STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION

IUGA MARIN

ABSTRACT. In this paper we have provided a formal model for software sys-
tems specification and for the software systems composition operation. Using
the notion of information system as a basis, we can model any information
system using both software services and software interfaces. Doing this, we
can develop a formal model for software systems composition. This formal
model may be used both in formal specification of software systems (structure,
functionality, requirements) and in software systems composition expressions.

1. AN OVERVIEW OF SOFTWARE SYSTEM NOTION

The history of “software system” notion is full of controversies and debates over
what is central in the process of defining a software system. At first, a software
system was identified with an executable program, but this definition has been
enlarged later when a software system was associated with an executable program
and its modules. Sooner, this definition has proven to be incomplete because the
notion of software system has a larger range than that given by any program, no
matters how large or complex this program is.

As a consequence, the definition of a software system has changed its center
from the notion of executable programs and modules to the notion of software
services and software systems inter-relations.

A radical change of perspective over the software systems is presented in [9]:

“Large software systems are non-algorithmic, open and distributed:

non-algorithmic: they model temporal evolution by systems of interact-
ing components

open: they manage incremental change by local changes of accessible open
interfaces

distributed: requirements as well as components are locally autonomous.”

A system is generally considered to be a collection of components organized
to fulfill a certain function or a certain set of functions. A software system is
viewed as an entity that requests software services from the external environment
and exports other software services to this environment. We will try to describe a
software system without any need of information about its internal construction.

2000 Mathematics Subject Classification. 03B70,68N30.
1998 CR Categories and Descriptors. C.0. [Computer Systems Organization] :
General.

85

86 IUGA MARIN

It suffices to say that a software system has an internal state, represented by a set
of abstract values, but we don’t need to know how the state and the mechanism
of state changing is implemented inside the system.

The classical software system concept is now replaced by the concept of ex-
tensible system (see [10]). An extensible system is considered to be a kind of
software system whose functionality may be freely extended by replacing existing
components with new ones. Smalltalk is an extensible language/system, and new
additions to Java make it possible to create extensible systems in Java. Extensible
systems cannot be created in more traditional languages such as Simula and C++.
However, Active X from Microsoft, allows programming of extensible systems in
C++, Visual Basic and other languages.

2. MODELING SOFTWARE SYSTEMS USING SOFTWARE SERVICES

We can observe now the fact that the definition of a software system is centered
over the notion of software service, thus making the definition of software service
the key to define the notion of software system. We will define the software service
as a set of operations grouped under the same identifier. This identifier is the
software service’s identifier.

An operation is defined by a name, and a textual, rather informal, description
of it.

Considering this, an operation could be represented as:

operation = (operation_signature, operation_description)

where:

operation_signature: is the operation’s signature;
operation_description: is the operation’s description.

We will provide a formal representation for an operation in this paper.
Once we can specify an operation, we are able to represent a software service
as:

service = (service_name, {service_operation;,i € 1,..., num_operations})

where:

service_name: is the name of the software service,

service_operation;: is the i-th operation of the software service

num_operations: is the number of operations associated with this soft-
ware service.

A software service could be easily identified as a contract between a provider
and a client. It specifies the terms of information exchange between the provider
and the client, it specifies a protocol that makes the service provider and the client
to understand each other and it specifies the conditions that must be met for the
information exchange process.

As an example let’s consider the process of a COM object serialization. The
serialization is defined as “the ability of an object to write its state to a persistent

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 87

storage” [6]. So, if we want a persistent COM object then this object must imple-
ment the service specified by IPersistStorage (at least). We will call this service
as the Persist_Storage service, and it is characterized by the following operations:

IsDirty: indicates whether the object has changed since it was last saved
to its current storage;

InitNew: initializes a new object, providing a handler to the storage to
be used for the object;

Save: saves an object, and any nested objects that it contains, into storage;

SaveCompleted: notifies the object that it can revert from NoScribble
or HandsOff mode, in which it must not write to its storage object, to
Normal mode, in which it can;

HandsOffStorage: instructs the object to release all storage objects that
have been passed to it by its container and to enter HandsOff mode, in
which the object cannot do anything and the only operation that works
is a close operation.

We can define a software system by the following quadruple:
(IN.STATUS,OUT_STATUS,IN,OUT)

where:

IN_STATUS: represents the system’s internal status;

OUT_STATUS: represents the external environment’s status that is ac-
cessed or modified by the system’s services;

IN: represents the set of imported services that are needed by the system
in order to fulfill its functionality;

OUT: represents the set of the exported services that are used by the
software system to express its functionality.

As a synthesis of what we have exposed until now, we will consider a software
system to be characterized by the following features:

e a series of software services exported to an external software environ-
ment;

e a series of software services imported from an external software environ-
ment;

e an internal state which could be changed as a result of a software service
fulfillment;

e 3 software service execution could change the status of the external en-
vironment.

We are close to the model for a software component, introduced in [7], where
the component is characterized by a service interface, a client interface and an
implementation. Since the black-box model is adopted for a software component
(excluding any information about internal implementation and imported services),
we find the essence of this model applicable to software systems.

We denote by OUTy, . ..,0OUT, the exported software services, where n is the
number of exported services and we denote by I Ny, ..., IN,, the imported software

88 IUGA MARIN

services where m is the number of the imported software services. Also we will
denote by:

IN_STATUS = {IN_STATE,,...,IN.STATE,}
the set of the values of the software system status affected by the software services
execution, and by:

OUT_STATUS = {OUT_STATE_l, ..., OUT.STATE,}

the set of the values of the external software environment status affected by the
software services execution.

We consider the external software environment to be divided into two parts,
the first part denoted by IN exports software services to the software system,
denoted by SYSTEM, and the second denoted by OUT is the part which imports
the software services exported by SYSTEM. Both parts could be identified as
a standalone software system. The first representation of the interaction of a
software system with the external software environment, using software services,
is given in Figure 1:

. O
N S ' SYSTEM ;‘u

FI1GURE 1. Representation of the interaction between a software
system and its external software environment using software ser-
vices

Let’s consider, as an example, a software system, called DataProcessor, which
receives data from an external data source, process it, and displays it to a display.

The imported services for this system are DataProvider service (imported form
a data source system) and DisplayRenderer (imported from a graphical device
system).

DataProvider service is characterized by the following operations:
OpenConnection: opens a connection with the data source;
CloseConnection: closes the connection with the data source;
GetData: obtains the raw input data.

DisplayRender service is characterized by the following operations:
ClearDevice: clears the content of the graphical device;
RenderImage: renders a graphical image.

The DataProcessor system exports the DataProcessing service, which is char-

acterized by the following operations:
CheckValidity: checks the validity of input data;

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 89

ProcessData: processes the input data.
The internal status for the system is:

IN_STATUS = {idle, operation_completed, operation_ready}

where:

idle: DataProcessor system is idling;

operation_completed: DataProcessor system has just finished an oper-
ation and is ready to provide output data;

operation_ready: DataProcessor system has received valid input data
and is ready to begin a processing session.

The external status for the system’s external environment is:
OUT_STATUS = {(connected), (not_connected)}

where:

connected: the data source has accepted connection and is ready to pro-
vide input data;

not_connected: the data source has not accepted a connection, the con-
nection is closed or it is not ready to provide any input data.

As we may see from this example, the software service is only a feature that
characterizes a software system and a software system could be viewed as a node
that imports some services and exports other services.

3. MODELING SOFTWARE SYSTEMS USING SOFTWARE INTERFACES

By using a formal specification for a software service (as a interface implemen-
tation) we can obtain a formal representation for a software systems (as a set of
interface implementations). In this kind of specification we must represent how
the status of the external software environment and the status of the software
system are affected by the software services execution.

The contract between a software entity and its external environment must be
specified in a neutral language and there is needed a contract that will stipulate
the terms and limits of the information transaction. In [5] we have specified the
fact that the contract that supervises the information transaction should be based
on the notion of software interface and the software interface must be specified in
a programming language neutral manner.

However, other authors have different points of view about the neutrality of
an element specification. They consider the specification of an element (type,
interface, class, component, ...) as an abstract description of it, and a program
(or module) as the concrete description of this element. In [2] it is requested that
any software specification must be in an executable format, but it is hard to agree
with this.

For a long time, a software service has been modeled as an interface. This
kind of model ignores the fact that an interface can be identified only with the
specification of a protocol for a set of operations (the syntactic part) and cannot

90 IUGA MARIN

capture the meaning of this operation (the semantic part). So, it is properly to
discuss a service by the means of the implementation of an interface.

So, we will propose to use the interface implementations as a model for a soft-
ware service, rather then using only interfaces. The interfaces are sets of method
signatures and carry only the syntactic information, while the interface implemen-
tations are sets of methods and carry semantic information (behavioral specifi-
cations). There are many ways to specify a method by using predicate calculus,
functional methods and non-functional methods.

We will propose here a specification model that is based on the predicate cal-
culus. We will specify a method as:

(signature, precondition, postcondition)

where:

signature: is the method’s signature;
precondition: is the method’s precondition predicate;
postcondition: is the method’s postcondition predicate.

The method’s signature is represented as:
return_typemethod_name(in_status, out_status, [par_rolepar_name : par_type])

where:

return_type: is the method’s return type;

method_name: is the method’s name;

in_status: represents the IN_STATUS for the software system to whom
the method are bounded to, via its associated interface;

out_status: represents the OUT_STATUS for the software system to
whom the method are bounded to, via its associated interface;

par_role: is the parameter’s role (could be in, out, inout);

par_name: is the parameter’s name;

par_type: is the parameter’s type.

For a method m, we will consider the following sets:

e IN(m) = {the set of all in or inout parameters}U{in_status, out_status};
e OUT(m) = {the set of all parameters}U {in_status, out_status}U {result
— the value returned by this method}.

The precondition predicate is defined over values from IN(m) and it is true if
these values represents valid input data, and false otherwise.

The postcondition predicate connects the input data with the output data, and
is true if the returned values are those expected (if valid input data is considered
for the actual parameters of the method).

All that we have to remember is the fact that an interface implementation
specification must consider the mechanism of state changing associated with the
system that implements the interface. As a consequence of this thing, not all
interface implementations could be attached to any software system. A software
system that implements this interface must accept the values of the state changed

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 91

by this interface implementation. We will denote by I; the interface that has its
implementation specified by the software service IN; and with O; the interface that
has its implementation specified by the software service OUT;. Using the name of
the interface to designate the interface implementation associated with the service,
we will have another representation of the interaction between a software system
and its associated external environment, as can be seen in Figure 2.

The way an interface implementation is specified in has no critical importance.
Thus, we have provided a functional specification, but it also can be non-functional
(using message sending/receiving for example). This specification must take into
consideration the modification of the state of the software system and its external
environment,.

FIGURE 2. Representation of the interaction between a software
system and its external software environment using interface im-
plementation

Finally, we may synthetize the definition of a software system by using the
following quadruple:

SYSTEM = (IN.STATUS,OUT_.STATUS,
{FI;,0 < k <ni,ni € N}, {FO,0 <k <no,no € N})

where the notions involved are:

SYSTEM: the software system to be defined;

IN_STATUS: the set of the values of the software system status affected
by the software services execution;

OUT_STATUS: the set of the values of the external software environment,
status affected by the software services execution;

FI_1: the interface implementation associated with the software service
INy;

FO_l: the interface implementation associated with the software service
OUTy;

ni: number of the imported services;

no: number of the exported services.

This quadruple can capture the entire description of a software service. It is an

open model though, because of the way an interface implementation is specified
in (but is not fixed because one can choose an alternate way to specify a software

92 IUGA MARIN

interface implementation). Any kind of specification (predicative, functional or
non- functional) can be used, the only restriction is that the specification must
consider the mechanism of status changing for a software system and its associated
environment,.

4. SOFTWARE SYSTEMS COMPOSITION

The idea that a software system must be decomposed in smaller subsystems,
for the purpose of a better handling, is an old idea and it is frequently argued in
[1]. But building a software system form simpler subsystems is an idea embraced
from the beginning of 90s, and the advantages of this method is presented in
papers like [8, 4, 3]. We will specify a formal model, based on our software system
specification, for the operation of software systems composition.

In the previous paragraphs we have provided a formal model for software sys-
tems, model based on services and interfaces. Using this model we will propose
a formal model for the operation of composition of two software systems. In an
informal manner, we will consider the result of the composition of two software
systems S; and Sy as a new software system that follow these rules:

e the group of IN services for the result system is obtained by putting
together the I N services of both software systems. From this group we
will eliminate all those services that are IN services for one system and
OUT services for the other system;

e the group of OUT services for the result system is obtained by putting
together the OUT services of both software systems. From this group
we will eliminate all those services that are OQUT services for one system
and IN services for the other system;

e the IN_STATUS is the set of all values of the software system status
which appear in all of the service descriptions from I'N and OUT groups;

e the OUT_STATUS is the set of all values of the external environment,
status which appear in all of the service descriptions from I'N and OUT
groups.

For a software system S, we will consider the following functions:

e the IN(S) function as the function that returns all the interface imple-
mentations associated with the imported services of this system;

e the OUT(S) function as the function that returns all the interface im-
plementations associated with the exported services of this system;

o the SpecStatusyn(spec) function as the function which returns all the
system’s status values which appear in the interface implementation from
specification set spec;

e the SpecStatusoyr(spec) function as the function which returns all the
external environment’s status values which appear in the interface im-
plementation from specification set spec.

By using the interface-based model, we can define the software systems compo-
sition by considering the set named SY ST EM S as the set of all software systems.

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 93
The operation of composition, denoted by “+”:
+:SYSTEMS x SYSTEMS — SYSTEMS

will be defined for any software systems:

Sy = (in_status', out_status', {(i}, fi}),0 <1 < ni',ni' € N},
{(o}, fo}),0 <1< no',no' € N}),

Sy = (in_status®, out_status®, {(i?, fi?),0 <1 < ni%,ni*> € N},
{(of, fo}),0 <1< no*,no* € N})

as:

51 + SQ = (SpecStatus(([N(Sl)\Sg n Sl) U (IN(SQ)\Sl n SQ)),
SpecStatus((OUT(Sl)\Sl n Sz) U (OUT(SQ)\SQ N Sl)),
(IN(S1)\S2 N S1) U (IN(S2)\S1 N Ss),
(OUT(S1)\S; N S2) U (OUT(S2)\S2N S))

This formal definition of the software systems composition captures the entire
meaning of the informal definition, previously presented. The expression:

(IN(S1)\OUT(S2)) U (IN(S2)\OUT(51))
is the formal expression of the imported services, and the expression:
(OUT(SO\IN(S2)) U (OUT(S2)\IN(Sh)

is the formal expression of the exported services of the (S1 + S2) information
system.
The expressions:

SpecStatusin ((IN(S1)\OUT(S2)) U(IN(S2)\OUT(S1))U
UOUT(SO\TN(8)) U (OUT(S,\IN(81))
SpecStatusoUT ((IN(S1)\OUT(S2)) U (IN(S2)\OUT(S1))U
UOUT(SO\IN(82)) U (OUT(S,\IN(81)

defines the IN_ST ATUS and, respectively, OUT_STATUS attributes of the re-
sult system.

The composition operation for two software systems models the process of the
tight coupling between these systems. All the similar services exported by one
system and imported by the other system are hidden in the obtained system,
along with the corresponding status values. One can use this operator if he wishes
to obtain an expression for a tight interaction between two software systems. The
composition operation is characterized by the following proprieties:

e the composition operation is commutative;

e the system 6 = (,0,0,0) is the neutral element for the composition
operation;

e if we consider the software system:

S = (IN.STATUS,OUT.STATUS,
{I,0 < k <ni,ni € N},{0,0 < k <no,no € N})

94

IUGA MARIN

then the following system:
CLOSE(S) = (OUT.STATUS,IN_STATUS,
{Ok,0 <k <no,no € N},{I,0 <k <ni,ni € N})
is the inverse element of S for the composition operation;
e the composition operation is not generally associative.
The proof of these proprieties, due to its extent, it is not discussed here. We

have only wished to enumerate them.

The software systems specification and composition may be used for many pur-

poses, ranging from checking of software systems compatibility to methods for
software applications design and generation. CASE tools can use them as a sup-
port for software systems representation and interaction models. They might also

be

[y

=

[9

(10]

the basis for other different formal models in programming.

REFERENCES

Dahl O.J., Dijkstra E. W., Hoare C.A.R., Structured Programming, Academic Press, 1972
Fucs N. E., “Specifications Are (Preferably) Executable”, Software Engineering Journal,
September, 1992

Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1994

Holzle U., Integrating Independently-Developed Components in Object-Oriented Languages
in LNCS 707, pp. 36-56, 1993

Tuga Marin, A Graphical Representation for Software Component Systems, Faculty of math-
ematics and Computer Science, Research Seminars, pp. 107-110, 1999

MSDN Library Visual Studio 6.0, Visual C4++ Programmers guide, Serialization (Object
Persistence)

Allen Parrish, Component Based Software Engineering: A Broad Based Model is Needed,
Brandon Dixon, David Hale in International Workshop on Component-Based Software En-
gineering proceedings, pp. 43-46, 1999

Jan Udell, ComponentWare, Byte Magazine, pp. 46-56, 1994

Wegner Peter, Models and Paradigms of Interaction, in Object-Based Distributed Program-
ming, ECOOP’93 Workshop, Vol. 791, pp. 1-32, Springer-Verlag, 1994

Szyperski Clemens, Pountain Dick, Extensible Software Systems, in BYTE May 1994, pp.
57-62, 1994

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
FE-mail address: marin@cs.ubbcluj.ro, iugamarin@yahoo.com

