
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITIONIUGA MARINAbstrat. In this paper we have provided a formal model for software sys-tems spei�ation and for the software systems omposition operation. Usingthe notion of information system as a basis, we an model any informationsystem using both software servies and software interfaes. Doing this, wean develop a formal model for software systems omposition. This formalmodel may be used both in formal spei�ation of software systems (struture,funtionality, requirements) and in software systems omposition expressions.1. An overview of software system notionThe history of \software system" notion is full of ontroversies and debates overwhat is entral in the proess of de�ning a software system. At �rst, a softwaresystem was identi�ed with an exeutable program, but this de�nition has beenenlarged later when a software system was assoiated with an exeutable programand its modules. Sooner, this de�nition has proven to be inomplete beause thenotion of software system has a larger range than that given by any program, nomatters how large or omplex this program is.As a onsequene, the de�nition of a software system has hanged its enterfrom the notion of exeutable programs and modules to the notion of softwareservies and software systems inter-relations.A radial hange of perspetive over the software systems is presented in [9℄:\Large software systems are non-algorithmi, open and distributed:non-algorithmi: they model temporal evolution by systems of interat-ing omponentsopen: they manage inremental hange by loal hanges of aessible openinterfaesdistributed: requirements as well as omponents are loally autonomous."A system is generally onsidered to be a olletion of omponents organizedto ful�ll a ertain funtion or a ertain set of funtions. A software system isviewed as an entity that requests software servies from the external environmentand exports other software servies to this environment. We will try to desribe asoftware system without any need of information about its internal onstrution.2000 Mathematis Subjet Classi�ation. 03B70,68N30.1998 CR Categories and Desriptors. C.0. [Computer Systems Organization℄ :General. 85

86 IUGA MARINIt suÆes to say that a software system has an internal state, represented by a setof abstrat values, but we don't need to know how the state and the mehanismof state hanging is implemented inside the system.The lassial software system onept is now replaed by the onept of ex-tensible system (see [10℄). An extensible system is onsidered to be a kind ofsoftware system whose funtionality may be freely extended by replaing existingomponents with new ones. Smalltalk is an extensible language/system, and newadditions to Java make it possible to reate extensible systems in Java. Extensiblesystems annot be reated in more traditional languages suh as Simula and C++.However, Ative X from Mirosoft, allows programming of extensible systems inC++, Visual Basi and other languages.2. Modeling software systems using software serviesWe an observe now the fat that the de�nition of a software system is enteredover the notion of software servie, thus making the de�nition of software serviethe key to de�ne the notion of software system. We will de�ne the software servieas a set of operations grouped under the same identi�er. This identi�er is thesoftware servie's identi�er.An operation is de�ned by a name, and a textual, rather informal, desriptionof it.Considering this, an operation ould be represented as:operation = (operation signature; operation desription)where: operation signature: is the operation's signature;operation desription: is the operation's desription.We will provide a formal representation for an operation in this paper.One we an speify an operation, we are able to represent a software servieas: servie = (servie name; fservie operationi; i 2 1; : : : ; num operationsg)where: servie name: is the name of the software servie,servie operationi: is the i-th operation of the software servienum operations: is the number of operations assoiated with this soft-ware servie.A software servie ould be easily identi�ed as a ontrat between a providerand a lient. It spei�es the terms of information exhange between the providerand the lient, it spei�es a protool that makes the servie provider and the lientto understand eah other and it spei�es the onditions that must be met for theinformation exhange proess.As an example let's onsider the proess of a COM objet serialization. Theserialization is de�ned as \the ability of an objet to write its state to a persistent

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 87storage" [6℄. So, if we want a persistent COM objet then this objet must imple-ment the servie spei�ed by IPersistStorage (at least). We will all this servieas the Persist Storage servie, and it is haraterized by the following operations:IsDirty: indiates whether the objet has hanged sine it was last savedto its urrent storage;InitNew: initializes a new objet, providing a handler to the storage tobe used for the objet;Save: saves an objet, and any nested objets that it ontains, into storage;SaveCompleted: noti�es the objet that it an revert from NoSribbleor HandsO� mode, in whih it must not write to its storage objet, toNormal mode, in whih it an;HandsO�Storage: instruts the objet to release all storage objets thathave been passed to it by its ontainer and to enter HandsO� mode, inwhih the objet annot do anything and the only operation that worksis a lose operation.We an de�ne a software system by the following quadruple:(IN STATUS;OUT STATUS; IN;OUT)where: IN STATUS: represents the system's internal status;OUT STATUS: represents the external environment's status that is a-essed or modi�ed by the system's servies;IN: represents the set of imported servies that are needed by the systemin order to ful�ll its funtionality;OUT: represents the set of the exported servies that are used by thesoftware system to express its funtionality.As a synthesis of what we have exposed until now, we will onsider a softwaresystem to be haraterized by the following features:� a series of software servies exported to an external software environ-ment;� a series of software servies imported from an external software environ-ment;� an internal state whih ould be hanged as a result of a software servieful�llment;� a software servie exeution ould hange the status of the external en-vironment.We are lose to the model for a software omponent, introdued in [7℄, wherethe omponent is haraterized by a servie interfae, a lient interfae and animplementation. Sine the blak-box model is adopted for a software omponent(exluding any information about internal implementation and imported servies),we �nd the essene of this model appliable to software systems.We denote by OUT1; : : : ; OUTn the exported software servies, where n is thenumber of exported servies and we denote by IN1; : : : ; INm the imported software

88 IUGA MARINservies where m is the number of the imported software servies. Also we willdenote by: IN STATUS = fIN STATE1; : : : ; IN STATEpgthe set of the values of the software system status a�eted by the software serviesexeution, and by:OUT STATUS = fOUT STATE 1; : : : ; OUT STATEqgthe set of the values of the external software environment status a�eted by thesoftware servies exeution.We onsider the external software environment to be divided into two parts,the �rst part denoted by IN exports software servies to the software system,denoted by SY STEM , and the seond denoted by OUT is the part whih importsthe software servies exported by SY STEM . Both parts ould be identi�ed asa standalone software system. The �rst representation of the interation of asoftware system with the external software environment, using software servies,is given in Figure 1:
Figure 1. Representation of the interation between a softwaresystem and its external software environment using software ser-viesLet's onsider, as an example, a software system, alled DataProessor, whihreeives data from an external data soure, proess it, and displays it to a display.The imported servies for this system are DataProvider servie (imported forma data soure system) and DisplayRenderer (imported from a graphial deviesystem).DataProvider servie is haraterized by the following operations:OpenConnetion: opens a onnetion with the data soure;CloseConnetion: loses the onnetion with the data soure;GetData: obtains the raw input data.DisplayRender servie is haraterized by the following operations:ClearDevie: lears the ontent of the graphial devie;RenderImage: renders a graphial image.The DataProessor system exports the DataProessing servie, whih is har-aterized by the following operations:ChekValidity: heks the validity of input data;

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 89ProessData: proesses the input data.The internal status for the system is:IN STATUS = fidle; operation ompleted; operation readygwhere: idle: DataProessor system is idling;operation ompleted: DataProessor system has just �nished an oper-ation and is ready to provide output data;operation ready: DataProessor system has reeived valid input dataand is ready to begin a proessing session.The external status for the system's external environment is:OUT STATUS = f(onneted); (not onneted)gwhere: onneted: the data soure has aepted onnetion and is ready to pro-vide input data;not onneted: the data soure has not aepted a onnetion, the on-netion is losed or it is not ready to provide any input data.As we may see from this example, the software servie is only a feature thatharaterizes a software system and a software system ould be viewed as a nodethat imports some servies and exports other servies.3. Modeling software systems using software interfaesBy using a formal spei�ation for a software servie (as a interfae implemen-tation) we an obtain a formal representation for a software systems (as a set ofinterfae implementations). In this kind of spei�ation we must represent howthe status of the external software environment and the status of the softwaresystem are a�eted by the software servies exeution.The ontrat between a software entity and its external environment must bespei�ed in a neutral language and there is needed a ontrat that will stipulatethe terms and limits of the information transation. In [5℄ we have spei�ed thefat that the ontrat that supervises the information transation should be basedon the notion of software interfae and the software interfae must be spei�ed ina programming language neutral manner.However, other authors have di�erent points of view about the neutrality ofan element spei�ation. They onsider the spei�ation of an element (type,interfae, lass, omponent, . . .) as an abstrat desription of it, and a program(or module) as the onrete desription of this element. In [2℄ it is requested thatany software spei�ation must be in an exeutable format, but it is hard to agreewith this.For a long time, a software servie has been modeled as an interfae. Thiskind of model ignores the fat that an interfae an be identi�ed only with thespei�ation of a protool for a set of operations (the syntati part) and annot

90 IUGA MARINapture the meaning of this operation (the semanti part). So, it is properly todisuss a servie by the means of the implementation of an interfae.So, we will propose to use the interfae implementations as a model for a soft-ware servie, rather then using only interfaes. The interfaes are sets of methodsignatures and arry only the syntati information, while the interfae implemen-tations are sets of methods and arry semanti information (behavioral spei�-ations). There are many ways to speify a method by using prediate alulus,funtional methods and non-funtional methods.We will propose here a spei�ation model that is based on the prediate al-ulus. We will speify a method as:(signature; preondition; postondition)where: signature: is the method's signature;preondition: is the method's preondition prediate;postondition: is the method's postondition prediate.The method's signature is represented as:return typemethod name(in status; out status; [par rolepar name : par type℄)where: return type: is the method's return type;method name: is the method's name;in status: represents the IN STATUS for the software system to whomthe method are bounded to, via its assoiated interfae;out status: represents the OUT STATUS for the software system towhom the method are bounded to, via its assoiated interfae;par role: is the parameter's role (ould be in, out, inout);par name: is the parameter's name;par type: is the parameter's type.For a method m, we will onsider the following sets:� IN(m) = fthe set of all in or inout parametersg[fin status, out statusg;� OUT (m) = fthe set of all parametersg[fin status, out statusg[fresult{ the value returned by this methodg.The preondition prediate is de�ned over values from IN(m) and it is true ifthese values represents valid input data, and false otherwise.The postondition prediate onnets the input data with the output data, andis true if the returned values are those expeted (if valid input data is onsideredfor the atual parameters of the method).All that we have to remember is the fat that an interfae implementationspei�ation must onsider the mehanism of state hanging assoiated with thesystem that implements the interfae. As a onsequene of this thing, not allinterfae implementations ould be attahed to any software system. A softwaresystem that implements this interfae must aept the values of the state hanged

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 91by this interfae implementation. We will denote by Ij the interfae that has itsimplementation spei�ed by the software servie INj and with Oi the interfae thathas its implementation spei�ed by the software servie OUTi. Using the name ofthe interfae to designate the interfae implementation assoiated with the servie,we will have another representation of the interation between a software systemand its assoiated external environment, as an be seen in Figure 2.The way an interfae implementation is spei�ed in has no ritial importane.Thus, we have provided a funtional spei�ation, but it also an be non-funtional(using message sending/reeiving for example). This spei�ation must take intoonsideration the modi�ation of the state of the software system and its externalenvironment.
Figure 2. Representation of the interation between a softwaresystem and its external software environment using interfae im-plementationFinally, we may synthetize the de�nition of a software system by using thefollowing quadruple:SY STEM = (IN STATUS;OUT STATUS;fFIk; 0 � k � ni; ni 2 Ng; fFOk ; 0 � k � no; no 2 Ng)where the notions involved are:SYSTEM: the software system to be de�ned;IN STATUS: the set of the values of the software system status a�etedby the software servies exeution;OUT STATUS: the set of the values of the external software environmentstatus a�eted by the software servies exeution;FI l: the interfae implementation assoiated with the software servieINl;FO l: the interfae implementation assoiated with the software servieOUTl;ni: number of the imported servies;no: number of the exported servies.This quadruple an apture the entire desription of a software servie. It is anopen model though, beause of the way an interfae implementation is spei�edin (but is not �xed beause one an hoose an alternate way to speify a software

92 IUGA MARINinterfae implementation). Any kind of spei�ation (prediative, funtional ornon- funtional) an be used, the only restrition is that the spei�ation mustonsider the mehanism of status hanging for a software system and its assoiatedenvironment. 4. Software systems ompositionThe idea that a software system must be deomposed in smaller subsystems,for the purpose of a better handling, is an old idea and it is frequently argued in[1℄. But building a software system form simpler subsystems is an idea embraedfrom the beginning of 90s, and the advantages of this method is presented inpapers like [8, 4, 3℄. We will speify a formal model, based on our software systemspei�ation, for the operation of software systems omposition.In the previous paragraphs we have provided a formal model for software sys-tems, model based on servies and interfaes. Using this model we will proposea formal model for the operation of omposition of two software systems. In aninformal manner, we will onsider the result of the omposition of two softwaresystems S1 and S2 as a new software system that follow these rules:� the group of IN servies for the result system is obtained by puttingtogether the IN servies of both software systems. From this group wewill eliminate all those servies that are IN servies for one system andOUT servies for the other system;� the group of OUT servies for the result system is obtained by puttingtogether the OUT servies of both software systems. From this groupwe will eliminate all those servies that are OUT servies for one systemand IN servies for the other system;� the IN STATUS is the set of all values of the software system statuswhih appear in all of the servie desriptions from IN and OUT groups;� the OUT STATUS is the set of all values of the external environmentstatus whih appear in all of the servie desriptions from IN and OUTgroups.For a software system S, we will onsider the following funtions:� the IN(S) funtion as the funtion that returns all the interfae imple-mentations assoiated with the imported servies of this system;� the OUT (S) funtion as the funtion that returns all the interfae im-plementations assoiated with the exported servies of this system;� the SpeStatusIN(spe) funtion as the funtion whih returns all thesystem's status values whih appear in the interfae implementation fromspei�ation set spe;� the SpeStatusOUT (spe) funtion as the funtion whih returns all theexternal environment's status values whih appear in the interfae im-plementation from spei�ation set spe.By using the interfae-based model, we an de�ne the software systems ompo-sition by onsidering the set named SY STEMS as the set of all software systems.

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 93The operation of omposition, denoted by \+":+ : SY STEMS � SY STEMS ! SY STEMSwill be de�ned for any software systems:S1 = (in status1; out status1; f(i1l ; fi1l); 0 � l � ni1; ni1 2 Ng;f(o1l ; fo1l); 0 � l � no1; no1 2 Ng);S2 = (in status2; out status2; f(i2l ; fi2l); 0 � l � ni2; ni2 2 Ng;f(o2l ; fo2l); 0 � l � no2; no2 2 Ng):as: S1 + S2 = (SpeStatus((IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2));SpeStatus((OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1));(IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2);(OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1))This formal de�nition of the software systems omposition aptures the entiremeaning of the informal de�nition, previously presented. The expression:(IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))is the formal expression of the imported servies, and the expression:(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1))is the formal expression of the exported servies of the (S1 + S2) informationsystem.The expressions:SpeStatusIN ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))SpeStatusOUT ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))de�nes the IN STATUS and, respetively, OUT STATUS attributes of the re-sult system.The omposition operation for two software systems models the proess of thetight oupling between these systems. All the similar servies exported by onesystem and imported by the other system are hidden in the obtained system,along with the orresponding status values. One an use this operator if he wishesto obtain an expression for a tight interation between two software systems. Theomposition operation is haraterized by the following proprieties:� the omposition operation is ommutative;� the system � = (;; ;; ;; ;) is the neutral element for the ompositionoperation;� if we onsider the software system:S = (IN STATUS;OUT STATUS;fIk; 0 � k � ni; ni 2 Ng; fOk ; 0 � k � no; no 2 Ng)

94 IUGA MARINthen the following system:CLOSE(S) = (OUT STATUS; IN STATUS;fOk; 0 � k � no; no 2 Ng; fIk ; 0 � k � ni; ni 2 Ng)is the inverse element of S for the omposition operation;� the omposition operation is not generally assoiative.The proof of these proprieties, due to its extent, it is not disussed here. Wehave only wished to enumerate them.The software systems spei�ation and omposition may be used for many pur-poses, ranging from heking of software systems ompatibility to methods forsoftware appliations design and generation. CASE tools an use them as a sup-port for software systems representation and interation models. They might alsobe the basis for other di�erent formal models in programming.Referenes[1℄ Dahl O.J., Dijkstra E. W., Hoare C.A.R., Strutured Programming, Aademi Press, 1972[2℄ Fus N. E., \Spei�ations Are (Preferably) Exeutable", Software Engineering Journal,September, 1992[3℄ Gamma Erih, Helm Rihard, Johnson Ralph, Vlissides John, Design Patterns: Elementsof Reusable Objet-Oriented Software, Addison-Wesley, 1994[4℄ H�olzle U., Integrating Independently-Developed Components in Objet-Oriented Languagesin LNCS 707, pp. 36{56, 1993[5℄ Iuga Marin, A Graphial Representation for Software Component Systems, Faulty of math-ematis and Computer Siene, Researh Seminars, pp. 107{110, 1999[6℄ MSDN Library Visual Studio 6.0, Visual C++ Programmers guide, Serialization (ObjetPersistene)[7℄ Allen Parrish, Component Based Software Engineering: A Broad Based Model is Needed,Brandon Dixon, David Hale in International Workshop on Component-Based Software En-gineering proeedings, pp. 43{46, 1999[8℄ Jan Udell, ComponentWare, Byte Magazine, pp. 46{56, 1994[9℄ Wegner Peter, Models and Paradigms of Interation, in Objet-Based Distributed Program-ming, ECOOP'93 Workshop, Vol. 791, pp. 1{32, Springer-Verlag, 1994[10℄ Szyperski Clemens, Pountain Dik, Extensible Software Systems, in BYTE May 1994, pp.57{62, 1994Babes�-Bolyai University, Faulty of Mathematis and Computer SieneE-mail address: marin�s.ubbluj.ro, iuga marin�yahoo.om

