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t. A new evolutionary sear
h and optimization metaheuristi
s, 
alledGeneti
 Chromodynami
s (GC), is proposed. The GC-based methods use avariable sized solution population and a lo
al intera
tion prin
iple. Lo
al in-tera
tions indu
e a restri
ted mating s
heme and permit dete
tion of multipleoptimal solutions.The main idea of the GC strategy is to for
e the formation and main-tenan
e of stable sub-populations. Proposed lo
al intera
tion s
heme ensuressub-population stabilization in the early sear
h stages.Sub-populations 
o-evolve and eventually 
onverge towards several opti-mal solutions. The number of individuals in the 
urrent population de
reaseswith the generation. Very 
lose individuals are merged. At 
onvergen
e thenumber of sub-populations equals the number of optimal solutions. Ea
h�nal sub-population hopefully 
ontains a single individual representing anoptimum point (a solution of the problem).The GC approa
h allows as solution representation any data stru
ture
ompatible with the problem and any set of meaningful variation operators.GC-based te
hniques 
an be used to solve multimodal, stati
 and dy-nami
, optimization problems.Keywords: Evolutionary algorithms, Geneti
 
hromodynami
s, Mul-timodal optimization 1. Introdu
tionEvolutionary 
omputing (EC) deals with adaptive sear
h and optimization te
h-niques that simulate biologi
al evolution and adaptation pro
esses. EC mainlyin
ludes Geneti
 algorithms (GAs), Evolution strategies, Evolutionary program-ming and Geneti
 programming. Geneti
 algorithms represent the most typi
alinstan
e of EC (see [4℄).Unfortunately standard GAs 
an not solve all kinds of optimization and sear
hproblems, like GA { hard or de
eptive problems [8℄. While one of the main diÆ-
ulties arises from the premature lo
al 
onvergen
e, other diÆ
ulties 
on
ern themultimodal optimization problems. Standard GAs, as well as the other usualevolutionary pro
edures, generally fail to dete
t multiple optimum points.2000 Mathemati
s Subje
t Classi�
ation. 68T05.1998 CR Categories and Des
riptors. I.2.8 [Computing Methodologies℄: Arti�
ial In-telligen
e { Problem Solving, Control Methods, and Sear
h.39



40 D. DUMITRESCUSeveral methods have been proposed to solve premature 
onvergen
e and mul-timodal optimization problems.Virus-evolutionary geneti
 algorithm (VEGA) [10℄ has been 
onsidered to pre-vent the premature lo
al 
onvergen
e due to the la
k of diversity in the solutionpopulation. The VEGA approa
h is based on the virus theory of evolution a

ord-ing to whi
h viruses transport segments of DNA a
ross the spe
ies. The VEGAapproa
h implies two populations: a host population and a virus population. Thevirus population realizes a horizontal propagation of geneti
 information in thehost population. This propagation is realized by virus infe
tion, i.e. by 
aringsolution fragments (substrings) between the individuals in the host population.Therefore the VEGA te
hnique simulates evolution with horizontal propagationand verti
al (i.e. usual) inheritan
e of geneti
 information.Multimodal geneti
 algorithms generally use another biologi
al idea, namely theni
he 
on
ept [1, 2, 6, 7, 8, 9℄. Ea
h optimum region in the sear
h spa
e will be
onsidered as a ni
he. Ni
hing geneti
 algorithms are able to form and maintainmultiple, diverse, optimal solutions. Usually the ni
he 
on
ept is implementedthrough the use of �tness sharing. The ni
hing pro
ess is a

omplished by degrad-ing the �tness of an individual a

ording to the presen
e of nearby individuals.The sharing fun
tions [6℄ are used to 
al
ulate the extent of sharing to beperformed between two individuals. For ea
h individual the value of the sharingfun
tion is 
al
ulated with respe
t to the individuals in the population. The ni
he
ount of an individual is the sum of the 
orresponding sharing values. The �tnessof an individual is divided by its ni
he 
ount. The obtained updated value is theshared �tness of that individual.The radius s of the estimated ni
hes is 
onsidered. The individuals separatedby distan
e greater than s do not degrade ea
h other's �tness.Sharing tends to spread the population over di�erent optima proportionally tothe values of these optima. Unfortunately the ni
hing methods do not guaranteean appropriate sele
tion of all useful solutions, for any situation [8℄. The dete
tionof the number of optimal solutions 
ould be a problem, as well.In this paper we 
onsider a di�erent, non-ni
hing, strategy to prevent prema-ture lo
al 
onvergen
e and to dete
t multiple optimal solutions. The proposedapproa
h is 
alled Geneti
 Chromodynami
s (GC). Let us note that GC doesnot represent a parti
ular evolutionary te
hnique but merely a metaheuristi
s forsolving (multimodal) optimization/sear
h problems.2. Geneti
 Chromodynami
s prin
iplesGeneti
 Chromodynami
s metaheuristi
s uses a variable sized population ofsolutions (
hromosomes or individuals) and a lo
al mating s
heme. Several solutionrepresentations 
an be 
onsidered. For instan
e solutions may be represented asreal- 
omponent ve
tors. Solution representation as binary strings 
an be also



GENETIC CHROMODYNAMICS 41used. Proposed GC strategy allows any data stru
ture suitable for a problemtogether with any set of meaningful variation/sear
h operators. Moreover theproposed approa
h is independent of the solution representation.The main idea of the GC strategy is to for
e the formation and maintenan
e ofsub-populations of solutions. Sub-populations 
o-evolve and eventually 
onvergetowards several (lo
al and global) optimal solutions.The number of individuals in the population de
reases with the generation.Very similar individuals (solutions) are merged. At 
onvergen
e the number ofsub-populations equals the number of optimal (lo
al and global) solutions. In thestandard 
ase ea
h �nal sub-population 
ontains a single individual representingan optimum point (a solution of the problem).A di�erent 
olor is assigned to ea
h solution in the initial population. In thestandard GC approa
h every solution in ea
h generation is sele
ted for re
ombi-nation or mutation. The re
ombination mate of a given solution is sele
ted withina determined mating region. Before re
ombination all solutions in a given matingregion will re
eive the 
olor of the best individual within that region.A (2,1) re
ombination me
hanism is used. The �rst parent is dominant and these
ond one is re
essive. The unique o�spring is labeled as the des
endent of itsdominant parent. The o�spring will inherit its parent 
olor. It is expe
ted that at
onvergen
e only di�erent 
olored solutions will remain in the population.Two sub-populations will generally have di�erent 
olor sets. The number of
olors per region tends to de
rease with the time. Hopefully a dominant 
olor willbe established in ea
h sub-population.We may 
onsider that the method en
ounters two intera
ting dynami
s: a mi
roand a ma
ro dynami
s. The system mi
ro-dynami
s is asso
iated with solutionmodi�
ations. The ma
ro-dynami
s is asso
iated with sub-populations formation,modi�
ation and stabilization. Ma
ro-dynami
s indu
es a dominant 
olor withinea
h sub-population.We may 
onsider ea
h of the mi
ro and ma
ro-dynami
s as expressing a par-ti
ular aspe
t of the global system dynami
s.As GC strategy uses a variable-sized solution population, the underlying popu-lation dynami
s is more 
ompli
ated than in usual evolutionary algorithms. There-fore the 
orresponding sear
h pro
ess may also be supposed to be more powerful.This feature makes GC-based sear
hing methods appealing for solving diÆ
ulttasks, like time-dependent, multimodal and multiobje
tive optimization problems.The ma
ro-dynami
s of a variable sized population seems to be adequate to dealwith a 
hanging environment. Hen
e the proposed approa
h is potential useful forta
kling distributed AI appli
ations, like 
ooperative multi-agents.



42 D. DUMITRESCU3. Subpopulation emergen
eGC-based optimization te
hniques start with a large arbitrary population of so-lutions. Dimension of the solution population de
reases at ea
h generation. Thereis a highly probability that ea
h new generation will 
ontain some individualsbetter than the individuals in the previous generation.Using a lo
al mating s
heme the formation and maintenan
e of solution sub-population is favored or even for
ed.Sub-populations evolve towards 
ompa
t and well separated solution 
lusters.Sub- populations within ea
h generation P (t) indu
e a hard partition (or at leasta 
over) of the set P (t).In de�ning sub-populations we may 
onsider a biologi
al point of view. Re-
ombination of individuals in the same sub-population is highly expe
ted. Theprobability of mating individuals belonging to the same sub-population is greaterthan the probability of mating individuals from di�erent sub-populations. Re-
ombining individuals in di�erent sub-populations is not de�nitively forbiddenbut usually it is very improbable. Therefore we may say that sub-populations are
omposed of highly 
ompatible (with respe
t to re
ombination) individuals.GC approa
h is essentially based on lo
al intera
tions in a variable-sized pop-ulation. The role of lo
al mating s
heme (lo
al solution intera
tions) and that ofvariable sized population may be summarized as follows:(i) to ensure early sub-population formation and stabilization;(ii) to avoid massive migration between sub-populations approximating di�erentoptimum points (migrations 
ould a�e
t the quality of some already obtained'pure' or high quality solutions);(iii) to prevent destru
tion of some useful (high quality) sub-populations;(iv) to ensure a high probability of obtaining all useful problem solutions.Lo
al intera
tion prin
iple needs a slight modi�
ation of the variation sear
hoperators. 4. Mating regionLet us 
onsider a distan
e 
on
ept (a metri
 or a pseudo-metri
) Æ de�ned onthe solution spa
e Y . Consider an initial population in whi
h ea
h solution has adi�erent 
olor. Let f be the �tness fun
tion. As usual f(
) evaluates the qualityof the solution 
.As only short range intera
tions between solutions are allowed, the mate of ea
hsolution 
 has to belong to a neighborhood of 
. It is usually 
onvenient to 
onsiderthis neighborhood as the 
losed ball V (
; r) of 
enter 
 and radius r.We may interpret the parameter r as the intera
tion radius (or intera
tionrange) of the individual 
. Short range (or lo
al) intera
tions will ensure an ap-propriate 
o-evolution of the sub-populations.



GENETIC CHROMODYNAMICS 43All the individuals within the region V (
; r) re
eive the 
olor of the best indi-vidual in that mating region. The sear
h pro
ess starts with a population whoseindividuals have all di�erent 
olors.An adaptation me
hanism 
an be used to 
ontrol the intera
tion range r, so asto support sub-population stabilization. Within this adaptation me
hanism theintera
tion radius of ea
h individual 
ould be di�erent. In this way the 
exibilityof the sear
h pro
ess may in
rease signi�
antly. Ea
h sub-population may havea more independent evolution (more freedom degrees of its behavior). To 
ontrolthe domain intera
tions we 
an use a general (problem independent) method ora parti
ular heuristi
. Problem dependent approa
hes seem to be appealing fordealing with some parti
ular situations.Let us note that the meaning of the mating region V (
; r) is not that of ani
he. The resour
es of this region are not shared between its members, as in theni
he approa
h. It is more suitable to interpret the mating region V (
; r) as theintera
tion domain of the individual 
.For some parti
ular problems we may admit migrations (meaning that re
om-bination is permitted) between di�erent intera
tion domains. Allowing permeableintera
tion domains may lead to better solutions by in
reasing population diver-sity. 5. Termination 
onditionVarious termination 
onditions for the GC sear
h pro
ess may be identi�ed.Some stopping 
onditions may be formulated a

ording to the parti
ular problem
onsidered. Other stop 
onditions are problem independent. Here we are interestedin the se
ond 
lass.A good, general, problem independent heuristi
s is to stop the sear
h pro
essif the solution population remains un
hanged for a �xed number of generations.This 
ondition represents a natural termination 
riterion ensuring that the sear
hpro
ess 
ontinues only how long is ne
essary.6. Sele
tion and re
ombinationGeneti
 
hromodynami
s involves two types of sele
tion s
hemes. Global sele
-tion supplies the parent population. Lo
al sele
tion is a me
hanism for 
hoosinga mate of a solution in the respe
tive mating region.6.1. Global sele
tion. Within standard version of Geneti
 
hromodynami
s ap-proa
h ea
h solution 
 in the population P (t) will be 
onsidered for re
ombination.More sophisti
ated global sele
tion me
hanisms may be used. Their eÆ
ien
y inthis 
ontext is questionable.



44 D. DUMITRESCU6.2. Lo
al sele
tion. A

ording to the proposed lo
al intera
tion s
heme themate of the solution 
 will be 
hosen from the neighborhood (mating region)V (
; r) of 
. Lo
al mate sele
tion is done a

ording to the values of the �tnessfun
tion f .For sele
ting the mate of a given solution we may use proportional sele
tion. Letm be a solution in the intera
tion domain (mating region) V (
; r) of the solution
. The probability that m is sele
ted as the mate of 
 is denoted by p(m) and isde�ned as p(m) = f(m)Pa2V (
;r) f(a) :Any other type of sele
tion 
ompatible with the parti
ular 
onsidered problemis permitted. Tournament sele
tion is a very powerful me
hanism and may besu

essfully use for mate sele
tion.6.3. Re
ombination. Let a be the sele
ted partner of 
. The ordered pair (
; a)generates by re
ombination a unique o�spring. The �rst parent is dominant,whereas the se
ond one is re
essive.Let d be the o�spring generated by 
 and a. The o�spring d will inherit the
olor of its (dominant) parent 
 and will be labeled as the des
endent of 
 only.The form of the re
ombination operator will be 
hosen a

ording to the solutionrepresentation and the nature of the problem.For a real valued solution representation a 
onvex 
ombination of the genesin 
 and a 
an be used to obtain the 
omponents of d. In the 
ase of 
onvexre
ombination the ith position of the o�spring d has the expression:di = q
i + (1� q)ai;where q is a real number in the unit interval [0,1℄.7. Mutation operatorIf the 
losed ball V (
; r) { the intera
tion domain of 
 { is empty then thesolution 
 will be sele
ted for mutation. In this way re
ombination and mutationare mutually ex
lusive operators. Mutation may be 
onsidered as a
ting mainlyon stray points.An additive normal perturbation seems to be appropriate for general optimiza-tion purposes. By mutation (stray) solutions are usually drawn 
loser to lo
aloptimum points of the obje
tive fun
tion. As a side e�e
t solutions are for
edtowards one of the existing sub-populations.Various solution 
omponents may su�er perturbation with di�erent standarddeviation values. In every situation the mutated solution will inherit the 
olor ofits parent, as well.



GENETIC CHROMODYNAMICS 458. Mutation a

eptan
e s
hemeWithin usual evolutionary algorithms generated mutations are generally un-
onditionally a

epted. Within Geneti
 
hromodynami
s based te
hniques a moresophisti
ated a

eptation me
hanism will be 
onsidered.8.1. General a

eptan
e me
hanism. Standard GC approa
h 
onsiders thatin ea
h generation every solution is involved in re
ombination or mutation. Ea
hsolution will produ
e, and possibly be repla
ed by, an o�spring. Whi
hever isbetter between a dominant parent and its o�spring will be in
luded in the newgeneration.A

ording to the proposed me
hanism a mutated solution (o�spring), whi
his better than its parent, is un
onditionally a

epted. This a

eptan
e s
hemeindu
es a rapid 
onvergen
e of the sear
h pro
ess.It seems that no restri
tion on mutation parameter is needed if the best fromparent and o�spring survives. This strategy 
an be useful in the �rst stages of thesear
h pro
ess. In the last stages it may 
ause a drawba
k of the sear
h pro
ess.Let us 
onsider a solution representing an optimum point. Its des
endant ob-tained by mutation 
ould belong to a region 
orresponding to a di�erent optimumpoint, having a higher �tness. The o�spring 
ould surpass its parent �tness. There-fore the o�spring will survive and a useful optimum point represented by its parentis lost.To prevent the extin
tion of some optimum points { espe
ially in the last sear
hstages - we may admit that a mutated o�spring have to belong to the intera
tionrange of its parent. We may ful�ll this requirement by 
hoosing an appropriatevalue of the standard deviation parameter (whi
h ensures a high probability theo�spring belongs to the intera
tion range). This strategy is another fa
et of thelo
al intera
tions prin
iple.A

ording to the parti
ular implementation or to the problem at hand othera

eptation me
hanisms may be 
onsidered.We may also asso
iate an a

eptan
e probability p to ea
h o�spring worse thanits parent. A simulated annealing s
heme (see [11℄) may be used to 
ontrol themutated solution a

eptan
e a

ording to the probability value p.8.2. Simulated annealing a

eptan
e. In some situations, it is important tohave an additional me
hanism for preventing premature lo
al 
onvergen
e. Thistask may be a

omplished by allowing an o�spring that is worse than its parentto be a

epted in the new generation. In this regard, an a

eptan
e me
hanismanalogous to simulated annealing te
hnique (see [11℄) may be used.The 
ost asso
iated with the a

eptan
e (maintenan
e) of a solution 
 in thenew generation is de�ned as: C(
) = K � f(
);



46 D. DUMITRESCUwhere the real 
onstant K is 
hosen su
h that C(
) � 0, for ea
h solution 
.Remark. The higher the �tness of a solution, the lower the 
ost to keep thatsolution in the next generation.Let d be an o�spring (obtained by re
ombination or by mutation) whi
h is worsethan its parent 
, we have: f(d) < f(
):The asso
iated 
ost variation is:�C = C(d) � C(
):It is easy to see that this 
ost is positive. The probability p of a

epting theo�spring d in the new generation isp = e��CkT ;where k > 0, and T is a positive parameter signifying system temperature.The values of the parameter k and T 
ontrolling the a

eptan
e probability are
hosen depending on the spe
i�
 problem.By subsequently lowering the temperature, the a

eptan
e probability de
reasesover time. In the �nal sear
h pro
ess stages very small a

eptation probabilitiesof worse solutions are needed.By the proposed a

eptan
e me
hanism the solutions will generally get 
loser tothe points 
orresponding to small 
ost values (high �tness values). Let us observethat the 
onsidered a

eptan
e me
hanism does not ensure the system rea
hesthermodynami
 equilibrium at ea
h generation (for ea
h value of the parameterT ), like in Metropolis algorithm (see [11℄) normally used in simulated annealing.We may suppose the equilibrium will be a
hieved only at the end of the sear
hpro
ess.The equilibrium 
orresponds to slow temperature variations. We may 
onsidertemperature de
reasing a

ording to the s
hedule:Tg = T11 + ln g ;where T1 is the initial temperature and g > 1 is the generation index.To implement the proposed me
hanism a random number R having uniformdistribution in [0,1℄ is generated. If R < p then the o�spring (worst than itsparent) is a

epted in the new generation. Otherwise its parent is a

epted.9. Adapting mutation parameterAn important problem with respe
t to the proposed evolutionary te
hniqueis to 
hoose an appropriate perturbation range for the mutation parameter. Arelated problem 
on
erns the development of suitable adapting te
hnique for thisparameter.



GENETIC CHROMODYNAMICS 47We may 
onsider several adaptation me
hanisms for the perturbation standarddeviation (representing the perturbation amplitude).To ensure the �ne tuning of the sear
h pro
ess in its �nal stages we may allowperturbation amplitude de
reasing with time.Another strategy to 
ontrol the standard deviation parameter may be realizedby a self- adapting pro
ess. In this 
ase the standard deviation is in
luded inthe solution stru
ture (genotype) and it is adapted by the e�e
t of the variationoperators. 10. Intera
tion- range adaptationUsually the intera
tion-range is the same for all the solutions. To 
ontrol sub-population stabilization we may use a me
hanism to adapt the intera
tion radiusdepending on the spe
i�
 problem under 
onsideration. Generally it seems usefulthe intera
tion radius be a time de
reasing parameter.A radius 
ontrol me
hanism 
ould also ensure a supplementary tuning of thesear
h pro
ess right from the �rst stages.A possibility for evolving intera
tion radius is to 
onsider a symbiosis of the
urrent population P (t) and a se
ondary population whose individuals representintera
tion ranges.We also may 
onsider ea
h solution has its own intera
tion radius. This param-eter may be in
luded in the genotype and evolved during the sear
h pro
ess.11. Population de
reasing and stabilizationShort-range intera
tions permit early solution 
lustering in sub-populations.Lo
al intera
tions also favor sub-population stabilization. As a side e�e
t, aftera few generations, some solutions might overlap, or be
ome very 
lose, as two ormore sub- populations might evolve towards the same optimum point. To dete
tthe 
orre
t number of optima is ne
essary to have only one solution per optimum.To this end, the population size is subsequently redu
ed by merging similar (
losein terms of distan
e Æ) solutions.If distan
e between two solutions is less than an appropriate threshold, thenthe two solutions are merged. This veri�
ation will be done at ea
h insertion of anew solution in the population.The sear
h pro
ess stops if after a (previously �xed) number of generationsno signi�
ant 
hange o

urs in the population. Here a signi�
ant 
hange is thea

eptation of a new generated o�spring.We obtain the number of optimum points as the number of solutions in the �nalpopulation. Ea
h solution in the �nal population gives the position of a global orlo
al optimum point.



48 D. DUMITRESCUTherefore we may 
onsider the CG approa
h as being merely a 
lass of optimi-sation and sear
h te
hniques based on the lo
al intera
tion prin
iple. Any usefulheuristi
 may be in
orporated.12. Lo
al and infra-lo
al optimaBy maintaining a diversity of sub-populations the Geneti
 
hromodynami
ssear
h methods are expe
ted to avoid the problems due to lo
al premature 
on-vergen
e. The proposed approa
h seems also to be robust with respe
t to very
lose optimum points. Close optima may not represent distin
t useful solutions,sin
e they are merely lo
al perturbations (due to noise, for instan
e) of a 
ertainoptimum point. We may 
all them infra-lo
al optima.For most pra
ti
al problems infra-lo
al optima are solutions of no interest. Lo
aloptima of fra
tal fun
tions may represent an interesting example of su
h uselesssolutions. Infra-lo
al optima represent parasite solutions. Their dete
tion is atime-
onsuming task. Furthermore parasite solutions 
an also generate 
onfusionin interpreting the results. 13. Appli
ationsGeneti
 
hromodynami
s is intended as a general optimization/sear
h te
h-nique. GC-based methods are parti
ularly suitable for solving multimodal andmultiobje
tive optimization problems.Geneti
 
hromodynami
s 
an also be used to solve mathemati
al problems thattraditionally are not treated by evolutionary approa
hes. Examples of su
h prob-lems are: equation solving (algebrai
, di�erential or integral equations), �xed pointdete
tion and equation systems solving.The GC approa
h may be used to solve real - world optimization problems.Geneti
 
hromodynami
s 
avor methods 
an be also applied in various s
ienti�
,engineering or business �elds involving stati
 or dynami
 (pro
ess) optimization.Clustering, data 
ompression and other data mining problems are very suitablefor a GC treatment. Geneti
 
hromodynami
s 
lustering based methods 
an beparti
ularly useful to dete
t the optimal number of 
lusters in a data set and the
orresponding set of useful prototypes. The method is e�e
tive even for a veryfew number of data points (one data point per 
lass, for instan
e).14. Con
lusionsAn evolutionary metaheuristi
s is proposed. This metaheuristi
s is 
alled Ge-neti
 Chromodynami
s strategy. GC implementations generate a new 
lass ofsear
h/optimization te
hniques. The GC approa
h uses a variable-sized popula-tion and lo
al intera
tions among solutions. Within the methods in theGC familysolutions are supposed to have di�erent 
olors. Population dynami
s is a

ompa-nied by a 
olor dynami
s. Short-range intera
tions permit early sub-populations



GENETIC CHROMODYNAMICS 49emergen
e. The 
onsidered lo
al intera
tions also guarantee the sub-populationsmaintenan
e and stabilization.The solution sub-populations evolve towards the lo
al and global optimumpoints. The �nal population 
ontains as many solutions as (global and lo
al)optimum points are dete
ted.Geneti
 Chromodynami
s strategy is intended to prevent lo
al premature 
on-vergen
e and to solve multimodal optimization and sear
h problems. One of theimportant features of the GC-based te
hniques is their robustness with respe
t tolo
al perturbations of the optimum points.Geneti
 
hromodynami
s is a 
exible method allowing the in
orporation of dif-ferent general or problem-depending heuristi
s. We have already exempli�ed thisability by using a version of simulated annealing to 
ontrol the a

eptan
e me
ha-nism of a new solution. A similar me
hanism 
ould be used to 
ontrol the mutationpro
ess. For some parti
ular problems 
onsidering elements of tabu sear
h (see[5℄) 
ould ameliorate the performan
e of the GC method.Therefore we 
an 
onsider the Geneti
 
hromodynami
s approa
h as beingmerely a 
lass of optimization and sear
h te
hniques based on the prin
iple oflo
al intera
tions and using a variable- sized population. Ea
h parti
ular 
hromo-dynami
s te
hnique may also in
orporate any useful heuristi
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