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A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE
OPTIMIZATION

D. DUMITRESCU, CRINA GROSAN, AND MIHAI OLTEAN

ABSTRACT. Several evolutionary algorithms for solving multiobjective opti-
mization problems have been proposed ([2, 5, 6, 7, 8, 9, 10, 12, 13], see also
the reviews [1, 11, 14]). All algorithms aim to give a discrete picture of the
Pareto optimal set (and of the corresponding Pareto frontier). But Pareto
optimal set is usually a continuous region in the search space. It follows that
a continuous region is represented by a discrete picture. When continuos
decision regions are represented by discrete solutions there is an information
loss. In this paper we propose a new evolutionary approach combing a new
solution representation, new variation operators and a multimodal optimiza-
tion technique. In the proposed approach continuous decision regions may be
detected. A solution is either a closed interval or a point. The solutions in
the final population will give a realistic representation of Pareto optimal set.
Each solution in this population corresponds to a decision region of Pareto set.
Proposed technique does not use a secondary population of non-dominated
already founded.

Keywords: evolutionary algorithms, multiobjective optimization, Pa-
reto optimal set, Pareto frontier, Genetic chromodynamics.

Let fi, f2,..., fnv be N objective functions.
fi: Q->RQCR

Consider the multiobjective optimization problem:

{ optimize f(z) = (fi(z),..., fn(z))
subject to z € Q

The key concept in determining solutions of multiobjective problems is that of
Pareto optimality.

Definition. (Pareto dominance) Consider a maximization problem. Let z, y
be two decision vectors (solutions) from Q. Solution z is said to dominate y (also
written as z¢y) if and only if the following conditions are fulfilled:
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(1) fz(w) Z fi(y)v Vi = 1a 2? LD
(i) Fj e {1,2,...,n}: fi(x) > fi(y).
Definition. Let S C €. All solutions which are not dominated by any vector
of S are called nondominated with respect to S.
Definition. Solutions that are nondominated with respect to the entire search
space (2 are called Pareto optimal solutions.
Pareto optimal set may consist from decision regions represented as:

(i) a set of points;
(ii) a set of disjoint intervals;
(iii) a set of disjoint intervals and a set of points.

Usual multiobjective optimization algorithms may deal with the first case. The
second case is solved in a quite artificial manner. Obtained solutions represent
points in a set of non-disjoint intervals. It is problematic to obtain a realistic
representation of a union of continuous Pareto optimal regions using such a discrete
picture.

When continuous decision regions are modeled by discrete solutions there is
an information loss due to fidelity loss between continuous and discrete represen-
tations. Any multiobjective optimization problem being computationally solved
suffers this fate. Methods for finding Pareto optimal set and Pareto optimal front
using discrete solutions are computationally very difficult. Moreover the resulting
sets are still only a discrete representation of their continuous counterparts. How-
ever the results may be accepted as the ‘best possible’ at a given computational
resolution.

In this paper we propose a new evolutionary approach combing a non-standard
solution representation and a multimodal optimization technique. In the proposed
approach a solution is either a closed interval or a point. The solutions in the final
population will give a more adequate representation of Pareto optimal set.

To evolve population we use a multi-modal optimization metaheuristic called
Genetic Chromodynamics ([4]). Each individual from the population is selected
for recombination or mutation. A mate for an interval (individual) is another
interval that intersects it. If an individual has a mate then they are combined.
Otherwise it is mutated. Mutation consists from normal perturbation of interval
extremities.

A new variation operator called splitting operator is considered. By splitting
an interval-solution containing a dominated point is splitted. In this way sev-
eral Pareto regions existing in the same solution are separated. Performing this
operation population size is increased.

Two population decreasing mechanisms are used: merging (if an interval is
wholly contained in other interval, the first one is remove from the population)
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and vanishing (very bad intervals are removed from the population). The algo-
rithm stops when the optimal number of solutions is achieved. The evolutionary
multiobjective procedure proposed in this paper is called Continuous Pareto Op-

timal Set (CPOS).

1. SOLUTION REPRESENTATION AND DOMINATION

In this paper we consider solutions are represented as intervals in the search
space (2.

Each interval-solution k is encoded by an interval [zj,yr] C R. Degenerated
intervals are allowed. Within degenerate case y = x the solution is a point. To
deal with this representation a new domination concept needed.

Definition. An interval-solution [z,y] is said to be interval-nondominated if
and only if all points of that interval [z, y] are nondominated.

Remark. If x = y this concept reduced to the ordinary non-domination notion.

Definition. An interval-solution [z, y] is said to be total dominated if and only
if each point within [z,y] is dominated (by a point inside or outside the interval).

Remarks.

(i) If no ambiguity arise we will use nondominated (dominated) instead of in-
terval-nondominated (interval-dominated).
(ii) An interval-solution may contain dominated as well as nondominates points.

A common approach of multiobjective optimization is to use a Pareto-ranking
mechanism for fitness assignment (see for instance). In our interval-representation
this approach is difficult to be used directly due to the infinite member of points
to be tested in each interval. For this reason we propose a new approach. The idea
is to approximate the concept of total domination. In this respect we introduce
the notion of non-domination degree.

A non-domination concept may be introduced by considering some random
points in the solution interval. The number Kxy of random points is proportional
to the interval size |z — y|. We may define K, as

Kﬂﬁy = F(|:L' - y|)a

where F' is a linear function.
Let Sz, be a set of random numbers within the solution-interval [z, y]. The size
of the sampling set S, is equal to Kyy:

card Syy = Kgy.

Definition. Non-domination degree of the interval-solution [z, y] is the number
N,y defined as follows:
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(1) x # y then
N1 — Ny
sz ’
where N; (Nz) is the number of non-dominated (dominated) points in
the set Sz, and Ky > 1.
(2) =z =y then

Ngy =

N = 1 if z is non-dominated
71 0 otherwise

Definition. Solution [z,y] is said to be t-nondominated if the inequality
Ny >t
holds. In this inequality ¢ is a threshold, 0 < ¢ < 1.

2. FITNESS ASSIGNMENT

Within our evolutionary multiobjective optimization procedure fitness assign-
ment is realized using non- domination degree.
Let [z,y] be a solution. Fitness of the solution [z, y] is denoted eval([z,y]) and

eval([z,y]) = Nay.

Remark. Proposed fitness assignment scheme may supply different fitness
values for several sampling sets S,,. This is not a major drawback. As a matter
of fact, we may consider the statistical character of fitness assignment process
as an advantage. It may results in an increasing flexibility of the corresponding
search procedure.

3. POPULATION MODEL AND SEARCH OPERATORS WITHIN CPOS PROCEDURE

For preserving all useful solutions in the population CPOS procedure use a
multi?modal optimization technique. Our experiments emphasize that Genetic
chromodynamics meta?heuristic proposed in [4] outperforms other standard meth-
ods like niching, restricted mating or island models. Genetic chromodynamics uses
a variable?sized population and a local mating scheme.

The method allows a natural termination condition. Each solution in the last
population supplies a Pareto optimal region contributing to the picture of Pareto
optimal set.

Most of the multiobjective optimization techniques based on Pareto ranking
use a second population that stores nondominated individuals. Members of sec-
ond population P, 4 may be used to guide the search process. As dimension

secon
of secondary population may dramatically increase several mechanisms to reduce
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Pyecond 8ize have been proposed. In [13] and [14] a population decreasing tech-
nique based on a clustering procedure is considered. We may observe that preserv-
ing only one individual from each cluster implies a loss of information. Present
approach does not use a secondary population. This makes CPOS procedure more
robust and less costly. It does not imply a loss of information about Pareto optimal

set during the search process.

3.1. Selection for recombination. Only most fit individuals are allowed to re-
combine. According to our elitist scheme only 1?nondominated individuals are
recombined. Each 1-nondominated solution is considered for recombination. For
each parent a restricted mating scheme is used to find the other parent. Let [z, y]
be an 17nondominated solution. If the solution is the degenerate interval z = y
then its mate is selected from the closed ball V' (z, R), where R is the mating range.
R represents a parameter of the procedure.

The mate of the one non-degenerate interval [z, y] is selected from all one non-
degenerate solutions [u, v] such that they are not disjoint and do not include each
other. This means that the following conditions are have to be fulfilled for recom-
bining interval solutions [z, y] and [u, v]:

(0) [z, y] N [u,v] # 0;
(i) [z,y] N [u, 0] # [z,y];
(iil) [z,y] N [u,v] # [u,v].
The individuals that can be selected as mates of [z,y] represent the breeder
set of [z,y]. From the breeder set the second parent is selected using a certain
procedure like a tournament or proportional selection schemes.

3.2. Recombination operator. Recombining the individual [z,y] and its se-
lected mate it results a unique offspring. The first parent [z, y] will be replaced by
this offspring.

If the parents are nondegenerated solutions the offspring is the union of the
parent intervals.

For degenerated case the offspring may be, for instance, the convex combination
of its parents.

According to the proposed recombination operator the mate of a (non) degen-
erated solution has to be (non) degenerated too.

3.3. Mutation operator. An individual [z,y] is mutated if and only if no mate
can be selected for it. This happens when the breeder set of [z,y] is empty.

3.3.1. Mutating an interval. There are several ways of realizing mutation. These
possibilities are:

a) mutate the left extremity of the interval;
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b) mutate the right extremity of the interval;
c) mutate the both extremities of the interval.

Remarks.

(i) For extremities perturbation we use an additive normal perturbation with
standard deviation o, where o is a parameter of the method.
(ii) Degenerated?solutions mutation is included in the general scheme.
(iii) Mutation type (a, b or ¢) is randomly chosen.

3.3.2. Degenerated interval-solutions. By mutation an interval can be reduced to
a point. This may happen in the following situations:
(i) mutation of the right (left) interval extremity is less (greater) than the left
(right) interval extremity;
(ii) if by mutation the interval extremities coincide (with respect to a given com-
putational resolution).

3.4. Splitting operator. For segregation two disjoint Pareto regions that are
represented by the same interval-solution we introduce a new type of variation
operator called splitting operator.

Splitting operator is applied to an interval-solution and produces two offspring.
This operator increases population size.

Applying recombination or mutation to all individuals in the current population
P(t) a new intermediary population P! (#) is obtained. Splitting operator is applied
to the intermediate population P! ().

To apply splitting operator an interval-solution [z,y] is randomly chosen from
PL(t). A cut-point p, z < p < y, is randomly chosen. If p is a dominated point
then [z,y] may include disjoint Pareto regions. For separating these regions we
apply the splitting operator.

The offspring resulted by splitting the solution [z,y] are [z,p] and [p,y]. We
may thus write

split[z,y] = {[z,p], [p,y]}.

Splitting operator is not applied if the randomly generated point p is nondom-

inated.

4. POPULATION DYNAMICS WITHIN CPOS ALGORITHM

To detect the correct number of Pareto optimal regions it is necessary to have
only one solution per Pareto optimal region. Using Genetic Chromodynamics
technique population size decreases during the search process such that eventually
equals the number of optimal solutions.

Several population decreasing mechanisms may be used. In our implementa-
tion we consider two complementary schemes. Two new operators implement the
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considered population decreasing mechanisms. The proposed operators are called
merging and vanishing. They act only on nondegenerated solutions.
(i) Merging operator. If an 1-nondominated solution Tj is completely in-
cluded in another 1- nondominated solution 7%, then the solution are merged.
The solution 77 is discarded.
(ii) Vanishing operator. If a solution is (-1) nondominated then the solution
is discarded. This operation is very useful because performing split mutation
the number of bad solutions may grow considerably.

These verifications needed by the operators are done when a new solution is
included in the population.

5. STOP CONDITION

Genetic chromodynamics deals with a very natural termination condition. Ac-
cording to this stop condition the chromosome population remains unchanged for
a fixed number of generations (given by the parameter MaxIteration in our algo-
rithm) then the search process stops.

6. CPOS ALGORITHM

Continuos Pareto optimal set (CPOS) algorithm proposed in this paper may
be outlined as below:

CPOS Algorithm
begin
Population initialization:
generate randomly a interval population (P(0));
t=0;
Evolving intervals:
repeat
for each individual ¢ in P(t)
if Has Mate(c) {c has a possible mate}
then
select b — a mate for ¢; {select mate using proportional selection}
Perform recombination:
z =Recombination(b, c);
else Perform mutation of individual c:
z =Mutate(c);
endif
add z to intermediate population P’(t);
endfor
Apply merging operator on individuals in intermediate population P'(t):
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P (t) =nerga(P'(t)):
Apply vanishing operator on individual on P"(t):
P"'(t) =vanish(P"(t));
P(t+1) = P"(t); {next generation}
t=t+1;

until MaxTterations is reached
end.

Remark. Algorithm stops if there is no population modification for a number
of MaxIterations successive iterations.

7. NUMERICAL EXPERIMENTS

Several numerical experiments using CPOS algorithm have been performed.
For all examples the detected solutions gave correct representations of Pareto set
with an acceptable accuracy degree. Some particular examples are given below.

Example 1. Consider the functions fi, fo : [-4,6] — R defined as
fl (ZL”) = 5527
folw) = (@ — 2)%.

Consider the multiobjective optimization problem:

minimize f1(z), f2(z)
subject tox € [—4, 6]

Pareto optimal set for this multiobjective problem is the interval [0, 2].

The initial population is depicted in Figure 1. For a better view the chromo-
somes are drawn one above another.

For the value

c=0.1

of the standard deviation parameter solutions obtained after 10 generations are
depicted in Figure 2.

The population obtained after 24 generations is depicted in Figure 3.

The final population, obtained after 40 generations, is depicted in Figure 4.

Final population obtained after 40 generations contains only one individual.
This individual is:

s = [0.01,1.98],

and represent a continuous Pareto optimal solution.
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FIGURE 2. Population after 10 generations

59

The obtained solution accuracy may be increased, if necessary, by decreasing
the parameter standard deviation of normal perturbation. Of course the number

of iterations needed for convergence increases this case.
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FIGURE 3. The population obtained after 24 generations

F1GURE 4. Final population obtained after 40 generations

For example, if we consider the value
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o =0.01,
the solution
s = [0.004, 1.997],

is obtained after 60 iterations.
Example 2. Consider the functions fi, fo : [-10,13] = R defined as
fia) = sin(a),
f2(x) = sin(z + 0.7).
and the multiobjective optimization problem:
{ minimize f(z), f2(x)

subject toz € [—10, 13]
The initial population is depicted in Figure 5.

F1qURE 5. Initial population

For the value
oc=0.1
solutions obtained after 5 generations are depicted in Figure 6.
We may observe four distinct, well-separated, subpopulations are already seg-
regated after 5 generations. Therefore useful subpopulations are stabilized very
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early. Let us remark that, for the sake of clarity, segments in the same class are
separately represented. In reality they partially overlap.

FIGURE 6. The population after 5 generations

The population after 10 generations is depicted in Figure 7. Subpopulations
are well individualized and nested.
The final population, obtained after 120 generations, is depicted in Figure 8.
Solutions in the final population are:
s1 = [-8.47,—7.86],
82 = [—2.26,—1.56],
s3 = [4.01,4.69],
s4 = [10.29,10.99].
Example 3. Consider the functions fi, fo : [9,9] — R defined as
fi (x) = 127
fo(x) =9 — /81 — 2.

and the multiobjective optimization problem:

minimize fi(z), f2(z)
subject tox € [-9,9]
The initial population is depicted in Figure 9.
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FIGURE 7. Population after 10 generations

Consider the standard deviation parameter value

o =0.1,

In this case population obtained after 3 generations is depicted in Figure 10.

It is very interesting to observe that very early population stabilizes to a single
individual. This individual will be improved at subsequent iterations.
The population after 7 generations is depicted in Figure 11.

The final population, obtained after 120 generations, is depicted in Figure 12.

Final population obtained at convergence after 120 generations contains only
one individual represented as degenerated interval (i.e. a point)

s = —0.001.

Therefore detected Pareto optimal set consists from a single point:

Pletect = {=0.001}.

We may remark that detected Pareto set represents a good estimation of the
correct Pareto optimal set

P, ={0}.
Accuracy of this estimation can be easy improved by using smaller values of

the parameter ? (standard deviation). In this case a larger number of generations
are needed for convergence.
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FiGUre 10. Population after 3 generations

FIGURE 11. Population after 7 generations

For instance, if we put
o =0.01,

65
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F1GURE 12. Final population obtained after 120 generations

the obtained solution is

s = 0.0008.

8. CONCLUDING REMARKS AND FURTHER RESEARCHES

A new evolutionary technique for solving multiobjective optimization problems
involving one variable functions is proposed. A new solution representation is used.
Standard search (variation) operators are modified accordingly. Three new search
operators are introduced. The proposed evolutionary multiobjective optimization
technique does not use a secondary population of non-dominated solutions.

Proposed multiobjective optimization method uses a new evolutionary meta-
heuristic called Genetic chromodynamics for maintaining multiple optimal solu-
tions on the calculated Pareto set during the search process.

All known multiobjective optimization techniques supply a discrete picture of
Pareto optimal solutions and of Pareto frontier. But Pareto optimal set is usually
non-discrete. Finding Pareto optimal set and Pareto optimal frontiers using a
discrete representation is not a very easy computationally task (see [11]).

CPOS technique supplies directly a continuous picture of Pareto optimal set and
of Pareto frontier. This makes our approach very appealing for solving problems
where very accurate solutions detection is needed.
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Another advantage is that CPOS technique has a natural termination condition
derived from the nature of evolutionary method used for preserving population
diversity.

Experimental results suggest that CPOS algorithm supplies correct solutions in
a very few iterations.

Further research will concentrate on the possibilities to extend the proposed
technique to deal with multidimensional domains.

Another direction is to exploit the solution representation as intervals for solving
inequality systems and other problems for which this representation is natural.
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