
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000NEW INTERACTION MECHANISMS BETWEEN JAVADISTRIBUTED OBJECTSFLORIAN MIRCEA BOIAN AND CORINA FERDEANAbstra
t. This arti
le proposes some solutions to very 
ommon problemsand requirements 
on
erning the intera
tion between Java obje
ts spreada
ross several ma
hines. Thus, an obje
t should be able to a

ess another re-mote obje
t without knowing where that obje
t resides. This lo
ation trans-paren
y indu
es also migration transparen
y, allowing obje
ts to be foundand a

essed by their 
lients, even if they are 
hanging their lo
ation.Another extension, of the standard intera
ting proto
ols for the 
ollabo-ration between distributed obje
ts, 
ould be the de�nition of patterns used tomat
h the remote obje
ts, whi
h have 
ertain attributes or whi
h implementthe servi
es spe
i�ed in the pattern.1. Introdu
tionBasi
ally, every distributed system implies two or more a
tive entities (pro-
esses, threads, running obje
ts) performing 
omputations, in di�erent addressspa
es, potentially on di�erent hosts. Also, these a
tive exe
ution entities shouldbe able to 
ommuni
ate.For a basi
 
ommuni
ation me
hanism, the Java programming language sup-ports the so
kets, whi
h are 
exible and suÆ
ient for general 
ommuni
ation.However, so
kets require the 
lient and server to de�ne appli
ations-level proto-
ols to en
ode and de
ode messages for ex
hange, and the design of su
h proto
olsis 
umbersome and sometimes error-prone. Besides, even if these proto
ols al-lows the 
ommuni
ation between programs written in di�erent languages and onheterogeneous platforms, they are not 
exible and neither extensible.Another distan
e 
ommuni
ation me
hanism, as an alternative to so
kets, isRemote Pro
edure Call (RPC), whi
h abstra
ts the 
ommuni
ation interfa
e to thelevel of a pro
edure 
all. Instead of working dire
tly with so
kets, the programmerhas the illusion of 
alling a lo
al pro
edure, when in fa
t the arguments of the 
allare pa
kaged up and send to the remote target of the 
all. RPC systems en
ode2000 Mathemati
s Subje
t Classi�
ation. 68M14.1998 CR Categories and Des
riptors. C.2.4 [Computer Systems Organizations℄:Computer-Communi
ation Networks { Distributed Systems.89



90 FLORIAN MIRCEA BOIAN AND CORINA FERDEANarguments and return values using an external standard data representation, su
has XDR.However, the RPC me
hanism is not suitable for the distributed obje
t systems,where 
ommuni
ation between program-level obje
ts residing in di�erent addressspa
es is needed. In order to mat
h the semanti
s of obje
t invo
ation, distributedobje
t systems require remote method invo
ation or RMI. In su
h systems, a lo
alsurrogate (stub) obje
t manages the invo
ation on a remote obje
t.2. Java RMI me
hanism and JRMP proto
olJava RMI (Remote Method Invo
ation) o�ers a distributed obje
t model for theJava Platform. Thus, the Java RMI system assumes the homogeneous environmentof the Java virtual ma
hine (JVM), and it uses the standard Java obje
t model,extending it into a distributed 
ontext.RMI is unique in that it is a language-
entri
 model that takes advantage ofa 
ommon network type system. In other words, RMI extends the Java obje
tmodel beyond a single virtual ma
hine address spa
e.The underlying 
ommuni
ation proto
ol used in Java RMI me
hanism is JRMP.This proto
ol allows the obje
t methods to be invoked between di�erent VirtualMa
hines a
ross a network, and a
tual obje
ts 
an be passed as arguments andreturn values during method invo
ation. The JRMP proto
ol uses obje
t serial-ization to 
onvert obje
t graphs to byte-streams for transport. Any Java obje
ttype 
an be passed during invo
ation, in
luding primitive types, 
ore 
lasses, user-de�ned 
lasses, and JavaBeans. Java RMI 
ould be des
ribed as a natural progres-sion of pro
edural RPC (Remote Pro
edure Call), adapted to an obje
t-orientedparadigm for the Java platform environment.In the following we'll des
ribe shortly how a typi
al obje
t intera
tion works inJava RMI.Any obje
t whose methods are available to be invoked by another Java ob-je
t must publish these methods by implementing an interfa
e, whi
h extends thejava.rmi.Remote interfa
e.To make a remote obje
t a

essible to other virtual ma
hines, a program typi-
ally registers it with the RMI registry. The program supplies to the registry thestring name of the remote obje
t as well as the remote obje
t itself.A 
lient program, in fa
t a Java obje
t, whi
h wants to a

ess a remote obje
t,must supply the remote obje
t's string name to the registry that is on the samema
hine as the remote obje
t.The string name a

epted by the RMI registry has the syntax \rmi://hostname:port/remoteObje
tName", where hostname and port identify the ma
hine andport, respe
tively, on whi
h the RMI registry is running and remoteObje
tNameis the string name of the remote obje
t. hostname, port, and the pre�x, \rmi:"



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 91are optional. If hostname is not spe
i�ed, then it defaults to the lo
al host. If portis not spe
i�ed, then it defaults to 1099. If remoteObje
tName is not spe
i�ed,then the obje
t being named is the RMI registry itself.The registry returns to the 
aller a referen
e, 
alled stub, to the remote obje
t.As it turns out, the 
ommuni
ation between Java obje
ts is stru
tured in a layerhierar
hy, depi
ted in Figure 1.
Figure 1. RMI Ar
hite
tureWhen the obje
t's methods are invoked remotely, its arguments are marshalledand sent from the lo
al virtual ma
hine to the remote one, where the argumentsare unmarshalled and used. When the method terminates, the results are mar-shalled from the remote ma
hine and sent to the 
aller's virtual ma
hine. Animportant observation whi
h worths mentioning here is that the remote obje
ts(that implement the Remote interfa
e) are passed by referen
e, and the others ob-je
ts by value (also, they must implement the Serializable interfa
e). Anotherobservation is that passing by value a Java obje
t in a di�erent Java environmentis equivalent with a primitive form of obje
t migration, where the "mobile agent"(the obje
t passed by value) is stati
, and 
an be 
alled when and if its destinationenvironment de
ides).3. Providing Java RMI with support for lo
ation transparen
y andfault-toleran
eA natural question, whi
h arises in a Java RMI 
ommuni
ation 
ontext, is howit would be possible for a 
lient obje
t to a

ess a remote obje
t, without havingto know a priori the server obje
t lo
ation. This feature of lo
ation independen
ybe
omes a fundamental requirement if it is assumed that Java server obje
ts 
ould
hange their lo
ation, migrating between di�erent hosts.



92 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN3.1. Using JNDI and LDAP. The �rst solution proposed for providing lo
ationtransparen
y is based on 
omplementary te
hnologies like JNDI (Java NamingDire
tory Interfa
e) and LDAP (Light Dire
tory A

ess Proto
ol).Our dis
ussion begins with a brief des
ription of these te
hnologies, followed bythe presentation of the support they provide for a

essing Java obje
ts transpar-ently.JNDI (Java Naming Dire
tory Interfa
e). The Java Naming and Dire
tory Inter-fa
e (JNDI) is an appli
ation programming interfa
e (API) that provides namingand dire
tory fun
tionality to appli
ations written using the Java programminglanguage [4, 5℄. This API is de�ned to be independent of any spe
i�
 dire
tory ser-vi
e implementation, allowing a variety of dire
tories to be a

essed in a 
ommonway.The JNDI ar
hite
ture 
onsists of an API and a servi
e provider interfa
e (SPI).The primary goal for Java appli
ations, that use the JNDI API, is to a

ess avariety of naming and dire
tory servi
es. The servi
es 
an be plugged in trans-parently, by using SPI [11℄. This interfa
e allows the developers of di�erent nam-ing/dire
tory servi
e providers to hook up their implementations so that the 
or-responding servi
es are a

essible from appli
ations that use JNDI [4, 5℄.These implementations in
lude those for the Initial Context and for its des
en-dent 
ontexts that 
an be plugged in dynami
ally to the JNDI ar
hite
ture to beused by the JNDI appli
ation 
lients.JNDI is in
luded in the Java 2 SDK, v1.3 and later releases. It is also availableas a Java Standard Extension for use with the JDK1.1 and the Java 2 SDK, v1.2.As it turns out, in order to use the JNDI, besides the JNDI 
lasses, also, one ormore servi
e providers should be available. The Java 2 SDK, v1.3 in
ludes threeservi
e providers for the following naming/dire
tory servi
es:� Lightweight Dire
tory A

ess Proto
ol (LDAP);� Common Obje
t Request Broker Ar
hite
ture (CORBA) Common Ob-je
t Servi
es (COS) name servi
e;� Java Remote Method Invo
ation (RMI) Registry.In this survey, we use LDAP as a dire
tory servi
e that provides a repositoryfor the Java distributed shared obje
ts.LDAP. LDAP was originally developed as a front end to X.500, the OSI dire
toryservi
e. X.500 de�nes the Dire
tory A

ess Proto
ol (DAP) for 
lients to use when
onta
ting dire
tory servers. DAP is a heavyweight proto
ol that runs over a fullOSI sta
k and requires a signi�
ant amount of 
omputing resour
es to run. LDAPruns dire
tly over TCP and provides most of the fun
tionality of DAP at a mu
hlower 
ost [6℄.



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 93LDAP dire
tory servi
e is based on a 
lient-server model. One or more LDAPservers 
ontain the data making up the LDAP dire
tory tree. An LDAP 
lient
onne
ts to an LDAP server and asks it a question. The server responds with theanswer, or with a pointer to where the 
lient 
an get more information (typi
ally,another LDAP server). No matter whi
h LDAP server a 
lient 
onne
ts to, it seesthe same view of the dire
tory; a name, presented to one LDAP server, referen
esthe same entry it would at another LDAP server. This is an important feature ofa global dire
tory servi
e, like LDAP [7, 8℄.In LDAP, dire
tory entries are arranged in a hierar
hi
al tree-like stru
turethat re
e
ts politi
al, geographi
 and/or organizational boundaries. Entries rep-resenting 
ountries appear at the top of the tree. Below them, there are entriesrepresenting states or national organizations. Below them, might be entries rep-resenting people, organizational units, printers, do
uments, or any other entitiessomeone needs to de�ne.In addition, LDAP allows the 
ontrol and the 
on�guration of whi
h attributesare required and allowed in an entry, through the use of a spe
ial attribute 
alledobje
t
lass. The values of the obje
t
lass attribute determine the s
hemarules the entry must obey.Using LDAP and JNDI to extend Java distributed 
omputing. In the Java dis-tributed 
omputing 
ontext, LDAP provides a 
entrally administered and possi-bly repli
ated servi
e for use by Java appli
ations spread a
ross the network. Forexample, an appli
ation server might use the dire
tory for registering obje
ts thatrepresent the servi
es that it manages so that a 
lient 
an later sear
h the dire
toryto lo
ate those servi
es as needed.The JNDI provides an obje
t-oriented view of the dire
tory, thereby allowingJava obje
ts to be added to and retrieved from the dire
tory without requiring the
lient to manage data representation or lo
ation exe
ution issues.There are di�erent ways in whi
h Java appli
ations 
an use the dire
tory tostore and lo
ate obje
ts. Thus, an appli
ation might store (a 
opy of) the obje
titself, a referen
e to an obje
t, or attributes that des
ribe the obje
t.In general terms, a Java obje
t's serialized form 
ontains the obje
t's stateand an obje
t's referen
e is a 
ompa
t representation of addressing informationthat 
an be used to 
onta
t the obje
t. An obje
t's attributes are properties thatare used to des
ribe the obje
t; attributes might in
lude addressing and/or stateinformation.Whi
h of these three ways to use depends on the appli
ation/system that isbeing built and how it needs to interoperate with other appli
ations and systemsthat will share the obje
ts stored in the dire
tory. Another fa
tor is the supportprovided by the servi
e provider and the underlying dire
tory servi
e.



94 FLORIAN MIRCEA BOIAN AND CORINA FERDEANTransparent Java remote obje
ts 
ommuni
ation. In this survey, we will showhow Sun's LDAP servi
e provider supports the binding of java.rmi.Remote ob-je
ts into dire
tories. When java.rmi.Remote obje
ts and/or RMI registries arebound into an LDAP enterprise-wide shared namespa
e, RMI 
lients 
an lookup java.rmi.Remote obje
ts without knowing on whi
h ma
hine the obje
ts arerunning [1, 9, 10℄.Instead of storing the entire serialized state of an obje
t, whi
h 
ould be toolarge, it is preferable to store, into dire
tories, a referen
e to that obje
t. Forthat purpose, JNDI o�ers the javax.naming.Referen
e 
lass. This 
lass makesit possible to re
ord address information about obje
ts not dire
tly bound to thedire
tory servi
e. The referen
e to an obje
t 
ontains the following information[7℄: � The 
lass name of the referen
ed obje
t;� A ve
tor of javax.naming.RefAddr obje
ts that represents the addres-ses, identifying the 
onne
tions to the obje
t;� The name and lo
ation of the obje
t fa
tory to use during obje
t re
on-stru
tion.javax.naming.RefAddr is an abstra
t 
lass 
ontaining information needed to
onta
t the obje
t (e.g., via a lo
ation in memory, a lookup on another ma
hine,et
.) or to re
reate it with the same state. This 
lass de�nes an asso
iationbetween 
ontent and type. The 
ontent (an obje
t) stores information required torebuild the obje
t and the type (a string) identi�es the purpose of the 
ontent.

Figure 2. The relation between a Referen
e, RefAddr, Type,and Content



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 95RefAddr also overrides the methods java.lang.Obje
t.equals(Obje
t obj)and java.lang.Obje
t.hash
ode() to ensure that two referen
es are equal ifthe 
ontent and type are equal. RefAddr has two spe
i�
 sub
lasses, namely,javax.naming.StringRefAddr and javax.naming.BinaryRefAddr, whi
h storestrings, and respe
tively arrays of bytes. For example, a string referen
e address
ould be an IP, URL, hostname, et
.4. ExampleIn the following, we'll give a simple example of storing referen
es to Java remoteobje
ts in a LDAP dire
tory. We mention that it is also possible to store 
opies ofobje
ts as streams of bytes, but this alternative requires mu
h more spa
e, and itisn't 
exible, as it is not possible to 
hange an obje
t implementation on
e it wasbound in the dire
tory servi
e. Using referen
es to obje
ts provide this 
exibility,and besides it saves a lot of spa
e in the dire
tory tree.Our example is 
onstru
ted 
onforming to the following steps, performed ondi�erent ma
hines:(1) We de�ne on the ma
hine 
ronos.

.ubb
luj.ro a Java shared ob-je
t HelloImpl, whi
h implements a Remote interfa
e 
alled Hello. Weregister this obje
t with the rmiregistry name servi
e, on the samema
hine.import java.rmi.*;publi
 interfa
e Hello extends Remote fpubli
 String sayHello() throws RemoteEx
eption;g Program 1. Hello.javaimport java.rmi.*;import java.rmi.server.*;publi
 
lass HelloImpl extends Uni
astRemoteObje
timplements Hello fpubli
 HelloImpl() throws RemoteEx
eption fgpubli
 String sayHello() throws RemoteEx
eption freturn ("Hello, the time is " + new java.util.Date());gg Program 2. HelloImpl.javaimport java.rmi.*;publi
 
lass ServHello f



96 FLORIAN MIRCEA BOIAN AND CORINA FERDEANpubli
 stati
 void main(String args[℄) ftry fSystem.setSe
urityManager(new RMISe
urityManager());// 
reate a registry if one is not running already.try fjava.rmi.registry.Lo
ateRegistry.
reateRegistry(1099);g 
at
h (java.rmi.server.ExportEx
eption ee) f// registry already exists, we'll just use it.g 
at
h (RemoteEx
eption re) fSystem.err.println(re.getMessage());re.printSta
kTra
e();gNaming.rebind("rmi://
ronos.

.ubb
luj.ro/hello",new. HelloImpl());g 
at
h(Ex
eption e) fSystem.out.println("Error: "+e.getMessage());e.printSta
kTra
e();ggg Program 3. ServHello.java(2) On another ma
hine, hermes.

.ubb
luj.ro, we 
reate a referen
e oftype StringRefAddr to the HelloImpl obje
t, whi
h 
ontains an RMIURL of the form rmi://
ronos.

.ubb
luj.ro/RemoteObje
tNameandit is bound to a name into a LDAP dire
tory. We also de�ne a value forthe java
odebase attribute, whi
h will be used by the servi
e providerto �nd the stub 
lass for the remote obje
t.import java.util.Hashtable;import javax.naming.*;import javax.naming.dire
tory.*;import java.rmi.*;publi
 
lass HelloServ fpubli
 stati
 void main(String argv[℄) fString rmiurl = "rmi://
ronos.

.ubb
luj.ro/hello";// Set up environment for 
reating the initial 
ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,"
om.sun.jndi.ldap.LdapCtxFa
tory");



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 97env.put(Context.PROVIDER URL,"ldap://rave.s
s.ubb
luj.ro:389/
n=CORI,o=CCUBB,
=RO");try f// Create the initial 
ontextDirContext 
tx = new InitialDirContext(env);// Create the referen
e 
ontaining the (future) lo
ation of the obje
tReferen
e ref = new Referen
e("Hello",new StringRefAddr("URL", rmiurl));Basi
Attributes battr = new Basi
Attributes("javaCodebase","http://www.
s.ubb
luj.ro/�
ori/t/");// Bind the obje
t to the dire
tory
tx.rebind("
n=RefHello", ref);
tx.
lose();g 
at
h (NamingEx
eption e) fSystem.out.println("Operation failed: " + e);g Program 4. HelloServ.java(3) We �nally invoke the remote obje
t from a 
lient resident on ma
hinenessie.
s.ubb
luj.ro. As we proposed from the beginning, the 
lientmakes the remote invo
ation without knowing the server obje
t address,whi
h allows the latter to 
hange its lo
ation, without a�e
ting the po-tential 
lients.import java.util.Hashtable;import javax.naming.*;import javax.naming.dire
tory.*;import java.rmi.*;publi
 
lass HelloCl fpubli
 stati
 void main(String argv[℄) fString rmiurl = "rmi://
ronos.

.ubb
luj.ro/hello";// Set up environment for 
reating the initial 
ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,



98 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN"
om.sun.jndi.ldap.LdapCtxFa
tory");env.put(Context.PROVIDER URL,"ldap://rave.s
s.ubb
luj.ro:389/
n=CORI,o=CCUBB,
=RO");try fDirContext 
tx = new InitialDirContext(env);// lookup the obje
tHello h = (Hello)
tx.lookup("
n=RemoteHello");System.out.println(h.sayHello());
tx.
lose();g 
at
h (NamingEx
eption e) fSystem.out.println("Operation failed: " + e);g 
at
h (RemoteEx
eption e1) fSystem.out.println("Operation failed: " + e1);ggg Program 5. HelloCl.javaThe method that we presented uses the information stored in the dire
tory.This information, represented by the Referen
e obje
t, is a
tually a pointer tothe information stored in another naming servi
e (the RMI registry), whi
h inturn, 
ontains the referen
e to the java.rmi.Remote obje
t.Even if, in the simple example presented above, this level of indire
tion seemsto be overheading, besides lo
ation transparen
y, it has important appli
ationslike providing fault-toleran
e to distributed Java obje
ts.We use fault-toleran
e to refer to the situation when a server obje
t isn't avail-able anymore (it was stopped or its host 
rashed), its servi
es are being provided byother identi
al ba
kup server obje
ts. This is the traditional method of providingfault-toleran
e by repli
ation of the servi
es that require high availability. In our
ase, a fault-tolerant Java server obje
t is registered with di�erent rmiregistries,and the 
orresponding rmi obje
t's identifying URLs are stored as a Referen
e ina LDAP dire
tory.A 
lient invo
ation uses one of the available server obje
ts (in fa
t, the �rstavailable server in the stored addresses referen
es order), without being aware ofthe dupli
ation. The management of the dupli
ated obje
ts is done totally trans-parent for the potential 
lients, and is 
ompleted by repli
ation servi
e providedby LDAP (for example slapd { Stand-alone LDAP Daemon { 
an be 
on�gured to



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 99provide repli
ated servi
e for a database with the help of slurpd, the standaloneLDAP update repli
ation daemon) [12℄.5. Con
lusionsIn the arti
le we presented the standard RMI me
hanism available on the Javaplatforms, and some possible extensions to its basi
 features.Within the Java language domain, Java RMI o�ers powerful new features forremote obje
t distribution. Besides the powerful obje
ts intera
tion fa
ilities thisme
hanism provides, it 
an be extended with features that respe
ts new 
on-straints and requirements like lo
ation and migration transparen
y of the serverobje
ts. Also, the basi
 distributed systems requirement of fault-toleran
e 
an besu

essfully integrated into the Java RMI me
hanism.Referen
es[1℄ Dire
tory Exampleshttp://java.sun.
om/produ
ts/jndi/tutorial/getStarted/examples/dire
tory.htmlhttp://java.sun.
om/produ
ts/jndi/tutorial/obje
ts/storing/sr
/RemoteObj.java[2℄ Filterfresh: Hot Repli
ation of Java RMI Server Obje
tshttp://www.usenix.org/publi
ations/library/pro
eedings/
oots98/full papers/baratloo/baratloo html/baratloo.html[3℄ Java IDLhttp://sophia.dtp.fmph.uniba.sk/javastu�/tutorial/idl/summary/[4℄ JNDI APIhttp://sunsite.

u.edu.tw/java/jdk1.3/api/javax/naming/InitialContext.html# ENVI-RONMENThttp://java.sun.
om/produ
ts/jndi/[5℄ JNDI Tutorialhttp://java.sun.
om/produ
ts/jndi/tutorial/[6℄ LDAP: A Next Generation Dire
tory Proto
olhttp://www.intranetjournal.
om/foundation/ldap.shtml[7℄ LDAP and JNDI: Together foreverhttp://www.javaworld.
om/javaworld/jw-03-2000/jw-0324-ldap p.html[8℄ RFC LDAPhttp://www.ietf.org/rf
/rf
2713.txt[9℄ RMI and Java Distributed Computinghttp://java.sun.
om/features/1997/nov/rmi.html[10℄ RMI Registry Servi
e Provider JNDIhttp://sunsite.

u.edu.tw/java/jdk1.3/guide/jndi/jndi-rmi.html#USAGE[11℄ SLAPD Daemonhttp://www.umi
h.edu/ dirsv
s/ldap/do
/guides/slapd/1.html#RTFToC1[12℄ SPIhttp://java.sun.
om/j2se/1.3/do
s/guide/jndi/spe
/spi/jndispi.fm.html#1005286Servi
e Provider Pa
kagehttp://java.sun.
om/produ
ts/jndi/tutorial/getStarted/overview/provider.html



100 FLORIAN MIRCEA BOIAN AND CORINA FERDEANDepartment of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babes�-Bolyai" University, Cluj-Napo
a, RomaniaE-mail address: florin|
ori�
s.ubb
luj.ro


