
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVEOPTIMIZATIOND. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANAbstrat. Several evolutionary algorithms for solving multiobjetive opti-mization problems have been proposed ([2, 5, 6, 7, 8, 9, 10, 12, 13℄, see alsothe reviews [1, 11, 14℄). All algorithms aim to give a disrete piture of thePareto optimal set (and of the orresponding Pareto frontier). But Paretooptimal set is usually a ontinuous region in the searh spae. It follows thata ontinuous region is represented by a disrete piture. When ontinuosdeision regions are represented by disrete solutions there is an informationloss. In this paper we propose a new evolutionary approah ombing a newsolution representation, new variation operators and a multimodal optimiza-tion tehnique. In the proposed approah ontinuous deision regions may bedeteted. A solution is either a losed interval or a point. The solutions inthe �nal population will give a realisti representation of Pareto optimal set.Eah solution in this population orresponds to a deision region of Pareto set.Proposed tehnique does not use a seondary population of non-dominatedalready founded.Keywords: evolutionary algorithms, multiobjetive optimization, Pa-reto optimal set, Pareto frontier, Geneti hromodynamis.Let f1; f2; : : : ; fN be N objetive funtions.fi : 
! R;
 � R:Consider the multiobjetive optimization problem:� optimize f(x) = (f1(x); : : : ; fN (x))subjet to x 2 
The key onept in determining solutions of multiobjetive problems is that ofPareto optimality.De�nition. (Pareto dominane) Consider a maximization problem. Let x, ybe two deision vetors (solutions) from 
. Solution x is said to dominate y (alsowritten as x�y) if and only if the following onditions are ful�lled:2000 Mathematis Subjet Classi�ation. 68T05.1998 CR Categories and Desriptors. I.2.8 [Computing Methodologies℄: Arti�ial In-telligene { Problem Solving, Control Methods, and Searh.51



52 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(i) fi(x) � fi(y), 8i = 1; 2; : : : ; n.(ii) 9j 2 f1; 2; : : : ; ng : fj(x) > fj(y).De�nition. Let S � 
. All solutions whih are not dominated by any vetorof S are alled nondominated with respet to S.De�nition. Solutions that are nondominated with respet to the entire searhspae 
 are alled Pareto optimal solutions.Pareto optimal set may onsist from deision regions represented as:(i) a set of points;(ii) a set of disjoint intervals;(iii) a set of disjoint intervals and a set of points.Usual multiobjetive optimization algorithms may deal with the �rst ase. Theseond ase is solved in a quite arti�ial manner. Obtained solutions representpoints in a set of non-disjoint intervals. It is problemati to obtain a realistirepresentation of a union of ontinuous Pareto optimal regions using suh a disretepiture.When ontinuous deision regions are modeled by disrete solutions there isan information loss due to �delity loss between ontinuous and disrete represen-tations. Any multiobjetive optimization problem being omputationally solvedsu�ers this fate. Methods for �nding Pareto optimal set and Pareto optimal frontusing disrete solutions are omputationally very diÆult. Moreover the resultingsets are still only a disrete representation of their ontinuous ounterparts. How-ever the results may be aepted as the `best possible' at a given omputationalresolution.In this paper we propose a new evolutionary approah ombing a non-standardsolution representation and a multimodal optimization tehnique. In the proposedapproah a solution is either a losed interval or a point. The solutions in the �nalpopulation will give a more adequate representation of Pareto optimal set.To evolve population we use a multi-modal optimization metaheuristi alledGeneti Chromodynamis ([4℄). Eah individual from the population is seletedfor reombination or mutation. A mate for an interval (individual) is anotherinterval that intersets it. If an individual has a mate then they are ombined.Otherwise it is mutated. Mutation onsists from normal perturbation of intervalextremities.A new variation operator alled splitting operator is onsidered. By splittingan interval-solution ontaining a dominated point is splitted. In this way sev-eral Pareto regions existing in the same solution are separated. Performing thisoperation population size is inreased.Two population dereasing mehanisms are used: merging (if an interval iswholly ontained in other interval, the �rst one is remove from the population)



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 53and vanishing (very bad intervals are removed from the population). The algo-rithm stops when the optimal number of solutions is ahieved. The evolutionarymultiobjetive proedure proposed in this paper is alled Continuous Pareto Op-timal Set (CPOS).1. Solution representation and dominationIn this paper we onsider solutions are represented as intervals in the searhspae 
.Eah interval-solution k is enoded by an interval [xk ; yk℄ � R. Degeneratedintervals are allowed. Within degenerate ase yk = xk the solution is a point. Todeal with this representation a new domination onept needed.De�nition. An interval-solution [x; y℄ is said to be interval-nondominated ifand only if all points of that interval [x; y℄ are nondominated.Remark. If x = y this onept redued to the ordinary non-domination notion.De�nition. An interval-solution [x; y℄ is said to be total dominated if and onlyif eah point within [x; y℄ is dominated (by a point inside or outside the interval).Remarks.(i) If no ambiguity arise we will use nondominated (dominated) instead of in-terval-nondominated (interval-dominated).(ii) An interval-solution may ontain dominated as well as nondominates points.A ommon approah of multiobjetive optimization is to use a Pareto-rankingmehanism for �tness assignment (see for instane). In our interval-representationthis approah is diÆult to be used diretly due to the in�nite member of pointsto be tested in eah interval. For this reason we propose a new approah. The ideais to approximate the onept of total domination. In this respet we introduethe notion of non-domination degree.A non-domination onept may be introdued by onsidering some randompoints in the solution interval. The number Kxy of random points is proportionalto the interval size jx� yj. We may de�ne Kxy asKxy = F (jx� yj);where F is a linear funtion.Let Sxy be a set of random numbers within the solution-interval [x; y℄. The sizeof the sampling set Sxy is equal to Kxy:ard Sxy = Kxy:De�nition. Non-domination degree of the interval-solution [x; y℄ is the numberNxy de�ned as follows:



54 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(1) x 6= y then Nxy = N1 �N2Kxk :where N1 (N2) is the number of non-dominated (dominated) points inthe set Sxy and Kxy � 1.(2) x = y then Nxy = � 1 if x is non-dominated0 otherwiseDe�nition. Solution [x; y℄ is said to be t-nondominated if the inequalityNxy � tholds. In this inequality t is a threshold, 0 � t � 1.2. Fitness assignmentWithin our evolutionary multiobjetive optimization proedure �tness assign-ment is realized using non- domination degree.Let [x; y℄ be a solution. Fitness of the solution [x; y℄ is denoted eval([x; y℄) andeval([x; y℄) = Nxy:Remark. Proposed �tness assignment sheme may supply di�erent �tnessvalues for several sampling sets Sxy. This is not a major drawbak. As a matterof fat, we may onsider the statistial harater of �tness assignment proessas an advantage. It may results in an inreasing exibility of the orrespondingsearh proedure.3. Population model and searh operators within CPOS proedureFor preserving all useful solutions in the population CPOS proedure use amulti?modal optimization tehnique. Our experiments emphasize that Genetihromodynamis meta?heuristi proposed in [4℄ outperforms other standard meth-ods like nihing, restrited mating or island models. Geneti hromodynamis usesa variable?sized population and a loal mating sheme.The method allows a natural termination ondition. Eah solution in the lastpopulation supplies a Pareto optimal region ontributing to the piture of Paretooptimal set.Most of the multiobjetive optimization tehniques based on Pareto rankinguse a seond population that stores nondominated individuals. Members of se-ond population Pseond may be used to guide the searh proess. As dimensionof seondary population may dramatially inrease several mehanisms to redue



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 55Pseond size have been proposed. In [13℄ and [14℄ a population dereasing teh-nique based on a lustering proedure is onsidered. We may observe that preserv-ing only one individual from eah luster implies a loss of information. Presentapproah does not use a seondary population. This makes CPOS proedure morerobust and less ostly. It does not imply a loss of information about Pareto optimalset during the searh proess.3.1. Seletion for reombination. Only most �t individuals are allowed to re-ombine. Aording to our elitist sheme only 1?nondominated individuals arereombined. Eah 1-nondominated solution is onsidered for reombination. Foreah parent a restrited mating sheme is used to �nd the other parent. Let [x; y℄be an 1?nondominated solution. If the solution is the degenerate interval x = ythen its mate is seleted from the losed ball V (x;R), where R is the mating range.R represents a parameter of the proedure.The mate of the one non-degenerate interval [x; y℄ is seleted from all one non-degenerate solutions [u; v℄ suh that they are not disjoint and do not inlude eahother. This means that the following onditions are have to be ful�lled for reom-bining interval solutions [x; y℄ and [u; v℄:(i) [x; y℄ \ [u; v℄ 6= ;;(ii) [x; y℄ \ [u; v℄ 6= [x; y℄;(iii) [x; y℄ \ [u; v℄ 6= [u; v℄.The individuals that an be seleted as mates of [x; y℄ represent the breederset of [x; y℄. From the breeder set the seond parent is seleted using a ertainproedure like a tournament or proportional seletion shemes.3.2. Reombination operator. Reombining the individual [x; y℄ and its se-leted mate it results a unique o�spring. The �rst parent [x; y℄ will be replaed bythis o�spring.If the parents are nondegenerated solutions the o�spring is the union of theparent intervals.For degenerated ase the o�spring may be, for instane, the onvex ombinationof its parents.Aording to the proposed reombination operator the mate of a (non) degen-erated solution has to be (non) degenerated too.3.3. Mutation operator. An individual [x; y℄ is mutated if and only if no matean be seleted for it. This happens when the breeder set of [x; y℄ is empty.3.3.1. Mutating an interval. There are several ways of realizing mutation. Thesepossibilities are:a) mutate the left extremity of the interval;



56 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANb) mutate the right extremity of the interval;) mutate the both extremities of the interval.Remarks.(i) For extremities perturbation we use an additive normal perturbation withstandard deviation �, where � is a parameter of the method.(ii) Degenerated?solutions mutation is inluded in the general sheme.(iii) Mutation type (a, b or ) is randomly hosen.3.3.2. Degenerated interval-solutions. By mutation an interval an be redued toa point. This may happen in the following situations:(i) mutation of the right (left) interval extremity is less (greater) than the left(right) interval extremity;(ii) if by mutation the interval extremities oinide (with respet to a given om-putational resolution).3.4. Splitting operator. For segregation two disjoint Pareto regions that arerepresented by the same interval-solution we introdue a new type of variationoperator alled splitting operator.Splitting operator is applied to an interval-solution and produes two o�spring.This operator inreases population size.Applying reombination or mutation to all individuals in the urrent populationP (t) a new intermediary population P 1(t) is obtained. Splitting operator is appliedto the intermediate population P 1(t).To apply splitting operator an interval-solution [x; y℄ is randomly hosen fromP 1(t). A ut-point p, x < p < y, is randomly hosen. If p is a dominated pointthen [x; y℄ may inlude disjoint Pareto regions. For separating these regions weapply the splitting operator.The o�spring resulted by splitting the solution [x; y℄ are [x; p℄ and [p; y℄. Wemay thus write split[x; y℄ = f[x; p℄; [p; y℄g:Splitting operator is not applied if the randomly generated point p is nondom-inated. 4. Population dynamis within CPOS algorithmTo detet the orret number of Pareto optimal regions it is neessary to haveonly one solution per Pareto optimal region. Using Geneti Chromodynamistehnique population size dereases during the searh proess suh that eventuallyequals the number of optimal solutions.Several population dereasing mehanisms may be used. In our implementa-tion we onsider two omplementary shemes. Two new operators implement the



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 57onsidered population dereasing mehanisms. The proposed operators are alledmerging and vanishing. They at only on nondegenerated solutions.(i) Merging operator. If an 1-nondominated solution T1 is ompletely in-luded in another 1- nondominated solution T2, then the solution are merged.The solution T1 is disarded.(ii) Vanishing operator. If a solution is (-1) nondominated then the solutionis disarded. This operation is very useful beause performing split mutationthe number of bad solutions may grow onsiderably.These veri�ations needed by the operators are done when a new solution isinluded in the population. 5. Stop onditionGeneti hromodynamis deals with a very natural termination ondition. A-ording to this stop ondition the hromosome population remains unhanged fora �xed number of generations (given by the parameter MaxIteration in our algo-rithm) then the searh proess stops.6. CPOS algorithmContinuos Pareto optimal set (CPOS) algorithm proposed in this paper maybe outlined as below:CPOS AlgorithmbeginPopulation initialization:generate randomly a interval population (P (0));t = 0;Evolving intervals:repeatfor eah individual  in P (t)if Has Mate() f has a possible mategthenselet b { a mate for ; fselet mate using proportional seletiongPerform reombination:z =Reombination(b; );else Perform mutation of individual :z =Mutate();endifadd z to intermediate population P 0(t);endforApply merging operator on individuals in intermediate population P 0(t):



58 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANP 00(t) =merge(P 0(t));Apply vanishing operator on individual on P 00(t):P 000(t) =vanish(P 00(t));P (t+ 1) = P 000(t); fnext generationgt = t+ 1;until MaxIterations is reahedend.Remark. Algorithm stops if there is no population modi�ation for a numberof MaxIterations suessive iterations.7. Numerial experimentsSeveral numerial experiments using CPOS algorithm have been performed.For all examples the deteted solutions gave orret representations of Pareto setwith an aeptable auray degree. Some partiular examples are given below.Example 1. Consider the funtions f1; f2 : [�4; 6℄! R de�ned asf1(x) = x2;f2(x) = (x� 2)2:Consider the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�4; 6℄Pareto optimal set for this multiobjetive problem is the interval [0, 2℄.The initial population is depited in Figure 1. For a better view the hromo-somes are drawn one above another.For the value � = 0:1of the standard deviation parameter solutions obtained after 10 generations aredepited in Figure 2.The population obtained after 24 generations is depited in Figure 3.The �nal population, obtained after 40 generations, is depited in Figure 4.Final population obtained after 40 generations ontains only one individual.This individual is: s = [0:01; 1:98℄;and represent a ontinuous Pareto optimal solution.
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Figure 1. Initial population

Figure 2. Population after 10 generationsThe obtained solution auray may be inreased, if neessary, by dereasingthe parameter standard deviation of normal perturbation. Of ourse the numberof iterations needed for onvergene inreases this ase.
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Figure 3. The population obtained after 24 generations

Figure 4. Final population obtained after 40 generationsFor example, if we onsider the value



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 61� = 0:01;the solution s = [0:004; 1:997℄;is obtained after 60 iterations.Example 2. Consider the funtions f1; f2 : [�10; 13℄! R de�ned asf1(x) = sin(x);f2(x) = sin(x+ 0:7):and the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�10; 13℄The initial population is depited in Figure 5.

Figure 5. Initial populationFor the value � = 0:1solutions obtained after 5 generations are depited in Figure 6.We may observe four distint, well-separated, subpopulations are already seg-regated after 5 generations. Therefore useful subpopulations are stabilized very



62 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANearly. Let us remark that, for the sake of larity, segments in the same lass areseparately represented. In reality they partially overlap.

Figure 6. The population after 5 generationsThe population after 10 generations is depited in Figure 7. Subpopulationsare well individualized and nested.The �nal population, obtained after 120 generations, is depited in Figure 8.Solutions in the �nal population are:s1 = [�8:47;�7:86℄;s2 = [�2:26;�1:56℄;s3 = [4:01; 4:69℄;s4 = [10:29; 10:99℄:Example 3. Consider the funtions f1; f2 : [�9; 9℄! R de�ned asf1(x) = x2;f2(x) = 9�p81� x2:and the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�9; 9℄The initial population is depited in Figure 9.
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Figure 7. Population after 10 generationsConsider the standard deviation parameter value� = 0:1;In this ase population obtained after 3 generations is depited in Figure 10.It is very interesting to observe that very early population stabilizes to a singleindividual. This individual will be improved at subsequent iterations.The population after 7 generations is depited in Figure 11.The �nal population, obtained after 120 generations, is depited in Figure 12.Final population obtained at onvergene after 120 generations ontains onlyone individual represented as degenerated interval (i.e. a point)s = �0:001:Therefore deteted Pareto optimal set onsists from a single point:Pdetet = f�0:001g:We may remark that deteted Pareto set represents a good estimation of theorret Pareto optimal set P = f0g:Auray of this estimation an be easy improved by using smaller values ofthe parameter ? (standard deviation). In this ase a larger number of generationsare needed for onvergene.
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Figure 8. Four solutions within the �nal population (obtainedafter 120 generations)

Figure 9. Initial population
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Figure 10. Population after 3 generations

Figure 11. Population after 7 generationsFor instane, if we put � = 0:01;
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Figure 12. Final population obtained after 120 generationsthe obtained solution is s = 0:0008:8. Conluding remarks and further researhesA new evolutionary tehnique for solving multiobjetive optimization problemsinvolving one variable funtions is proposed. A new solution representation is used.Standard searh (variation) operators are modi�ed aordingly. Three new searhoperators are introdued. The proposed evolutionary multiobjetive optimizationtehnique does not use a seondary population of non-dominated solutions.Proposed multiobjetive optimization method uses a new evolutionary meta-heuristi alled Geneti hromodynamis for maintaining multiple optimal solu-tions on the alulated Pareto set during the searh proess.All known multiobjetive optimization tehniques supply a disrete piture ofPareto optimal solutions and of Pareto frontier. But Pareto optimal set is usuallynon-disrete. Finding Pareto optimal set and Pareto optimal frontiers using adisrete representation is not a very easy omputationally task (see [11℄).CPOS tehnique supplies diretly a ontinuous piture of Pareto optimal set andof Pareto frontier. This makes our approah very appealing for solving problemswhere very aurate solutions detetion is needed.



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 67Another advantage is that CPOS tehnique has a natural termination onditionderived from the nature of evolutionary method used for preserving populationdiversity.Experimental results suggest that CPOS algorithm supplies orret solutions ina very few iterations.Further researh will onentrate on the possibilities to extend the proposedtehnique to deal with multidimensional domains.Another diretion is to exploit the solution representation as intervals for solvinginequality systems and other problems for whih this representation is natural.Referenes[1℄ Coello, C. A. C, A omprehensive survey of evolutionary- based multiobjetive optimizationtehniques, Knowledge and Information Systems, 1(3), 1999, 269-308.[2℄ Deb, K., Multiobjetive evolutionary algorithms: problem diÆulties and onstrution oftest problems, Evolutionary Computation, 7, 1999, 205-230.[3℄ Dumitresu, D, Lazzerini, B, Jain, L., C., Dumitresu, A., Evolutionary Computation, CRCPress, Boa Raton, 2000.[4℄ Dumitresu, D., Evolutionary Chromodynami, Studia Univ. Babe�s-Bolyai, Ser. Informat-ia, 2000.[5℄ Fonsea, C.M., Fleming, P.J., An overview of evolutionary algorithms in multiobjetiveoptimization, Evolutionary Computation, 3, 1995, 1-16.[6℄ Goldberg, D.E., Evolutionary Algorithms in Searh, Optimization and Mahine Learning,Addison Wesley, Reading, 1989.[7℄ Horn, J., Nafpliotis, N., Multiobjetive optimization using nihed Pareto evolutionary algo-rithms, IlliGAL Report 93005, Illionois Evolutionary Algorithms Laboratory, University ofIllinois, Urbana Champaingn.[8℄ Horn, J., Nafpliotis, N., Goldberg D. E. A nihe Pareto evolutionary algorithm for multiob-jetive optimization, Pro. 1st IEEE Conf. Evolutionary Computation, Pisataway, vol 1,1994, 82-87.[9℄ Sha�er, J.D., Multiple objetive optimization with vetor evaluated evolutionary algo-rithms, Evolutionary Algorithms and Their Appliations, J.J. Grefenstette (Ed.), Erlbaum,Hillsdale, NJ, 1985, 93-100.[10℄ Srinivas, N., Deb, K., Multiobjetive funtion optimization using nondominated sortingevolutionary algorithms, Evolutionary Computing, 2, 1994, 221-248.[11℄ Veldhuizen, D.A.V., Multiobjetive Evolutionary Algorithms: Classi�ation, Analyses andNew Innovations, Ph.D Thesis, 1999, Graduated Shool of Engineering of the Air ForeInstitute of Tehnology, Air University.[12℄ Veldhuizen, D.A.V., Lamont, G.B., Multiobjetive evolutionary algorithms: analyzing thestate-of-the-art, Evolutionary Computation, 8, 2000, 125-147.[13℄ Zitzler, E., Thiele, L, Multiobjetive evolutionary algorithms: A omparative study and thestrength Pareto approah, IEEE Trans on Evolutionary Computation, 3 (1999), 257-271.[14℄ Zitzler, E., Evolutionary Algorithms for Multiobjetive Optimization: Methods and Ap-pliations, Dotoral Dissertation, 1999, Swiss Federal Institut of Tehnology Zurih,Tik-Shriftenreihe nr. 30.
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