
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000NEW INTERACTION MECHANISMS BETWEEN JAVADISTRIBUTED OBJECTSFLORIAN MIRCEA BOIAN AND CORINA FERDEANAbstrat. This artile proposes some solutions to very ommon problemsand requirements onerning the interation between Java objets spreadaross several mahines. Thus, an objet should be able to aess another re-mote objet without knowing where that objet resides. This loation trans-pareny indues also migration transpareny, allowing objets to be foundand aessed by their lients, even if they are hanging their loation.Another extension, of the standard interating protools for the ollabo-ration between distributed objets, ould be the de�nition of patterns used tomath the remote objets, whih have ertain attributes or whih implementthe servies spei�ed in the pattern.1. IntrodutionBasially, every distributed system implies two or more ative entities (pro-esses, threads, running objets) performing omputations, in di�erent addressspaes, potentially on di�erent hosts. Also, these ative exeution entities shouldbe able to ommuniate.For a basi ommuniation mehanism, the Java programming language sup-ports the sokets, whih are exible and suÆient for general ommuniation.However, sokets require the lient and server to de�ne appliations-level proto-ols to enode and deode messages for exhange, and the design of suh protoolsis umbersome and sometimes error-prone. Besides, even if these protools al-lows the ommuniation between programs written in di�erent languages and onheterogeneous platforms, they are not exible and neither extensible.Another distane ommuniation mehanism, as an alternative to sokets, isRemote Proedure Call (RPC), whih abstrats the ommuniation interfae to thelevel of a proedure all. Instead of working diretly with sokets, the programmerhas the illusion of alling a loal proedure, when in fat the arguments of the allare pakaged up and send to the remote target of the all. RPC systems enode2000 Mathematis Subjet Classi�ation. 68M14.1998 CR Categories and Desriptors. C.2.4 [Computer Systems Organizations℄:Computer-Communiation Networks { Distributed Systems.89



90 FLORIAN MIRCEA BOIAN AND CORINA FERDEANarguments and return values using an external standard data representation, suhas XDR.However, the RPC mehanism is not suitable for the distributed objet systems,where ommuniation between program-level objets residing in di�erent addressspaes is needed. In order to math the semantis of objet invoation, distributedobjet systems require remote method invoation or RMI. In suh systems, a loalsurrogate (stub) objet manages the invoation on a remote objet.2. Java RMI mehanism and JRMP protoolJava RMI (Remote Method Invoation) o�ers a distributed objet model for theJava Platform. Thus, the Java RMI system assumes the homogeneous environmentof the Java virtual mahine (JVM), and it uses the standard Java objet model,extending it into a distributed ontext.RMI is unique in that it is a language-entri model that takes advantage ofa ommon network type system. In other words, RMI extends the Java objetmodel beyond a single virtual mahine address spae.The underlying ommuniation protool used in Java RMI mehanism is JRMP.This protool allows the objet methods to be invoked between di�erent VirtualMahines aross a network, and atual objets an be passed as arguments andreturn values during method invoation. The JRMP protool uses objet serial-ization to onvert objet graphs to byte-streams for transport. Any Java objettype an be passed during invoation, inluding primitive types, ore lasses, user-de�ned lasses, and JavaBeans. Java RMI ould be desribed as a natural progres-sion of proedural RPC (Remote Proedure Call), adapted to an objet-orientedparadigm for the Java platform environment.In the following we'll desribe shortly how a typial objet interation works inJava RMI.Any objet whose methods are available to be invoked by another Java ob-jet must publish these methods by implementing an interfae, whih extends thejava.rmi.Remote interfae.To make a remote objet aessible to other virtual mahines, a program typi-ally registers it with the RMI registry. The program supplies to the registry thestring name of the remote objet as well as the remote objet itself.A lient program, in fat a Java objet, whih wants to aess a remote objet,must supply the remote objet's string name to the registry that is on the samemahine as the remote objet.The string name aepted by the RMI registry has the syntax \rmi://hostname:port/remoteObjetName", where hostname and port identify the mahine andport, respetively, on whih the RMI registry is running and remoteObjetNameis the string name of the remote objet. hostname, port, and the pre�x, \rmi:"



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 91are optional. If hostname is not spei�ed, then it defaults to the loal host. If portis not spei�ed, then it defaults to 1099. If remoteObjetName is not spei�ed,then the objet being named is the RMI registry itself.The registry returns to the aller a referene, alled stub, to the remote objet.As it turns out, the ommuniation between Java objets is strutured in a layerhierarhy, depited in Figure 1.
Figure 1. RMI ArhitetureWhen the objet's methods are invoked remotely, its arguments are marshalledand sent from the loal virtual mahine to the remote one, where the argumentsare unmarshalled and used. When the method terminates, the results are mar-shalled from the remote mahine and sent to the aller's virtual mahine. Animportant observation whih worths mentioning here is that the remote objets(that implement the Remote interfae) are passed by referene, and the others ob-jets by value (also, they must implement the Serializable interfae). Anotherobservation is that passing by value a Java objet in a di�erent Java environmentis equivalent with a primitive form of objet migration, where the "mobile agent"(the objet passed by value) is stati, and an be alled when and if its destinationenvironment deides).3. Providing Java RMI with support for loation transpareny andfault-toleraneA natural question, whih arises in a Java RMI ommuniation ontext, is howit would be possible for a lient objet to aess a remote objet, without havingto know a priori the server objet loation. This feature of loation independenybeomes a fundamental requirement if it is assumed that Java server objets ouldhange their loation, migrating between di�erent hosts.



92 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN3.1. Using JNDI and LDAP. The �rst solution proposed for providing loationtranspareny is based on omplementary tehnologies like JNDI (Java NamingDiretory Interfae) and LDAP (Light Diretory Aess Protool).Our disussion begins with a brief desription of these tehnologies, followed bythe presentation of the support they provide for aessing Java objets transpar-ently.JNDI (Java Naming Diretory Interfae). The Java Naming and Diretory Inter-fae (JNDI) is an appliation programming interfae (API) that provides namingand diretory funtionality to appliations written using the Java programminglanguage [4, 5℄. This API is de�ned to be independent of any spei� diretory ser-vie implementation, allowing a variety of diretories to be aessed in a ommonway.The JNDI arhiteture onsists of an API and a servie provider interfae (SPI).The primary goal for Java appliations, that use the JNDI API, is to aess avariety of naming and diretory servies. The servies an be plugged in trans-parently, by using SPI [11℄. This interfae allows the developers of di�erent nam-ing/diretory servie providers to hook up their implementations so that the or-responding servies are aessible from appliations that use JNDI [4, 5℄.These implementations inlude those for the Initial Context and for its desen-dent ontexts that an be plugged in dynamially to the JNDI arhiteture to beused by the JNDI appliation lients.JNDI is inluded in the Java 2 SDK, v1.3 and later releases. It is also availableas a Java Standard Extension for use with the JDK1.1 and the Java 2 SDK, v1.2.As it turns out, in order to use the JNDI, besides the JNDI lasses, also, one ormore servie providers should be available. The Java 2 SDK, v1.3 inludes threeservie providers for the following naming/diretory servies:� Lightweight Diretory Aess Protool (LDAP);� Common Objet Request Broker Arhiteture (CORBA) Common Ob-jet Servies (COS) name servie;� Java Remote Method Invoation (RMI) Registry.In this survey, we use LDAP as a diretory servie that provides a repositoryfor the Java distributed shared objets.LDAP. LDAP was originally developed as a front end to X.500, the OSI diretoryservie. X.500 de�nes the Diretory Aess Protool (DAP) for lients to use whenontating diretory servers. DAP is a heavyweight protool that runs over a fullOSI stak and requires a signi�ant amount of omputing resoures to run. LDAPruns diretly over TCP and provides most of the funtionality of DAP at a muhlower ost [6℄.



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 93LDAP diretory servie is based on a lient-server model. One or more LDAPservers ontain the data making up the LDAP diretory tree. An LDAP lientonnets to an LDAP server and asks it a question. The server responds with theanswer, or with a pointer to where the lient an get more information (typially,another LDAP server). No matter whih LDAP server a lient onnets to, it seesthe same view of the diretory; a name, presented to one LDAP server, referenesthe same entry it would at another LDAP server. This is an important feature ofa global diretory servie, like LDAP [7, 8℄.In LDAP, diretory entries are arranged in a hierarhial tree-like struturethat reets politial, geographi and/or organizational boundaries. Entries rep-resenting ountries appear at the top of the tree. Below them, there are entriesrepresenting states or national organizations. Below them, might be entries rep-resenting people, organizational units, printers, douments, or any other entitiessomeone needs to de�ne.In addition, LDAP allows the ontrol and the on�guration of whih attributesare required and allowed in an entry, through the use of a speial attribute alledobjetlass. The values of the objetlass attribute determine the shemarules the entry must obey.Using LDAP and JNDI to extend Java distributed omputing. In the Java dis-tributed omputing ontext, LDAP provides a entrally administered and possi-bly repliated servie for use by Java appliations spread aross the network. Forexample, an appliation server might use the diretory for registering objets thatrepresent the servies that it manages so that a lient an later searh the diretoryto loate those servies as needed.The JNDI provides an objet-oriented view of the diretory, thereby allowingJava objets to be added to and retrieved from the diretory without requiring thelient to manage data representation or loation exeution issues.There are di�erent ways in whih Java appliations an use the diretory tostore and loate objets. Thus, an appliation might store (a opy of) the objetitself, a referene to an objet, or attributes that desribe the objet.In general terms, a Java objet's serialized form ontains the objet's stateand an objet's referene is a ompat representation of addressing informationthat an be used to ontat the objet. An objet's attributes are properties thatare used to desribe the objet; attributes might inlude addressing and/or stateinformation.Whih of these three ways to use depends on the appliation/system that isbeing built and how it needs to interoperate with other appliations and systemsthat will share the objets stored in the diretory. Another fator is the supportprovided by the servie provider and the underlying diretory servie.



94 FLORIAN MIRCEA BOIAN AND CORINA FERDEANTransparent Java remote objets ommuniation. In this survey, we will showhow Sun's LDAP servie provider supports the binding of java.rmi.Remote ob-jets into diretories. When java.rmi.Remote objets and/or RMI registries arebound into an LDAP enterprise-wide shared namespae, RMI lients an lookup java.rmi.Remote objets without knowing on whih mahine the objets arerunning [1, 9, 10℄.Instead of storing the entire serialized state of an objet, whih ould be toolarge, it is preferable to store, into diretories, a referene to that objet. Forthat purpose, JNDI o�ers the javax.naming.Referene lass. This lass makesit possible to reord address information about objets not diretly bound to thediretory servie. The referene to an objet ontains the following information[7℄: � The lass name of the referened objet;� A vetor of javax.naming.RefAddr objets that represents the addres-ses, identifying the onnetions to the objet;� The name and loation of the objet fatory to use during objet reon-strution.javax.naming.RefAddr is an abstrat lass ontaining information needed toontat the objet (e.g., via a loation in memory, a lookup on another mahine,et.) or to rereate it with the same state. This lass de�nes an assoiationbetween ontent and type. The ontent (an objet) stores information required torebuild the objet and the type (a string) identi�es the purpose of the ontent.

Figure 2. The relation between a Referene, RefAddr, Type,and Content



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 95RefAddr also overrides the methods java.lang.Objet.equals(Objet obj)and java.lang.Objet.hashode() to ensure that two referenes are equal ifthe ontent and type are equal. RefAddr has two spei� sublasses, namely,javax.naming.StringRefAddr and javax.naming.BinaryRefAddr, whih storestrings, and respetively arrays of bytes. For example, a string referene addressould be an IP, URL, hostname, et.4. ExampleIn the following, we'll give a simple example of storing referenes to Java remoteobjets in a LDAP diretory. We mention that it is also possible to store opies ofobjets as streams of bytes, but this alternative requires muh more spae, and itisn't exible, as it is not possible to hange an objet implementation one it wasbound in the diretory servie. Using referenes to objets provide this exibility,and besides it saves a lot of spae in the diretory tree.Our example is onstruted onforming to the following steps, performed ondi�erent mahines:(1) We de�ne on the mahine ronos..ubbluj.ro a Java shared ob-jet HelloImpl, whih implements a Remote interfae alled Hello. Weregister this objet with the rmiregistry name servie, on the samemahine.import java.rmi.*;publi interfae Hello extends Remote fpubli String sayHello() throws RemoteExeption;g Program 1. Hello.javaimport java.rmi.*;import java.rmi.server.*;publi lass HelloImpl extends UniastRemoteObjetimplements Hello fpubli HelloImpl() throws RemoteExeption fgpubli String sayHello() throws RemoteExeption freturn ("Hello, the time is " + new java.util.Date());gg Program 2. HelloImpl.javaimport java.rmi.*;publi lass ServHello f



96 FLORIAN MIRCEA BOIAN AND CORINA FERDEANpubli stati void main(String args[℄) ftry fSystem.setSeurityManager(new RMISeurityManager());// reate a registry if one is not running already.try fjava.rmi.registry.LoateRegistry.reateRegistry(1099);g ath (java.rmi.server.ExportExeption ee) f// registry already exists, we'll just use it.g ath (RemoteExeption re) fSystem.err.println(re.getMessage());re.printStakTrae();gNaming.rebind("rmi://ronos..ubbluj.ro/hello",new. HelloImpl());g ath(Exeption e) fSystem.out.println("Error: "+e.getMessage());e.printStakTrae();ggg Program 3. ServHello.java(2) On another mahine, hermes..ubbluj.ro, we reate a referene oftype StringRefAddr to the HelloImpl objet, whih ontains an RMIURL of the form rmi://ronos..ubbluj.ro/RemoteObjetNameandit is bound to a name into a LDAP diretory. We also de�ne a value forthe javaodebase attribute, whih will be used by the servie providerto �nd the stub lass for the remote objet.import java.util.Hashtable;import javax.naming.*;import javax.naming.diretory.*;import java.rmi.*;publi lass HelloServ fpubli stati void main(String argv[℄) fString rmiurl = "rmi://ronos..ubbluj.ro/hello";// Set up environment for reating the initial ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,"om.sun.jndi.ldap.LdapCtxFatory");



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 97env.put(Context.PROVIDER URL,"ldap://rave.ss.ubbluj.ro:389/n=CORI,o=CCUBB,=RO");try f// Create the initial ontextDirContext tx = new InitialDirContext(env);// Create the referene ontaining the (future) loation of the objetReferene ref = new Referene("Hello",new StringRefAddr("URL", rmiurl));BasiAttributes battr = new BasiAttributes("javaCodebase","http://www.s.ubbluj.ro/�ori/t/");// Bind the objet to the diretorytx.rebind("n=RefHello", ref);tx.lose();g ath (NamingExeption e) fSystem.out.println("Operation failed: " + e);g Program 4. HelloServ.java(3) We �nally invoke the remote objet from a lient resident on mahinenessie.s.ubbluj.ro. As we proposed from the beginning, the lientmakes the remote invoation without knowing the server objet address,whih allows the latter to hange its loation, without a�eting the po-tential lients.import java.util.Hashtable;import javax.naming.*;import javax.naming.diretory.*;import java.rmi.*;publi lass HelloCl fpubli stati void main(String argv[℄) fString rmiurl = "rmi://ronos..ubbluj.ro/hello";// Set up environment for reating the initial ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,



98 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN"om.sun.jndi.ldap.LdapCtxFatory");env.put(Context.PROVIDER URL,"ldap://rave.ss.ubbluj.ro:389/n=CORI,o=CCUBB,=RO");try fDirContext tx = new InitialDirContext(env);// lookup the objetHello h = (Hello)tx.lookup("n=RemoteHello");System.out.println(h.sayHello());tx.lose();g ath (NamingExeption e) fSystem.out.println("Operation failed: " + e);g ath (RemoteExeption e1) fSystem.out.println("Operation failed: " + e1);ggg Program 5. HelloCl.javaThe method that we presented uses the information stored in the diretory.This information, represented by the Referene objet, is atually a pointer tothe information stored in another naming servie (the RMI registry), whih inturn, ontains the referene to the java.rmi.Remote objet.Even if, in the simple example presented above, this level of indiretion seemsto be overheading, besides loation transpareny, it has important appliationslike providing fault-tolerane to distributed Java objets.We use fault-tolerane to refer to the situation when a server objet isn't avail-able anymore (it was stopped or its host rashed), its servies are being provided byother idential bakup server objets. This is the traditional method of providingfault-tolerane by repliation of the servies that require high availability. In ourase, a fault-tolerant Java server objet is registered with di�erent rmiregistries,and the orresponding rmi objet's identifying URLs are stored as a Referene ina LDAP diretory.A lient invoation uses one of the available server objets (in fat, the �rstavailable server in the stored addresses referenes order), without being aware ofthe dupliation. The management of the dupliated objets is done totally trans-parent for the potential lients, and is ompleted by repliation servie providedby LDAP (for example slapd { Stand-alone LDAP Daemon { an be on�gured to



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 99provide repliated servie for a database with the help of slurpd, the standaloneLDAP update repliation daemon) [12℄.5. ConlusionsIn the artile we presented the standard RMI mehanism available on the Javaplatforms, and some possible extensions to its basi features.Within the Java language domain, Java RMI o�ers powerful new features forremote objet distribution. Besides the powerful objets interation failities thismehanism provides, it an be extended with features that respets new on-straints and requirements like loation and migration transpareny of the serverobjets. Also, the basi distributed systems requirement of fault-tolerane an besuessfully integrated into the Java RMI mehanism.Referenes[1℄ Diretory Exampleshttp://java.sun.om/produts/jndi/tutorial/getStarted/examples/diretory.htmlhttp://java.sun.om/produts/jndi/tutorial/objets/storing/sr/RemoteObj.java[2℄ Filterfresh: Hot Repliation of Java RMI Server Objetshttp://www.usenix.org/publiations/library/proeedings/oots98/full papers/baratloo/baratloo html/baratloo.html[3℄ Java IDLhttp://sophia.dtp.fmph.uniba.sk/javastu�/tutorial/idl/summary/[4℄ JNDI APIhttp://sunsite.u.edu.tw/java/jdk1.3/api/javax/naming/InitialContext.html# ENVI-RONMENThttp://java.sun.om/produts/jndi/[5℄ JNDI Tutorialhttp://java.sun.om/produts/jndi/tutorial/[6℄ LDAP: A Next Generation Diretory Protoolhttp://www.intranetjournal.om/foundation/ldap.shtml[7℄ LDAP and JNDI: Together foreverhttp://www.javaworld.om/javaworld/jw-03-2000/jw-0324-ldap p.html[8℄ RFC LDAPhttp://www.ietf.org/rf/rf2713.txt[9℄ RMI and Java Distributed Computinghttp://java.sun.om/features/1997/nov/rmi.html[10℄ RMI Registry Servie Provider JNDIhttp://sunsite.u.edu.tw/java/jdk1.3/guide/jndi/jndi-rmi.html#USAGE[11℄ SLAPD Daemonhttp://www.umih.edu/ dirsvs/ldap/do/guides/slapd/1.html#RTFToC1[12℄ SPIhttp://java.sun.om/j2se/1.3/dos/guide/jndi/spe/spi/jndispi.fm.html#1005286Servie Provider Pakagehttp://java.sun.om/produts/jndi/tutorial/getStarted/overview/provider.html



100 FLORIAN MIRCEA BOIAN AND CORINA FERDEANDepartment of Computer Siene, Faulty of Mathematis and Computer Siene,\Babes�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: florin|ori�s.ubbluj.ro


