo-sition by
onsidering the set named SY STEMS as the set of all software systems.

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 93The operation of
omposition, denoted by \+":+ : SY STEMS � SY STEMS ! SY STEMSwill be de�ned for any software systems:S1 = (in status1; out status1; f(i1l ; fi1l); 0 � l � ni1; ni1 2 Ng;f(o1l ; fo1l); 0 � l � no1; no1 2 Ng);S2 = (in status2; out status2; f(i2l ; fi2l); 0 � l � ni2; ni2 2 Ng;f(o2l ; fo2l); 0 � l � no2; no2 2 Ng):as: S1 + S2 = (Spe
Status((IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2));Spe
Status((OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1));(IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2);(OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1))This formal de�nition of the software systems
omposition
aptures the entiremeaning of the informal de�nition, previously presented. The expression:(IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))is the formal expression of the imported servi
es, and the expression:(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1))is the formal expression of the exported servi
es of the (S1 + S2) informationsystem.The expressions:Spe
StatusIN ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))Spe
StatusOUT ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))de�nes the IN STATUS and, respe
tively, OUT STATUS attributes of the re-sult system.The
omposition operation for two software systems models the pro
ess of thetight
oupling between these systems. All the similar servi
es exported by onesystem and imported by the other system are hidden in the obtained system,along with the
orresponding status values. One
an use this operator if he wishesto obtain an expression for a tight intera
tion between two software systems. The
omposition operation is
hara
terized by the following proprieties:� the
omposition operation is
ommutative;� the system � = (;; ;; ;; ;) is the neutral element for the
ompositionoperation;� if we
onsider the software system:S = (IN STATUS;OUT STATUS;fIk; 0 � k � ni; ni 2 Ng; fOk ; 0 � k � no; no 2 Ng)

94 IUGA MARINthen the following system:CLOSE(S) = (OUT STATUS; IN STATUS;fOk; 0 � k � no; no 2 Ng; fIk ; 0 � k � ni; ni 2 Ng)is the inverse element of S for the
omposition operation;� the
omposition operation is not generally asso
iative.The proof of these proprieties, due to its extent, it is not dis
ussed here. Wehave only wished to enumerate them.The software systems spe
i�
ation and
omposition may be used for many pur-poses, ranging from
he
king of software systems
ompatibility to methods forsoftware appli
ations design and generation. CASE tools
an use them as a sup-port for software systems representation and intera
tion models. They might alsobe the basis for other di�erent formal models in programming.Referen
es[1℄ Dahl O.J., Dijkstra E. W., Hoare C.A.R., Stru
tured Programming, A
ademi
 Press, 1972[2℄ Fu
s N. E., \Spe
i�
ations Are (Preferably) Exe
utable", Software Engineering Journal,September, 1992[3℄ Gamma Eri
h, Helm Ri
hard, Johnson Ralph, Vlissides John, Design Patterns: Elementsof Reusable Obje
t-Oriented Software, Addison-Wesley, 1994[4℄ H�olzle U., Integrating Independently-Developed Components in Obje
t-Oriented Languagesin LNCS 707, pp. 36{56, 1993[5℄ Iuga Marin, A Graphi
al Representation for Software Component Systems, Fa
ulty of math-emati
s and Computer S
ien
e, Resear
h Seminars, pp. 107{110, 1999[6℄ MSDN Library Visual Studio 6.0, Visual C++ Programmers guide, Serialization (Obje
tPersisten
e)[7℄ Allen Parrish, Component Based Software Engineering: A Broad Based Model is Needed,Brandon Dixon, David Hale in International Workshop on Component-Based Software En-gineering pro
eedings, pp. 43{46, 1999[8℄ Jan Udell, ComponentWare, Byte Magazine, pp. 46{56, 1994[9℄ Wegner Peter, Models and Paradigms of Intera
tion, in Obje
t-Based Distributed Program-ming, ECOOP'93 Workshop, Vol. 791, pp. 1{32, Springer-Verlag, 1994[10℄ Szyperski Clemens, Pountain Di
k, Extensible Software Systems, in BYTE May 1994, pp.57{62, 1994Babes�-Bolyai University, Fa
ulty of Mathemati
s and Computer S
ien
eE-mail address: marin�
s.ubb
luj.ro, iuga marin�yahoo.
om

