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t. Several evolutionary algorithms for solving multiobje
tive opti-mization problems have been proposed ([2, 5, 6, 7, 8, 9, 10, 12, 13℄, see alsothe reviews [1, 11, 14℄). All algorithms aim to give a dis
rete pi
ture of thePareto optimal set (and of the 
orresponding Pareto frontier). But Paretooptimal set is usually a 
ontinuous region in the sear
h spa
e. It follows thata 
ontinuous region is represented by a dis
rete pi
ture. When 
ontinuosde
ision regions are represented by dis
rete solutions there is an informationloss. In this paper we propose a new evolutionary approa
h 
ombing a newsolution representation, new variation operators and a multimodal optimiza-tion te
hnique. In the proposed approa
h 
ontinuous de
ision regions may bedete
ted. A solution is either a 
losed interval or a point. The solutions inthe �nal population will give a realisti
 representation of Pareto optimal set.Ea
h solution in this population 
orresponds to a de
ision region of Pareto set.Proposed te
hnique does not use a se
ondary population of non-dominatedalready founded.Keywords: evolutionary algorithms, multiobje
tive optimization, Pa-reto optimal set, Pareto frontier, Geneti
 
hromodynami
s.Let f1; f2; : : : ; fN be N obje
tive fun
tions.fi : 
! R;
 � R:Consider the multiobje
tive optimization problem:� optimize f(x) = (f1(x); : : : ; fN (x))subje
t to x 2 
The key 
on
ept in determining solutions of multiobje
tive problems is that ofPareto optimality.De�nition. (Pareto dominan
e) Consider a maximization problem. Let x, ybe two de
ision ve
tors (solutions) from 
. Solution x is said to dominate y (alsowritten as x�y) if and only if the following 
onditions are ful�lled:2000 Mathemati
s Subje
t Classi�
ation. 68T05.1998 CR Categories and Des
riptors. I.2.8 [Computing Methodologies℄: Arti�
ial In-telligen
e { Problem Solving, Control Methods, and Sear
h.51



52 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(i) fi(x) � fi(y), 8i = 1; 2; : : : ; n.(ii) 9j 2 f1; 2; : : : ; ng : fj(x) > fj(y).De�nition. Let S � 
. All solutions whi
h are not dominated by any ve
torof S are 
alled nondominated with respe
t to S.De�nition. Solutions that are nondominated with respe
t to the entire sear
hspa
e 
 are 
alled Pareto optimal solutions.Pareto optimal set may 
onsist from de
ision regions represented as:(i) a set of points;(ii) a set of disjoint intervals;(iii) a set of disjoint intervals and a set of points.Usual multiobje
tive optimization algorithms may deal with the �rst 
ase. These
ond 
ase is solved in a quite arti�
ial manner. Obtained solutions representpoints in a set of non-disjoint intervals. It is problemati
 to obtain a realisti
representation of a union of 
ontinuous Pareto optimal regions using su
h a dis
retepi
ture.When 
ontinuous de
ision regions are modeled by dis
rete solutions there isan information loss due to �delity loss between 
ontinuous and dis
rete represen-tations. Any multiobje
tive optimization problem being 
omputationally solvedsu�ers this fate. Methods for �nding Pareto optimal set and Pareto optimal frontusing dis
rete solutions are 
omputationally very diÆ
ult. Moreover the resultingsets are still only a dis
rete representation of their 
ontinuous 
ounterparts. How-ever the results may be a

epted as the `best possible' at a given 
omputationalresolution.In this paper we propose a new evolutionary approa
h 
ombing a non-standardsolution representation and a multimodal optimization te
hnique. In the proposedapproa
h a solution is either a 
losed interval or a point. The solutions in the �nalpopulation will give a more adequate representation of Pareto optimal set.To evolve population we use a multi-modal optimization metaheuristi
 
alledGeneti
 Chromodynami
s ([4℄). Ea
h individual from the population is sele
tedfor re
ombination or mutation. A mate for an interval (individual) is anotherinterval that interse
ts it. If an individual has a mate then they are 
ombined.Otherwise it is mutated. Mutation 
onsists from normal perturbation of intervalextremities.A new variation operator 
alled splitting operator is 
onsidered. By splittingan interval-solution 
ontaining a dominated point is splitted. In this way sev-eral Pareto regions existing in the same solution are separated. Performing thisoperation population size is in
reased.Two population de
reasing me
hanisms are used: merging (if an interval iswholly 
ontained in other interval, the �rst one is remove from the population)



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 53and vanishing (very bad intervals are removed from the population). The algo-rithm stops when the optimal number of solutions is a
hieved. The evolutionarymultiobje
tive pro
edure proposed in this paper is 
alled Continuous Pareto Op-timal Set (CPOS).1. Solution representation and dominationIn this paper we 
onsider solutions are represented as intervals in the sear
hspa
e 
.Ea
h interval-solution k is en
oded by an interval [xk ; yk℄ � R. Degeneratedintervals are allowed. Within degenerate 
ase yk = xk the solution is a point. Todeal with this representation a new domination 
on
ept needed.De�nition. An interval-solution [x; y℄ is said to be interval-nondominated ifand only if all points of that interval [x; y℄ are nondominated.Remark. If x = y this 
on
ept redu
ed to the ordinary non-domination notion.De�nition. An interval-solution [x; y℄ is said to be total dominated if and onlyif ea
h point within [x; y℄ is dominated (by a point inside or outside the interval).Remarks.(i) If no ambiguity arise we will use nondominated (dominated) instead of in-terval-nondominated (interval-dominated).(ii) An interval-solution may 
ontain dominated as well as nondominates points.A 
ommon approa
h of multiobje
tive optimization is to use a Pareto-rankingme
hanism for �tness assignment (see for instan
e). In our interval-representationthis approa
h is diÆ
ult to be used dire
tly due to the in�nite member of pointsto be tested in ea
h interval. For this reason we propose a new approa
h. The ideais to approximate the 
on
ept of total domination. In this respe
t we introdu
ethe notion of non-domination degree.A non-domination 
on
ept may be introdu
ed by 
onsidering some randompoints in the solution interval. The number Kxy of random points is proportionalto the interval size jx� yj. We may de�ne Kxy asKxy = F (jx� yj);where F is a linear fun
tion.Let Sxy be a set of random numbers within the solution-interval [x; y℄. The sizeof the sampling set Sxy is equal to Kxy:
ard Sxy = Kxy:De�nition. Non-domination degree of the interval-solution [x; y℄ is the numberNxy de�ned as follows:



54 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(1) x 6= y then Nxy = N1 �N2Kxk :where N1 (N2) is the number of non-dominated (dominated) points inthe set Sxy and Kxy � 1.(2) x = y then Nxy = � 1 if x is non-dominated0 otherwiseDe�nition. Solution [x; y℄ is said to be t-nondominated if the inequalityNxy � tholds. In this inequality t is a threshold, 0 � t � 1.2. Fitness assignmentWithin our evolutionary multiobje
tive optimization pro
edure �tness assign-ment is realized using non- domination degree.Let [x; y℄ be a solution. Fitness of the solution [x; y℄ is denoted eval([x; y℄) andeval([x; y℄) = Nxy:Remark. Proposed �tness assignment s
heme may supply di�erent �tnessvalues for several sampling sets Sxy. This is not a major drawba
k. As a matterof fa
t, we may 
onsider the statisti
al 
hara
ter of �tness assignment pro
essas an advantage. It may results in an in
reasing 
exibility of the 
orrespondingsear
h pro
edure.3. Population model and sear
h operators within CPOS pro
edureFor preserving all useful solutions in the population CPOS pro
edure use amulti?modal optimization te
hnique. Our experiments emphasize that Geneti

hromodynami
s meta?heuristi
 proposed in [4℄ outperforms other standard meth-ods like ni
hing, restri
ted mating or island models. Geneti
 
hromodynami
s usesa variable?sized population and a lo
al mating s
heme.The method allows a natural termination 
ondition. Ea
h solution in the lastpopulation supplies a Pareto optimal region 
ontributing to the pi
ture of Paretooptimal set.Most of the multiobje
tive optimization te
hniques based on Pareto rankinguse a se
ond population that stores nondominated individuals. Members of se
-ond population Pse
ond may be used to guide the sear
h pro
ess. As dimensionof se
ondary population may dramati
ally in
rease several me
hanisms to redu
e
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ond size have been proposed. In [13℄ and [14℄ a population de
reasing te
h-nique based on a 
lustering pro
edure is 
onsidered. We may observe that preserv-ing only one individual from ea
h 
luster implies a loss of information. Presentapproa
h does not use a se
ondary population. This makes CPOS pro
edure morerobust and less 
ostly. It does not imply a loss of information about Pareto optimalset during the sear
h pro
ess.3.1. Sele
tion for re
ombination. Only most �t individuals are allowed to re-
ombine. A

ording to our elitist s
heme only 1?nondominated individuals arere
ombined. Ea
h 1-nondominated solution is 
onsidered for re
ombination. Forea
h parent a restri
ted mating s
heme is used to �nd the other parent. Let [x; y℄be an 1?nondominated solution. If the solution is the degenerate interval x = ythen its mate is sele
ted from the 
losed ball V (x;R), where R is the mating range.R represents a parameter of the pro
edure.The mate of the one non-degenerate interval [x; y℄ is sele
ted from all one non-degenerate solutions [u; v℄ su
h that they are not disjoint and do not in
lude ea
hother. This means that the following 
onditions are have to be ful�lled for re
om-bining interval solutions [x; y℄ and [u; v℄:(i) [x; y℄ \ [u; v℄ 6= ;;(ii) [x; y℄ \ [u; v℄ 6= [x; y℄;(iii) [x; y℄ \ [u; v℄ 6= [u; v℄.The individuals that 
an be sele
ted as mates of [x; y℄ represent the breederset of [x; y℄. From the breeder set the se
ond parent is sele
ted using a 
ertainpro
edure like a tournament or proportional sele
tion s
hemes.3.2. Re
ombination operator. Re
ombining the individual [x; y℄ and its se-le
ted mate it results a unique o�spring. The �rst parent [x; y℄ will be repla
ed bythis o�spring.If the parents are nondegenerated solutions the o�spring is the union of theparent intervals.For degenerated 
ase the o�spring may be, for instan
e, the 
onvex 
ombinationof its parents.A

ording to the proposed re
ombination operator the mate of a (non) degen-erated solution has to be (non) degenerated too.3.3. Mutation operator. An individual [x; y℄ is mutated if and only if no mate
an be sele
ted for it. This happens when the breeder set of [x; y℄ is empty.3.3.1. Mutating an interval. There are several ways of realizing mutation. Thesepossibilities are:a) mutate the left extremity of the interval;



56 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANb) mutate the right extremity of the interval;
) mutate the both extremities of the interval.Remarks.(i) For extremities perturbation we use an additive normal perturbation withstandard deviation �, where � is a parameter of the method.(ii) Degenerated?solutions mutation is in
luded in the general s
heme.(iii) Mutation type (a, b or 
) is randomly 
hosen.3.3.2. Degenerated interval-solutions. By mutation an interval 
an be redu
ed toa point. This may happen in the following situations:(i) mutation of the right (left) interval extremity is less (greater) than the left(right) interval extremity;(ii) if by mutation the interval extremities 
oin
ide (with respe
t to a given 
om-putational resolution).3.4. Splitting operator. For segregation two disjoint Pareto regions that arerepresented by the same interval-solution we introdu
e a new type of variationoperator 
alled splitting operator.Splitting operator is applied to an interval-solution and produ
es two o�spring.This operator in
reases population size.Applying re
ombination or mutation to all individuals in the 
urrent populationP (t) a new intermediary population P 1(t) is obtained. Splitting operator is appliedto the intermediate population P 1(t).To apply splitting operator an interval-solution [x; y℄ is randomly 
hosen fromP 1(t). A 
ut-point p, x < p < y, is randomly 
hosen. If p is a dominated pointthen [x; y℄ may in
lude disjoint Pareto regions. For separating these regions weapply the splitting operator.The o�spring resulted by splitting the solution [x; y℄ are [x; p℄ and [p; y℄. Wemay thus write split[x; y℄ = f[x; p℄; [p; y℄g:Splitting operator is not applied if the randomly generated point p is nondom-inated. 4. Population dynami
s within CPOS algorithmTo dete
t the 
orre
t number of Pareto optimal regions it is ne
essary to haveonly one solution per Pareto optimal region. Using Geneti
 Chromodynami
ste
hnique population size de
reases during the sear
h pro
ess su
h that eventuallyequals the number of optimal solutions.Several population de
reasing me
hanisms may be used. In our implementa-tion we 
onsider two 
omplementary s
hemes. Two new operators implement the
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onsidered population de
reasing me
hanisms. The proposed operators are 
alledmerging and vanishing. They a
t only on nondegenerated solutions.(i) Merging operator. If an 1-nondominated solution T1 is 
ompletely in-
luded in another 1- nondominated solution T2, then the solution are merged.The solution T1 is dis
arded.(ii) Vanishing operator. If a solution is (-1) nondominated then the solutionis dis
arded. This operation is very useful be
ause performing split mutationthe number of bad solutions may grow 
onsiderably.These veri�
ations needed by the operators are done when a new solution isin
luded in the population. 5. Stop 
onditionGeneti
 
hromodynami
s deals with a very natural termination 
ondition. A
-
ording to this stop 
ondition the 
hromosome population remains un
hanged fora �xed number of generations (given by the parameter MaxIteration in our algo-rithm) then the sear
h pro
ess stops.6. CPOS algorithmContinuos Pareto optimal set (CPOS) algorithm proposed in this paper maybe outlined as below:CPOS AlgorithmbeginPopulation initialization:generate randomly a interval population (P (0));t = 0;Evolving intervals:repeatfor ea
h individual 
 in P (t)if Has Mate(
) f
 has a possible mategthensele
t b { a mate for 
; fsele
t mate using proportional sele
tiongPerform re
ombination:z =Re
ombination(b; 
);else Perform mutation of individual 
:z =Mutate(
);endifadd z to intermediate population P 0(t);endforApply merging operator on individuals in intermediate population P 0(t):



58 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANP 00(t) =merge(P 0(t));Apply vanishing operator on individual on P 00(t):P 000(t) =vanish(P 00(t));P (t+ 1) = P 000(t); fnext generationgt = t+ 1;until MaxIterations is rea
hedend.Remark. Algorithm stops if there is no population modi�
ation for a numberof MaxIterations su

essive iterations.7. Numeri
al experimentsSeveral numeri
al experiments using CPOS algorithm have been performed.For all examples the dete
ted solutions gave 
orre
t representations of Pareto setwith an a

eptable a

ura
y degree. Some parti
ular examples are given below.Example 1. Consider the fun
tions f1; f2 : [�4; 6℄! R de�ned asf1(x) = x2;f2(x) = (x� 2)2:Consider the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�4; 6℄Pareto optimal set for this multiobje
tive problem is the interval [0, 2℄.The initial population is depi
ted in Figure 1. For a better view the 
hromo-somes are drawn one above another.For the value � = 0:1of the standard deviation parameter solutions obtained after 10 generations aredepi
ted in Figure 2.The population obtained after 24 generations is depi
ted in Figure 3.The �nal population, obtained after 40 generations, is depi
ted in Figure 4.Final population obtained after 40 generations 
ontains only one individual.This individual is: s = [0:01; 1:98℄;and represent a 
ontinuous Pareto optimal solution.
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Figure 1. Initial population

Figure 2. Population after 10 generationsThe obtained solution a

ura
y may be in
reased, if ne
essary, by de
reasingthe parameter standard deviation of normal perturbation. Of 
ourse the numberof iterations needed for 
onvergen
e in
reases this 
ase.
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Figure 3. The population obtained after 24 generations

Figure 4. Final population obtained after 40 generationsFor example, if we 
onsider the value



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 61� = 0:01;the solution s = [0:004; 1:997℄;is obtained after 60 iterations.Example 2. Consider the fun
tions f1; f2 : [�10; 13℄! R de�ned asf1(x) = sin(x);f2(x) = sin(x+ 0:7):and the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�10; 13℄The initial population is depi
ted in Figure 5.

Figure 5. Initial populationFor the value � = 0:1solutions obtained after 5 generations are depi
ted in Figure 6.We may observe four distin
t, well-separated, subpopulations are already seg-regated after 5 generations. Therefore useful subpopulations are stabilized very
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larity, segments in the same 
lass areseparately represented. In reality they partially overlap.

Figure 6. The population after 5 generationsThe population after 10 generations is depi
ted in Figure 7. Subpopulationsare well individualized and nested.The �nal population, obtained after 120 generations, is depi
ted in Figure 8.Solutions in the �nal population are:s1 = [�8:47;�7:86℄;s2 = [�2:26;�1:56℄;s3 = [4:01; 4:69℄;s4 = [10:29; 10:99℄:Example 3. Consider the fun
tions f1; f2 : [�9; 9℄! R de�ned asf1(x) = x2;f2(x) = 9�p81� x2:and the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�9; 9℄The initial population is depi
ted in Figure 9.
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Figure 7. Population after 10 generationsConsider the standard deviation parameter value� = 0:1;In this 
ase population obtained after 3 generations is depi
ted in Figure 10.It is very interesting to observe that very early population stabilizes to a singleindividual. This individual will be improved at subsequent iterations.The population after 7 generations is depi
ted in Figure 11.The �nal population, obtained after 120 generations, is depi
ted in Figure 12.Final population obtained at 
onvergen
e after 120 generations 
ontains onlyone individual represented as degenerated interval (i.e. a point)s = �0:001:Therefore dete
ted Pareto optimal set 
onsists from a single point:Pdete
t = f�0:001g:We may remark that dete
ted Pareto set represents a good estimation of the
orre
t Pareto optimal set P
 = f0g:A

ura
y of this estimation 
an be easy improved by using smaller values ofthe parameter ? (standard deviation). In this 
ase a larger number of generationsare needed for 
onvergen
e.
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Figure 8. Four solutions within the �nal population (obtainedafter 120 generations)

Figure 9. Initial population
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Figure 10. Population after 3 generations

Figure 11. Population after 7 generationsFor instan
e, if we put � = 0:01;
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Figure 12. Final population obtained after 120 generationsthe obtained solution is s = 0:0008:8. Con
luding remarks and further resear
hesA new evolutionary te
hnique for solving multiobje
tive optimization problemsinvolving one variable fun
tions is proposed. A new solution representation is used.Standard sear
h (variation) operators are modi�ed a

ordingly. Three new sear
hoperators are introdu
ed. The proposed evolutionary multiobje
tive optimizationte
hnique does not use a se
ondary population of non-dominated solutions.Proposed multiobje
tive optimization method uses a new evolutionary meta-heuristi
 
alled Geneti
 
hromodynami
s for maintaining multiple optimal solu-tions on the 
al
ulated Pareto set during the sear
h pro
ess.All known multiobje
tive optimization te
hniques supply a dis
rete pi
ture ofPareto optimal solutions and of Pareto frontier. But Pareto optimal set is usuallynon-dis
rete. Finding Pareto optimal set and Pareto optimal frontiers using adis
rete representation is not a very easy 
omputationally task (see [11℄).CPOS te
hnique supplies dire
tly a 
ontinuous pi
ture of Pareto optimal set andof Pareto frontier. This makes our approa
h very appealing for solving problemswhere very a

urate solutions dete
tion is needed.
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hnique has a natural termination 
onditionderived from the nature of evolutionary method used for preserving populationdiversity.Experimental results suggest that CPOS algorithm supplies 
orre
t solutions ina very few iterations.Further resear
h will 
on
entrate on the possibilities to extend the proposedte
hnique to deal with multidimensional domains.Another dire
tion is to exploit the solution representation as intervals for solvinginequality systems and other problems for whi
h this representation is natural.Referen
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