STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000

NEW INTERACTION MECHANISMS BETWEEN JAVA
DISTRIBUTED OBJECTS

FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

ABSTRACT. This article proposes some solutions to very common problems
and requirements concerning the interaction between Java objects spread
across several machines. Thus, an object should be able to access another re-
mote object without knowing where that object resides. This location trans-
parency induces also migration transparency, allowing objects to be found
and accessed by their clients, even if they are changing their location.

Another extension, of the standard interacting protocols for the collabo-
ration between distributed objects, could be the definition of patterns used to
match the remote objects, which have certain attributes or which implement
the services specified in the pattern.

1. INTRODUCTION

Basically, every distributed system implies two or more active entities (pro-
cesses, threads, running objects) performing computations, in different address
spaces, potentially on different hosts. Also, these active execution entities should
be able to communicate.

For a basic communication mechanism, the Java programming language sup-
ports the sockets, which are flexible and sufficient for general communication.
However, sockets require the client and server to define applications-level proto-
cols to encode and decode messages for exchange, and the design of such protocols
is cumbersome and sometimes error-prone. Besides, even if these protocols al-
lows the communication between programs written in different languages and on
heterogeneous platforms, they are not flexible and neither extensible.

Another distance communication mechanism, as an alternative to sockets, is
Remote Procedure Call (RPC), which abstracts the communication interface to the
level of a procedure call. Instead of working directly with sockets, the programmer
has the illusion of calling a local procedure, when in fact the arguments of the call
are packaged up and send to the remote target of the call. RPC systems encode

2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organizations]:
Computer-Communication Networks — Distributed Systems.

89



90 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

arguments and return values using an external standard data representation, such
as XDR.

However, the RPC mechanism is not suitable for the distributed object systems,
where communication between program-level objects residing in different address
spaces is needed. In order to match the semantics of object invocation, distributed
object systems require remote method invocation or RMI. In such systems, a local
surrogate (stub) object manages the invocation on a remote object.

2. Java RMI MECHANISM AND JRMP PROTOCOL

Java RMI (Remote Method Invocation) offers a distributed object model for the
Java Platform. Thus, the Java RMI system assumes the homogeneous environment
of the Java virtual machine (JVM), and it uses the standard Java object model,
extending it into a distributed context.

RMI is unique in that it is a language-centric model that takes advantage of
a common network type system. In other words, RMI extends the Java object
model beyond a single virtual machine address space.

The underlying communication protocol used in Java RMI mechanism is JRMP.
This protocol allows the object methods to be invoked between different Virtual
Machines across a network, and actual objects can be passed as arguments and
return values during method invocation. The JRMP protocol uses object serial-
ization to convert object graphs to byte-streams for transport. Any Java object
type can be passed during invocation, including primitive types, core classes, user-
defined classes, and JavaBeans. Java RMI could be described as a natural progres-
sion of procedural RPC (Remote Procedure Call), adapted to an object-oriented
paradigm for the Java platform environment.

In the following we’ll describe shortly how a typical object interaction works in
Java RMI.

Any object whose methods are available to be invoked by another Java ob-
ject must publish these methods by implementing an interface, which extends the
java.rmi.Remote interface.

To make a remote object accessible to other virtual machines, a program typi-
cally registers it with the RMI registry. The program supplies to the registry the
string name of the remote object as well as the remote object itself.

A client program, in fact a Java object, which wants to access a remote object,
must supply the remote object’s string name to the registry that is on the same
machine as the remote object.

The string name accepted by the RMI registry has the syntax “rmi://hostname:
port/remotelbjectName”, where hostname and port identify the machine and
port, respectively, on which the RMI registry is running and remoteObjectName
is the string name of the remote object. hostname, port, and the prefix, “rmi:”



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 91

are optional. If hostname is not specified, then it defaults to the local host. If port
is not specified, then it defaults to 1099. If remoteObjectName is not specified,
then the object being named is the RMI registry itself.
The registry returns to the caller a reference, called stub, to the remote object.
As it turns out, the communication between Java objects is structured in a layer
hierarchy, depicted in Figure 1.

client Sener
h, application ) application
! j ! Sener j
tub
, Fenver =t \ skeleton

remote reference Tayer remote referance
(RRL) ¢ : layer (RRL)

Transport layer

FIGURE 1. RMI Architecture

When the object’s methods are invoked remotely, its arguments are marshalled
and sent from the local virtual machine to the remote one, where the arguments
are unmarshalled and used. When the method terminates, the results are mar-
shalled from the remote machine and sent to the caller’s virtual machine. An
important observation which worths mentioning here is that the remote objects
(that implement, the Remote interface) are passed by reference, and the others ob-
jects by value (also, they must implement the Serializable interface). Another
observation is that passing by value a Java object in a different Java environment
is equivalent with a primitive form of object migration, where the ”mobile agent”
(the object passed by value) is static, and can be called when and if its destination
environment decides).

3. ProviDING JAvA RMI WITH SUPPORT FOR LOCATION TRANSPARENCY AND
FAULT-TOLERANCE

A natural question, which arises in a Java RMI communication context, is how
it would be possible for a client object to access a remote object, without having
to know a priori the server object location. This feature of location independency
becomes a fundamental requirement, if it is assumed that Java server objects could
change their location, migrating between different, hosts.



92 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

3.1. Using JNDI and LDAP. The first solution proposed for providing location
transparency is based on complementary technologies like JNDI (Java Naming
Directory Interface) and LDAP (Light Directory Access Protocol).

Our discussion begins with a brief description of these technologies, followed by
the presentation of the support they provide for accessing Java objects transpar-
ently.

JNDI (Java Naming Directory Interface). The Java Naming and Directory Inter-
face (JNDI) is an application programming interface (API) that provides naming
and directory functionality to applications written using the Java programming
language [4, 5]. This API is defined to be independent of any specific directory ser-
vice implementation, allowing a variety of directories to be accessed in a common
way.

The JNDI architecture consists of an API and a service provider interface (SPI).

The primary goal for Java applications, that use the JNDI API, is to access a
variety of naming and directory services. The services can be plugged in trans-
parently, by using SPI [11]. This interface allows the developers of different nam-
ing/directory service providers to hook up their implementations so that the cor-
responding services are accessible from applications that use JNDI [4, 5].

These implementations include those for the Initial Context and for its descen-
dent contexts that can be plugged in dynamically to the JNDI architecture to be
used by the JNDI application clients.

JNDI is included in the Java 2 SDK, v1.3 and later releases. It is also available
as a Java Standard Extension for use with the JDK1.1 and the Java 2 SDK, v1.2.

As it turns out, in order to use the JNDI, besides the JNDI classes, also, one or
more service providers should be available. The Java 2 SDK, v1.3 includes three
service providers for the following naming/directory services:

e Lightweight Directory Access Protocol (LDAP);

e Common Object Request Broker Architecture (CORBA) Common Ob-
ject Services (COS) name service;

e Java Remote Method Invocation (RMI) Registry.

In this survey, we use LDAP as a directory service that provides a repository
for the Java distributed shared objects.

LDAP. LDAP was originally developed as a front end to X.500, the OSI directory
service. X.500 defines the Directory Access Protocol (DAP) for clients to use when
contacting directory servers. DAP is a heavyweight protocol that runs over a full
OSI stack and requires a significant amount of computing resources to run. LDAP
runs directly over TCP and provides most of the functionality of DAP at a much
lower cost [6].



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 93

LDAP directory service is based on a client-server model. One or more LDAP
servers contain the data making up the LDAP directory tree. An LDAP client
connects to an LDAP server and asks it a question. The server responds with the
answer, or with a pointer to where the client can get more information (typically,
another LDAP server). No matter which LDAP server a client connects to, it sees
the same view of the directory; a name, presented to one LDAP server, references
the same entry it would at another LDAP server. This is an important feature of
a global directory service, like LDAP [7, 8].

In LDAP, directory entries are arranged in a hierarchical tree-like structure
that reflects political, geographic and/or organizational boundaries. Entries rep-
resenting countries appear at the top of the tree. Below them, there are entries
representing states or national organizations. Below them, might be entries rep-
resenting people, organizational units, printers, documents, or any other entities
someone needs to define.

In addition, LDAP allows the control and the configuration of which attributes
are required and allowed in an entry, through the use of a special attribute called
objectclass. The values of the objectclass attribute determine the schema
rules the entry must obey.

Using LDAP and JNDI to extend Java distributed computing. In the Java dis-
tributed computing context, LDAP provides a centrally administered and possi-
bly replicated service for use by Java applications spread across the network. For
example, an application server might use the directory for registering objects that
represent the services that it manages so that a client can later search the directory
to locate those services as needed.

The JNDI provides an object-oriented view of the directory, thereby allowing
Java objects to be added to and retrieved from the directory without requiring the
client to manage data representation or location execution issues.

There are different ways in which Java applications can use the directory to
store and locate objects. Thus, an application might store (a copy of) the object
itself, a reference to an object, or attributes that describe the object.

In general terms, a Java object’s serialized form contains the object’s state
and an object’s reference is a compact representation of addressing information
that can be used to contact the object. An object’s attributes are properties that
are used to describe the object; attributes might include addressing and/or state
information.

Which of these three ways to use depends on the application/system that is
being built and how it needs to interoperate with other applications and systems
that will share the objects stored in the directory. Another factor is the support
provided by the service provider and the underlying directory service.



94 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

Transparent Java remote objects communication. In this survey, we will show
how Sun’s LDAP service provider supports the binding of java.rmi.Remote ob-
jects into directories. When java.rmi.Remote objects and/or RMI registries are
bound into an LDAP enterprise-wide shared namespace, RMI clients can look
up java.rmi.Remote objects without knowing on which machine the objects are
running [1, 9, 10].

Instead of storing the entire serialized state of an object, which could be too
large, it is preferable to store, into directories, a reference to that object. For
that purpose, JNDI offers the javax.naming.Reference class. This class makes
it possible to record address information about objects not directly bound to the
directory service. The reference to an object contains the following information
[7]:

e The class name of the referenced object;

e A vector of javax.naming.RefAddr objects that represents the addres-
ses, identifying the connections to the object;

e The name and location of the object factory to use during object recon-
struction.

javax.naming.RefAddr is an abstract class containing information needed to
contact the object (e.g., via a location in memory, a lookup on another machine,
etc.) or to recreate it with the same state. This class defines an association
between content and type. The content (an object) stores information required to
rebuild the object and the type (a string) identifies the purpose of the content.

Reference

refAddr

F1GURE 2. The relation between a Reference, RefAddr, Type,
and Content



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 95

RefAddr also overrides the methods java.lang.0Object.equals(Object obj)
and java.lang.0Object.hashcode() to ensure that two references are equal if
the content and type are equal. RefAddr has two specific subclasses, namely,
javax.naming.StringRefAddr and javax.naming.BinaryRefAddr, which store
strings, and respectively arrays of bytes. For example, a string reference address
could be an IP, URL, hostname, etc.

4. EXAMPLE

In the following, we’ll give a simple example of storing references to Java remote
objects in a LDAP directory. We mention that it is also possible to store copies of
objects as streams of bytes, but this alternative requires much more space, and it
isn’t flexible, as it is not possible to change an object implementation once it was
bound in the directory service. Using references to objects provide this flexibility,
and besides it saves a lot of space in the directory tree.

Our example is constructed conforming to the following steps, performed on
different machines:

(1) We define on the machine cronos.cc.ubbcluj.ro a Java shared ob-
ject HelloImpl, which implements a Remote interface called Hello. We
register this object with the rmiregistry name service, on the same
machine.
import java.rmi.*;
public interface Hello extends Remote {

public String sayHello() throws RemoteException;
}
Program 1. Hello.java
import java.rmi.*;

import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject

implements Hello {

public HelloImpl() throws RemoteException {

}

public String sayHello() throws RemoteException {
return (”Hello, the time is ” + new java.util.Date());
}

Program 2. HelloImpl.java
import java.rmi.*;
public class ServHello {



96 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

public static void main(String args[]) {

try {
System.setSecurityManager (new RMISecurityManager());

// create a registry if one is not running already.

try {
java.rmi.registry.LocateRegistry.createRegistry(1099);

} catch (java.rmi.server.ExportException ee) {

// registry already exists, we’ll just use it.

} catch (RemoteException re) {
System.err.println(re.getMessage());
re.printStackTrace();

}

Naming.rebind(”rmi://cronos.cc.ubbcluj.ro/hello”,

new. HelloImpl());
} catch(Exception e) {

System.out.println(” Error: ” +e.getMessage());

e.printStackTrace();

Program 3. ServHello.java

(2) On another machine, hermes.cc.ubbcluj.ro, we create a reference of
type StringRefAddr to the HelloImpl object, which contains an RMI
URL of the form rmi://cronos.cc.ubbcluj.ro/Remote0bjectName and
it is bound to a name into a LDAP directory. We also define a value for
the javacodebase attribute, which will be used by the service provider
to find the stub class for the remote object.

import java.util. Hashtable;
import javax.naming.*;
import javax.naming.directory.*;
import java.rmi.*;
public class HelloServ {
public static void main(String argvl]) {
String rmiurl = ”rmi://cronos.cc.ubbcluj.ro/hello”;

// Set up environment for creating the initial context

Hashtable env = new Hashtable();

env.put(Context. INITIAL_.CONTEXT_FACTORY,
”com.sun.jndi.ldap.LdapCtxFactory”);



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 97

env.put(Context. PROVIDER_URL,
”1dap:/ /rave.scs.ubbcluj.ro:389/cn=CORI,
0=CCUBB,c=RO”);

try {
// Create the initial context

DirContext ctx = new InitialDirContext(env);

// Create the reference containing the (future) location of the object
Reference ref = new Reference(”Hello”,
new StringRefAddr(”URL”, rmiurl));

BasicAttributes battr = new BasicAttributes(
”javaCodebase”,
”http://www.cs.ubbcluj.ro/~cori/t/”);

// Bind the object to the directory
ctx.rebind (”cn=RefHello”, ref);

ctx.close();
} catch (NamingException e) {
System.out.println(” Operation failed: ” + e);
}

Program 4. HelloServ.java

(3) We finally invoke the remote object from a client resident on machine

nessie.cs.ubbcluj.ro. As we proposed from the beginning, the client
makes the remote invocation without knowing the server object address,
which allows the latter to change its location, without affecting the po-
tential clients.

import java.util.Hashtable;
import javax.naming.*;
import javax.naming.directory.*;
import java.rmi.*;
public class HelloCl {
public static void main(String argv]]) {
String rmiurl = ”rmi://cronos.cc.ubbcluj.ro/hello”;

// Set up environment for creating the initial context
Hashtable env = new Hashtable();
env.put(Context. INITIAL_.CONTEXT_FACTORY,



98 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

”com.sun.jndi.ldap.LdapCtxFactory”);

env.put(Context. PROVIDER_URL,
"1dap://rave.scs.ubbcluj.ro:389/cn=CORI,
0=CCUBB,c=R0O");

try {
DirContext ctx = new InitialDirContext(env);

// lookup the object
Hello h = (Hello)ctx.lookup(”cn=RemoteHello”);
System.out.println(h.sayHello());

ctx.close();
} catch (NamingException e) {
System.out.println(” Operation failed: ” + e);
} catch (RemoteException el) {
System.out.println(” Operation failed: ” + el);
}

Program 5. HelloCl.java

The method that we presented uses the information stored in the directory.
This information, represented by the Reference object, is actually a pointer to
the information stored in another naming service (the RMI registry), which in
turn, contains the reference to the java.rmi.Remote object.

Even if, in the simple example presented above, this level of indirection seems
to be overheading, besides location transparency, it has important applications
like providing fault-tolerance to distributed Java objects.

We use fault-tolerance to refer to the situation when a server object isn’t avail-
able anymore (it was stopped or its host crashed), its services are being provided by
other identical backup server objects. This is the traditional method of providing
fault-tolerance by replication of the services that require high availability. In our
case, a fault-tolerant Java server object is registered with different rmiregistries,
and the corresponding rmi object’s identifying URLs are stored as a Reference in
a LDAP directory.

A client invocation uses one of the available server objects (in fact, the first
available server in the stored addresses references order), without being aware of
the duplication. The management of the duplicated objects is done totally trans-
parent for the potential clients, and is completed by replication service provided
by LDAP (for example slapd — Stand-alone LDAP Daemon — can be configured to



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 99

provide replicated service for a database with the help of slurpd, the standalone
LDAP update replication daemon) [12].

5. CONCLUSIONS

In the article we presented the standard RMI mechanism available on the Java
platforms, and some possible extensions to its basic features.

Within the Java language domain, Java RMI offers powerful new features for
remote object distribution. Besides the powerful objects interaction facilities this
mechanism provides, it can be extended with features that respects new con-
straints and requirements like location and migration transparency of the server
objects. Also, the basic distributed systems requirement of fault-tolerance can be
successfully integrated into the Java RMI mechanism.

REFERENCES

[1] Directory Examples
http://java.sun.com/products/jndi/tutorial/getStarted /examples/directory.html
http://java.sun.com/products/jndi/tutorial/objects/storing/src/RemoteObj.java

[2] Filterfresh: Hot Replication of Java RMI Server Objects
http://www.usenix.org/publications/library /proceedings/coots98/full_papers/baratloo/
baratloo_html/baratloo.html

[3] Java IDL
http://sophia.dtp.fmph.uniba.sk/javastuff/tutorial /idl/summary/

[4] JNDI API
http://sunsite.ccu.edu.tw/java/jdk1.3/api/javax/naming/Initial Context.html# ENVI-
RONMENT
http://java.sun.com/products/jndi/

[5] JNDI Tutorial
http://java.sun.com/products/jndi/tutorial/

[6] LDAP: A Next Generation Directory Protocol
http://www.intranetjournal.com/foundation /ldap.shtml

[7] LDAP and JNDI: Together forever
http://www.javaworld.com/javaworld /jw-03-2000/jw-0324-1dap_p.html

[8] RFC LDAP
http://www.ietf.org/rfc/rfc2713.txt

[9] RMI and Java Distributed Computing
http://java.sun.com/features/1997/nov/rmi.html

[10] RMI Registry Service Provider JNDI
http://sunsite.ccu.edu.tw/java/jdk1.3/guide/jndi/jndi-rmi.html#USAGE

[11] SLAPD Daemon
http://www.umich.edu/ dirsves/ldap/doc/guides/slapd/1.html#RTFToC1

[12] SPI
http://java.sun.com/j2se/1.3/docs/guide/jndi/spec/spi/jndispi.fm.html#1005286
Service Provider Package
http://java.sun.com/products/jndi/tutorial/getStarted /overview/provider.html



100 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
“BABES§-BOLYAI” UNIVERSITY, CLUJ-NAPOCA, ROMANIA
E-mail address: florin|cori@cs.ubbcluj.ro



