
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000GENETIC CHROMODYNAMICSD. DUMITRESCUAbstrat. A new evolutionary searh and optimization metaheuristis, alledGeneti Chromodynamis (GC), is proposed. The GC-based methods use avariable sized solution population and a loal interation priniple. Loal in-terations indue a restrited mating sheme and permit detetion of multipleoptimal solutions.The main idea of the GC strategy is to fore the formation and main-tenane of stable sub-populations. Proposed loal interation sheme ensuressub-population stabilization in the early searh stages.Sub-populations o-evolve and eventually onverge towards several opti-mal solutions. The number of individuals in the urrent population dereaseswith the generation. Very lose individuals are merged. At onvergene thenumber of sub-populations equals the number of optimal solutions. Eah�nal sub-population hopefully ontains a single individual representing anoptimum point (a solution of the problem).The GC approah allows as solution representation any data strutureompatible with the problem and any set of meaningful variation operators.GC-based tehniques an be used to solve multimodal, stati and dy-nami, optimization problems.Keywords: Evolutionary algorithms, Geneti hromodynamis, Mul-timodal optimization 1. IntrodutionEvolutionary omputing (EC) deals with adaptive searh and optimization teh-niques that simulate biologial evolution and adaptation proesses. EC mainlyinludes Geneti algorithms (GAs), Evolution strategies, Evolutionary program-ming and Geneti programming. Geneti algorithms represent the most typialinstane of EC (see [4℄).Unfortunately standard GAs an not solve all kinds of optimization and searhproblems, like GA { hard or deeptive problems [8℄. While one of the main diÆ-ulties arises from the premature loal onvergene, other diÆulties onern themultimodal optimization problems. Standard GAs, as well as the other usualevolutionary proedures, generally fail to detet multiple optimum points.2000 Mathematis Subjet Classi�ation. 68T05.1998 CR Categories and Desriptors. I.2.8 [Computing Methodologies℄: Arti�ial In-telligene { Problem Solving, Control Methods, and Searh.39



40 D. DUMITRESCUSeveral methods have been proposed to solve premature onvergene and mul-timodal optimization problems.Virus-evolutionary geneti algorithm (VEGA) [10℄ has been onsidered to pre-vent the premature loal onvergene due to the lak of diversity in the solutionpopulation. The VEGA approah is based on the virus theory of evolution aord-ing to whih viruses transport segments of DNA aross the speies. The VEGAapproah implies two populations: a host population and a virus population. Thevirus population realizes a horizontal propagation of geneti information in thehost population. This propagation is realized by virus infetion, i.e. by aringsolution fragments (substrings) between the individuals in the host population.Therefore the VEGA tehnique simulates evolution with horizontal propagationand vertial (i.e. usual) inheritane of geneti information.Multimodal geneti algorithms generally use another biologial idea, namely thenihe onept [1, 2, 6, 7, 8, 9℄. Eah optimum region in the searh spae will beonsidered as a nihe. Nihing geneti algorithms are able to form and maintainmultiple, diverse, optimal solutions. Usually the nihe onept is implementedthrough the use of �tness sharing. The nihing proess is aomplished by degrad-ing the �tness of an individual aording to the presene of nearby individuals.The sharing funtions [6℄ are used to alulate the extent of sharing to beperformed between two individuals. For eah individual the value of the sharingfuntion is alulated with respet to the individuals in the population. The niheount of an individual is the sum of the orresponding sharing values. The �tnessof an individual is divided by its nihe ount. The obtained updated value is theshared �tness of that individual.The radius s of the estimated nihes is onsidered. The individuals separatedby distane greater than s do not degrade eah other's �tness.Sharing tends to spread the population over di�erent optima proportionally tothe values of these optima. Unfortunately the nihing methods do not guaranteean appropriate seletion of all useful solutions, for any situation [8℄. The detetionof the number of optimal solutions ould be a problem, as well.In this paper we onsider a di�erent, non-nihing, strategy to prevent prema-ture loal onvergene and to detet multiple optimal solutions. The proposedapproah is alled Geneti Chromodynamis (GC). Let us note that GC doesnot represent a partiular evolutionary tehnique but merely a metaheuristis forsolving (multimodal) optimization/searh problems.2. Geneti Chromodynamis priniplesGeneti Chromodynamis metaheuristis uses a variable sized population ofsolutions (hromosomes or individuals) and a loal mating sheme. Several solutionrepresentations an be onsidered. For instane solutions may be represented asreal- omponent vetors. Solution representation as binary strings an be also



GENETIC CHROMODYNAMICS 41used. Proposed GC strategy allows any data struture suitable for a problemtogether with any set of meaningful variation/searh operators. Moreover theproposed approah is independent of the solution representation.The main idea of the GC strategy is to fore the formation and maintenane ofsub-populations of solutions. Sub-populations o-evolve and eventually onvergetowards several (loal and global) optimal solutions.The number of individuals in the population dereases with the generation.Very similar individuals (solutions) are merged. At onvergene the number ofsub-populations equals the number of optimal (loal and global) solutions. In thestandard ase eah �nal sub-population ontains a single individual representingan optimum point (a solution of the problem).A di�erent olor is assigned to eah solution in the initial population. In thestandard GC approah every solution in eah generation is seleted for reombi-nation or mutation. The reombination mate of a given solution is seleted withina determined mating region. Before reombination all solutions in a given matingregion will reeive the olor of the best individual within that region.A (2,1) reombination mehanism is used. The �rst parent is dominant and theseond one is reessive. The unique o�spring is labeled as the desendent of itsdominant parent. The o�spring will inherit its parent olor. It is expeted that atonvergene only di�erent olored solutions will remain in the population.Two sub-populations will generally have di�erent olor sets. The number ofolors per region tends to derease with the time. Hopefully a dominant olor willbe established in eah sub-population.We may onsider that the method enounters two interating dynamis: a miroand a maro dynamis. The system miro-dynamis is assoiated with solutionmodi�ations. The maro-dynamis is assoiated with sub-populations formation,modi�ation and stabilization. Maro-dynamis indues a dominant olor withineah sub-population.We may onsider eah of the miro and maro-dynamis as expressing a par-tiular aspet of the global system dynamis.As GC strategy uses a variable-sized solution population, the underlying popu-lation dynamis is more ompliated than in usual evolutionary algorithms. There-fore the orresponding searh proess may also be supposed to be more powerful.This feature makes GC-based searhing methods appealing for solving diÆulttasks, like time-dependent, multimodal and multiobjetive optimization problems.The maro-dynamis of a variable sized population seems to be adequate to dealwith a hanging environment. Hene the proposed approah is potential useful fortakling distributed AI appliations, like ooperative multi-agents.



42 D. DUMITRESCU3. Subpopulation emergeneGC-based optimization tehniques start with a large arbitrary population of so-lutions. Dimension of the solution population dereases at eah generation. Thereis a highly probability that eah new generation will ontain some individualsbetter than the individuals in the previous generation.Using a loal mating sheme the formation and maintenane of solution sub-population is favored or even fored.Sub-populations evolve towards ompat and well separated solution lusters.Sub- populations within eah generation P (t) indue a hard partition (or at leasta over) of the set P (t).In de�ning sub-populations we may onsider a biologial point of view. Re-ombination of individuals in the same sub-population is highly expeted. Theprobability of mating individuals belonging to the same sub-population is greaterthan the probability of mating individuals from di�erent sub-populations. Re-ombining individuals in di�erent sub-populations is not de�nitively forbiddenbut usually it is very improbable. Therefore we may say that sub-populations areomposed of highly ompatible (with respet to reombination) individuals.GC approah is essentially based on loal interations in a variable-sized pop-ulation. The role of loal mating sheme (loal solution interations) and that ofvariable sized population may be summarized as follows:(i) to ensure early sub-population formation and stabilization;(ii) to avoid massive migration between sub-populations approximating di�erentoptimum points (migrations ould a�et the quality of some already obtained'pure' or high quality solutions);(iii) to prevent destrution of some useful (high quality) sub-populations;(iv) to ensure a high probability of obtaining all useful problem solutions.Loal interation priniple needs a slight modi�ation of the variation searhoperators. 4. Mating regionLet us onsider a distane onept (a metri or a pseudo-metri) Æ de�ned onthe solution spae Y . Consider an initial population in whih eah solution has adi�erent olor. Let f be the �tness funtion. As usual f() evaluates the qualityof the solution .As only short range interations between solutions are allowed, the mate of eahsolution  has to belong to a neighborhood of . It is usually onvenient to onsiderthis neighborhood as the losed ball V (; r) of enter  and radius r.We may interpret the parameter r as the interation radius (or interationrange) of the individual . Short range (or loal) interations will ensure an ap-propriate o-evolution of the sub-populations.



GENETIC CHROMODYNAMICS 43All the individuals within the region V (; r) reeive the olor of the best indi-vidual in that mating region. The searh proess starts with a population whoseindividuals have all di�erent olors.An adaptation mehanism an be used to ontrol the interation range r, so asto support sub-population stabilization. Within this adaptation mehanism theinteration radius of eah individual ould be di�erent. In this way the exibilityof the searh proess may inrease signi�antly. Eah sub-population may havea more independent evolution (more freedom degrees of its behavior). To ontrolthe domain interations we an use a general (problem independent) method ora partiular heuristi. Problem dependent approahes seem to be appealing fordealing with some partiular situations.Let us note that the meaning of the mating region V (; r) is not that of anihe. The resoures of this region are not shared between its members, as in thenihe approah. It is more suitable to interpret the mating region V (; r) as theinteration domain of the individual .For some partiular problems we may admit migrations (meaning that reom-bination is permitted) between di�erent interation domains. Allowing permeableinteration domains may lead to better solutions by inreasing population diver-sity. 5. Termination onditionVarious termination onditions for the GC searh proess may be identi�ed.Some stopping onditions may be formulated aording to the partiular problemonsidered. Other stop onditions are problem independent. Here we are interestedin the seond lass.A good, general, problem independent heuristis is to stop the searh proessif the solution population remains unhanged for a �xed number of generations.This ondition represents a natural termination riterion ensuring that the searhproess ontinues only how long is neessary.6. Seletion and reombinationGeneti hromodynamis involves two types of seletion shemes. Global sele-tion supplies the parent population. Loal seletion is a mehanism for hoosinga mate of a solution in the respetive mating region.6.1. Global seletion. Within standard version of Geneti hromodynamis ap-proah eah solution  in the population P (t) will be onsidered for reombination.More sophistiated global seletion mehanisms may be used. Their eÆieny inthis ontext is questionable.



44 D. DUMITRESCU6.2. Loal seletion. Aording to the proposed loal interation sheme themate of the solution  will be hosen from the neighborhood (mating region)V (; r) of . Loal mate seletion is done aording to the values of the �tnessfuntion f .For seleting the mate of a given solution we may use proportional seletion. Letm be a solution in the interation domain (mating region) V (; r) of the solution. The probability that m is seleted as the mate of  is denoted by p(m) and isde�ned as p(m) = f(m)Pa2V (;r) f(a) :Any other type of seletion ompatible with the partiular onsidered problemis permitted. Tournament seletion is a very powerful mehanism and may besuessfully use for mate seletion.6.3. Reombination. Let a be the seleted partner of . The ordered pair (; a)generates by reombination a unique o�spring. The �rst parent is dominant,whereas the seond one is reessive.Let d be the o�spring generated by  and a. The o�spring d will inherit theolor of its (dominant) parent  and will be labeled as the desendent of  only.The form of the reombination operator will be hosen aording to the solutionrepresentation and the nature of the problem.For a real valued solution representation a onvex ombination of the genesin  and a an be used to obtain the omponents of d. In the ase of onvexreombination the ith position of the o�spring d has the expression:di = qi + (1� q)ai;where q is a real number in the unit interval [0,1℄.7. Mutation operatorIf the losed ball V (; r) { the interation domain of  { is empty then thesolution  will be seleted for mutation. In this way reombination and mutationare mutually exlusive operators. Mutation may be onsidered as ating mainlyon stray points.An additive normal perturbation seems to be appropriate for general optimiza-tion purposes. By mutation (stray) solutions are usually drawn loser to loaloptimum points of the objetive funtion. As a side e�et solutions are foredtowards one of the existing sub-populations.Various solution omponents may su�er perturbation with di�erent standarddeviation values. In every situation the mutated solution will inherit the olor ofits parent, as well.



GENETIC CHROMODYNAMICS 458. Mutation aeptane shemeWithin usual evolutionary algorithms generated mutations are generally un-onditionally aepted. Within Geneti hromodynamis based tehniques a moresophistiated aeptation mehanism will be onsidered.8.1. General aeptane mehanism. Standard GC approah onsiders thatin eah generation every solution is involved in reombination or mutation. Eahsolution will produe, and possibly be replaed by, an o�spring. Whihever isbetter between a dominant parent and its o�spring will be inluded in the newgeneration.Aording to the proposed mehanism a mutated solution (o�spring), whihis better than its parent, is unonditionally aepted. This aeptane shemeindues a rapid onvergene of the searh proess.It seems that no restrition on mutation parameter is needed if the best fromparent and o�spring survives. This strategy an be useful in the �rst stages of thesearh proess. In the last stages it may ause a drawbak of the searh proess.Let us onsider a solution representing an optimum point. Its desendant ob-tained by mutation ould belong to a region orresponding to a di�erent optimumpoint, having a higher �tness. The o�spring ould surpass its parent �tness. There-fore the o�spring will survive and a useful optimum point represented by its parentis lost.To prevent the extintion of some optimum points { espeially in the last searhstages - we may admit that a mutated o�spring have to belong to the interationrange of its parent. We may ful�ll this requirement by hoosing an appropriatevalue of the standard deviation parameter (whih ensures a high probability theo�spring belongs to the interation range). This strategy is another faet of theloal interations priniple.Aording to the partiular implementation or to the problem at hand otheraeptation mehanisms may be onsidered.We may also assoiate an aeptane probability p to eah o�spring worse thanits parent. A simulated annealing sheme (see [11℄) may be used to ontrol themutated solution aeptane aording to the probability value p.8.2. Simulated annealing aeptane. In some situations, it is important tohave an additional mehanism for preventing premature loal onvergene. Thistask may be aomplished by allowing an o�spring that is worse than its parentto be aepted in the new generation. In this regard, an aeptane mehanismanalogous to simulated annealing tehnique (see [11℄) may be used.The ost assoiated with the aeptane (maintenane) of a solution  in thenew generation is de�ned as: C() = K � f();



46 D. DUMITRESCUwhere the real onstant K is hosen suh that C() � 0, for eah solution .Remark. The higher the �tness of a solution, the lower the ost to keep thatsolution in the next generation.Let d be an o�spring (obtained by reombination or by mutation) whih is worsethan its parent , we have: f(d) < f():The assoiated ost variation is:�C = C(d) � C():It is easy to see that this ost is positive. The probability p of aepting theo�spring d in the new generation isp = e��CkT ;where k > 0, and T is a positive parameter signifying system temperature.The values of the parameter k and T ontrolling the aeptane probability arehosen depending on the spei� problem.By subsequently lowering the temperature, the aeptane probability dereasesover time. In the �nal searh proess stages very small aeptation probabilitiesof worse solutions are needed.By the proposed aeptane mehanism the solutions will generally get loser tothe points orresponding to small ost values (high �tness values). Let us observethat the onsidered aeptane mehanism does not ensure the system reahesthermodynami equilibrium at eah generation (for eah value of the parameterT ), like in Metropolis algorithm (see [11℄) normally used in simulated annealing.We may suppose the equilibrium will be ahieved only at the end of the searhproess.The equilibrium orresponds to slow temperature variations. We may onsidertemperature dereasing aording to the shedule:Tg = T11 + ln g ;where T1 is the initial temperature and g > 1 is the generation index.To implement the proposed mehanism a random number R having uniformdistribution in [0,1℄ is generated. If R < p then the o�spring (worst than itsparent) is aepted in the new generation. Otherwise its parent is aepted.9. Adapting mutation parameterAn important problem with respet to the proposed evolutionary tehniqueis to hoose an appropriate perturbation range for the mutation parameter. Arelated problem onerns the development of suitable adapting tehnique for thisparameter.



GENETIC CHROMODYNAMICS 47We may onsider several adaptation mehanisms for the perturbation standarddeviation (representing the perturbation amplitude).To ensure the �ne tuning of the searh proess in its �nal stages we may allowperturbation amplitude dereasing with time.Another strategy to ontrol the standard deviation parameter may be realizedby a self- adapting proess. In this ase the standard deviation is inluded inthe solution struture (genotype) and it is adapted by the e�et of the variationoperators. 10. Interation- range adaptationUsually the interation-range is the same for all the solutions. To ontrol sub-population stabilization we may use a mehanism to adapt the interation radiusdepending on the spei� problem under onsideration. Generally it seems usefulthe interation radius be a time dereasing parameter.A radius ontrol mehanism ould also ensure a supplementary tuning of thesearh proess right from the �rst stages.A possibility for evolving interation radius is to onsider a symbiosis of theurrent population P (t) and a seondary population whose individuals representinteration ranges.We also may onsider eah solution has its own interation radius. This param-eter may be inluded in the genotype and evolved during the searh proess.11. Population dereasing and stabilizationShort-range interations permit early solution lustering in sub-populations.Loal interations also favor sub-population stabilization. As a side e�et, aftera few generations, some solutions might overlap, or beome very lose, as two ormore sub- populations might evolve towards the same optimum point. To detetthe orret number of optima is neessary to have only one solution per optimum.To this end, the population size is subsequently redued by merging similar (losein terms of distane Æ) solutions.If distane between two solutions is less than an appropriate threshold, thenthe two solutions are merged. This veri�ation will be done at eah insertion of anew solution in the population.The searh proess stops if after a (previously �xed) number of generationsno signi�ant hange ours in the population. Here a signi�ant hange is theaeptation of a new generated o�spring.We obtain the number of optimum points as the number of solutions in the �nalpopulation. Eah solution in the �nal population gives the position of a global orloal optimum point.



48 D. DUMITRESCUTherefore we may onsider the CG approah as being merely a lass of optimi-sation and searh tehniques based on the loal interation priniple. Any usefulheuristi may be inorporated.12. Loal and infra-loal optimaBy maintaining a diversity of sub-populations the Geneti hromodynamissearh methods are expeted to avoid the problems due to loal premature on-vergene. The proposed approah seems also to be robust with respet to verylose optimum points. Close optima may not represent distint useful solutions,sine they are merely loal perturbations (due to noise, for instane) of a ertainoptimum point. We may all them infra-loal optima.For most pratial problems infra-loal optima are solutions of no interest. Loaloptima of fratal funtions may represent an interesting example of suh uselesssolutions. Infra-loal optima represent parasite solutions. Their detetion is atime-onsuming task. Furthermore parasite solutions an also generate onfusionin interpreting the results. 13. AppliationsGeneti hromodynamis is intended as a general optimization/searh teh-nique. GC-based methods are partiularly suitable for solving multimodal andmultiobjetive optimization problems.Geneti hromodynamis an also be used to solve mathematial problems thattraditionally are not treated by evolutionary approahes. Examples of suh prob-lems are: equation solving (algebrai, di�erential or integral equations), �xed pointdetetion and equation systems solving.The GC approah may be used to solve real - world optimization problems.Geneti hromodynamis avor methods an be also applied in various sienti�,engineering or business �elds involving stati or dynami (proess) optimization.Clustering, data ompression and other data mining problems are very suitablefor a GC treatment. Geneti hromodynamis lustering based methods an bepartiularly useful to detet the optimal number of lusters in a data set and theorresponding set of useful prototypes. The method is e�etive even for a veryfew number of data points (one data point per lass, for instane).14. ConlusionsAn evolutionary metaheuristis is proposed. This metaheuristis is alled Ge-neti Chromodynamis strategy. GC implementations generate a new lass ofsearh/optimization tehniques. The GC approah uses a variable-sized popula-tion and loal interations among solutions. Within the methods in theGC familysolutions are supposed to have di�erent olors. Population dynamis is aompa-nied by a olor dynamis. Short-range interations permit early sub-populations



GENETIC CHROMODYNAMICS 49emergene. The onsidered loal interations also guarantee the sub-populationsmaintenane and stabilization.The solution sub-populations evolve towards the loal and global optimumpoints. The �nal population ontains as many solutions as (global and loal)optimum points are deteted.Geneti Chromodynamis strategy is intended to prevent loal premature on-vergene and to solve multimodal optimization and searh problems. One of theimportant features of the GC-based tehniques is their robustness with respet toloal perturbations of the optimum points.Geneti hromodynamis is a exible method allowing the inorporation of dif-ferent general or problem-depending heuristis. We have already exempli�ed thisability by using a version of simulated annealing to ontrol the aeptane meha-nism of a new solution. A similar mehanism ould be used to ontrol the mutationproess. For some partiular problems onsidering elements of tabu searh (see[5℄) ould ameliorate the performane of the GC method.Therefore we an onsider the Geneti hromodynamis approah as beingmerely a lass of optimization and searh tehniques based on the priniple ofloal interations and using a variable- sized population. Eah partiular hromo-dynamis tehnique may also inorporate any useful heuristi.Referenes[1℄ Booker, L., Improving the performane of geneti algorithms in lassi�er system, J.J. Grefen-stete (Editor), Proeedings of the First International Conferene on geneti Algorithms,Lawrene Erlbaum Assoiates, 1985, pp 80-92.[2℄ Davidor, Y., A naturally ourring nihe and speies phenomenon: the model and the �rstresults, in R.K. Belew , L.B. Booker.(Editors), Proeedings of the Fourth InternationalConferene on Geneti Algorithms, Morgan Kaufmann, 1991, pp 257-273.[3℄ Dumitresu, D., Bodrogi, L., A new evolutionary method and its appliations in lustering,Babes-Bolyai University Seminar on Computer Siene, 2, 1998, pp. 127-134.[4℄ Dumitresu, D., Lazzerini, B., Jain, L.C, Dumitresu, A., Evolutionary Computation, CRCPress, Boa Raton, 2000.[5℄ Glover ,F., Laguna,.M., Tabu Searh, Kluwer Aademi, Publishers, Boston, 1997.[6℄ Goldberg, D., E., Rihardson J., Geneti algorithms with sharing for multimodal funtionoptimization, Pro. 2nd Conferene on Geneti Algorithms, 1987, 41- 49.[7℄ Goldberg, D. E., Geneti Algorithms in Searh, Optimization and Mahine Learning, Addi-son Wesley, Reading, MA, 1989.[8℄ Goldberg, D. E., Deb, K., Horn, J., Massive multimodality , deeption , and geneti algo-rithms , in R. Manner , B. Manderik (Editors) , Parallel Problem Solving from Nature,Elsevier,1992, 37-46.[9℄ Mahfoud, S.W., Nihing Methods for Geneti Algorithms Ph.D. Thesis, University of Illinois,1995.[10℄ Shimojima, K., Kubota, N., Fukuda, T., Virus-evolutionary geneti algorithms for fuzzyontroller optimization, in F. Herrera, J.L.Verdegay, Eds., Geneti Algorithms.[11℄ Van Laarhoven, P.J.M., Aarts, E.H.L., Simulated Annealing: Theory and Appliations, D.Reidel Publishing.1987.
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