STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000

A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR
HPCC

MARIN IUGA AND BAZIL PARV

ABSTRACT. This paper present a Java-based object-oriented infrastructure
for an High Performance Computing Center (HPCC). This infrastructure
has several functional levels: user- and server-interaction (at client level),
and identificating and getting all the relevant information (at communication
protocol level). The main functionality of the server is to establish the link
between the algorithms requested by the client and their storage environ-
ment, by offering additional assistance to clients while browsing through the
algorithms collection.

Keywords: High performance computing, Java technologies, client-
server architecture, object-oriented infrastructure.

1. THE GENERAL STRUCTURE oF HPCC

This work is based especially on [2], trying to concretize the abstract specifica-
tion of a High Performance Computing Center (HPCC) given there. It continues
other works on the same topic (see [1] and [3]).

The HPCC application has several functional levels. Figure 1 below presents
the way these levels are structured, taking into account the functional needs for
data manipulation, and the functional dependencies between them.

As we see in Figure 1, there are five significant functional levels, each level using
extensively services exposed by the previous ones. On its turn, each functional level
has several sections, each with its specific services.

The first level (starting from top to bottom), AD user level, is user interface
one; it allows the user to navigate, visualize, or search data contained in the
algorithm store. Usually, this level will be an applet running on client machine.
This applet will communicate with the data server either using a specific network
protocol, or RMI. At this moment, there is no final decision concerning this issue.
The main task of this applet is to capture user’s needs and to generate queries
for the data server. On its turn this server will process these queries by using the

2000 Mathematics Subject Classification. 68N19.
1998 CR Categories and Descriptors. D.2.2 [Software]: Software Engineering — Design
Tools and Techniques.

31

32 MARIN IUGA AND BAZIL PARV

AD user level —~-1 AD cliemt
—
r
| \
I }
| \
AD £
ARSI B | AD server . AD
and data delivery | Sy management
I RN
| ! ~ == |
I ' - |
| N Lo ~a |
AD data object . N
aa aojeces \""‘Q AD object model : |
] |
1
~7 N i |
e ' [
— \\ ! |
AD ohiect £ 2 VI |
networking/storage AD object networking AD object storage |
aperations T [l
| | '
| | '
Avi AVi A
AD low evel . . y .
ow teve network level operations JDBC level operations OS FileSystem operations
aperaiions

Ficure 1. HPCC - Functional levels

services offered by the object model. Also, the client level will use the services
exposed by the AD data objects level in order to manipulate those objects.

The next level, AD management and data delivery, has two different sec-
tions: AD server and AD management. The second section, AD management,
is designed as a separate JAVA application. By using the services exposed by AD
data objects level, its functionality covers maintenance of data about algorithms
and classes of algorithms.

The first section, AD server, deals with data transmission to client applet.
If a specific network protocol is used for client communication, AD server needs
to be a daemon JAVA application running on server machine. In this case, the
protocol for data transmission needs to be defined and implemented. In the second
case, which uses RMI for data transmission, there will be a set of interfaces for
ensuring communication between client and server. In fact, AD server will be a
collection of such interfaces and some additional classes used to implement queries
for algorithm store. This second approach for the AD server has the advantage of
a simpler implementation, and the drawback of working with JAVA clients only.

The third level, AD data objects, is the core part of all applications which
constitute HPCC. This level define the structure of objects which manipulate data
referring to algorithms and groups of algorithms and implements a series of useful
operations on them. These issues are discussed in detail in Section 2 and 3.

A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 33

The fourth level, AD object networking/storage operations, is responsible
with storing and transmitting the objects across the network. It has two sections:
AD networking and AD object storage. The upper level will use the services of
AD object storage in order to store/retrieve objects, as we discuss in the third
section. AD networking exposes services for packing-transmission across the
network-unpacking operations.

The basic level of the HPCC application, AD low level operations, defines
some primitive operations. Functionality of this level has to be fulfilled by using
some standard JAVA packages, including JDBC, and the usual functions of the
operating system.

Note the pyramidal structure of the application, in which each level is using
extensively only the operations exposed by the level below. This structure was
designed keeping in mind the functional decomposition of the task and using a
stepwise approach for abstractions.

2. ALGORITHM STORE DATA SCHEME

Data about algorithms and groups of algorithms are modeled via two objectual
counterparts, which use the relational paradigm for assuring their persistence.
There are two levels of storing information:

e identification: map each algorithm /group to its specific main folder; this
information is kept in two relational tables;

e data: data are stored in standardized structure of different files and
folders in the main folder (description, source code Pascal and C++,
JAVA applets).

The information contained in Algorithm Store is structured in two organi-
zational levels: the algorithm level, AlgorithmTable, and the algorithm group
level, GroupTable. Also, there are some internal tables.

All the tables are managed by the AD object storage section from AD object
networking/storage operations level, which use JDBC and OS FileSystem
operations, located on lowest level.

This section discusses the data scheme, while the next section is discussing the
corresponding objects.

2.1. AlgorithmTable. Algorithm Store contains data referring to algorithms and
groups of algorithms. Each algorithm is characterized by the following attributes:
a name, a description file containing its goal, its parameters, and, in the case of
functions, the result type. Other attributes include algorithm implementation,
using a common programming language (C++, Pascal), and/or the corresponding
applet, which is executed on client machine (see Table 1).

As we see in Table 1, the information contained in each line is a kind of directory
information. The way this information is used to store all the data referring to an
algorithm is as follows:

34 MARIN TUGA AND BAZIL PARV
TABLE 1. The structure of AlgorithmTable

Attribute Description

AlgorithmIndex | integer representing the algorithm id in the algorithm table
GroupIndex integer representing the group id in the GroupTable (id of

the class the algorithm belongs)
AlgorithmName | string representing algorithm name
HasDescription | boolean value: True if the algorithm has a description file

and False otherwise

HasPascalCode | boolean value: True if the algorithm has a Pascal imple-

mentation and False otherwise

HasCPPCode boolean value: True if the algorithm has a C++ imple-

mentation and False otherwise

HasApplet boolean value: True if the algorithm has a corresponding

JAVA applet and False otherwise

KeyWords string, a list of keywords, separated by commas; the key-

words are used in queries

all the information referring to an algorithm is stored in a folder, called
algorithm main folder and named 00-AlgorithmIndex; its sub- folders
are discussed below

description: contains the file description.html, containing the algo-
rithm description (this subfolder exists only if HasDescription = True)
pascal: contains the file pascal.html containing the pascal source code
(this subfolder exists only if HasPascalCode = True)

cpp: contains the file cpp.html containing the C++ source code (this
subfolder exists only if HasCPPCode = True)

applet: contains the start file applet.html and all the necessary JAVA
files for this applet (this subfolder exists only if HasApplet = True).

Note that the fields HasDescription, HasPascalCode, HasCPPCode, and HasApplet
are redundant in the AlgorithmTable, because one can test the existing sub-
folders in the algorithm main folder. The reason is increasing the speed of the
applications which use this table.

2.2. GroupTable. Each algorithm belongs to a unique algorithm group (e.g.
sorting algorithms, searching algorithms, string pattern-matching algorithms, nu-
merical analysis algorithms and so on). On its turn, a group of algorithms can
be divided into subgroups in a tree fashion. The usual attributes for algorithm
group are its name and a description file which contains the common features of
its algorithms.

The structure of GroupTable, which contains data referring to algorithm

grouping is detalied in Table 2.

A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 35
TABLE 2. The structure of GroupTable

Attribute Description

GrouplIndex integer representing the group id in the group table. Root
group has the index 1

UpperGrouplIndex | integer representing the id of the parent group in the group
table. For the root group this index equals 0

GroupName string representing group name

HasDescription boolean value: True if the group has a description file and
False otherwise (usually this flag is True)

KeyWords string, a list of keywords, separated by commas; keywords

are using in queries

All the information referring to a group of algorithms is stored in a folder, called
group main folder and named 00-GroupIndex; it contains the file description.html,
i.e. the group description (this file exists only if HasDescription = True).

2.3. Internal tables. Algorithm Store also contains several internal tables, de-
signed for a better implementation of its functionality. By using these tables,
Algorithm Store server builds several URLs and then sends them to the client
applet. On its turn, the client applet displays these URLs in the browser window.
Thes internal tables are:

UnusedAlgorithmIds: unused algorithm ids (due to algorithm delete op-
erations)

UnusedGrouplds: unused group ids (due to group delete operations)

GlobalData: contains context information: the root path for the file and
folder structure and the prefix used for building URLs.

3. ALGORITHM STORE OBJECT MODEL

Both data and operations concerning algorithms and groups are modeled using
objects. Both algorithms and groups are considered objects, which are manipu-
lated by using a specific manager object. The designed classes are:

AlgorithmInfo: models the algorithm object

GrouplInfo: models the algorithm group object

ObjectDBManager: models the object manager, which performs load/store
operations on objects. Because all objects are stored in a relational data-
base, store and load operations need some specific transformations (i.e.
linearization).

The object model also contains some support classes, needed for object propaga-
tion across network. These classes are not full implemented. AlgorithmInfo and
GroupInfo classes belong to AD object model level, while ObjectDBManager

36 MARIN IUGA AND BAZIL PARV

<interfacer
Informationliem
Jeralame Object poblicwriteTo(odben :objedt DEMan agribocle an
publicreadFronl cbdben i Objedt DB Man s tboclean
putlic dd ebeFromi obdbrmeChjed CEManeger thaodle an
N - poblic appendTal cbdbrmiCbjed CEMan ager) bodlean
poHlicisfgothnInfod i bodlean
S 3
~
e “

pblicname3ring pblicname3ring
public cvnindex rheger public owndndes rhege-
piblic groopIrdecirkeger piblic g ooplrdeirkeger
pblic hasDesai pion:boolea pblic haeDesai pion:bodlean
publichasPPodebaonl ean public keyiniordk String
pblic hasPescdCode boclean i c GroupInic()
piblic heefppl e boclean piblic tDirectory() Shirg
i c keytnionds String public g dhCuendquenySringibaclean
public A qeeithrrnol) bl c hasAgerithrn(aganithminfo qitherlnfoboclean
piblic gtDirertory]) Sing i c heeGr oup{groupinfosSroupInfotbod e an
publicmacdhCQuendguerySringboolean

FiGure 2. Class diagrams — AlgorithmInfo and Grouplnfo

is the core of AD object storage section of AD object networking/storage
operations level.

3.1. AlgorithmInfo and GroupInfo classes. Figure 2 presents class diagrams for
AlgorithmInfo and GroupInfo. Both classes are derived from java.lang.object
and implement the interface InformationItem.

Note the 1:1 mapping between their attributes and the structure of corre-
sponding tables (AlgorithmTable and GroupTable). In order to speed up
data manipulation and to decrease memory usage, all attributes are considered
public (instead of declaring them private and using get/set methods). The
InformationItem interface contains usual data manipulation operations: write,
read, delete, and append. All these operations use a reference to an ObjectManager
object. The method isAlgorithmInfo is used in dynamic identification of the re-
ceptor type.

3.2. ObjectManager class. ObjectManager’s object main task is to make persis-
tent AlgorithmInfo and GroupInfo objects. The roles of ObjectManager support
class are:

A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 37

e to provide the infrastructure for storing/retrievig AlgorithmInfo and
GroupInfo objects in/from a relational database (which contains the
tables AlgorithmTable, GroupTable, UnusedAlgorithmIds, Un-
usedGrouplds, and GlobalData)

e to help AlgorithmInfo and GroupInfo objects in managing their own
persistence

e to support queries referring to an algorithm or group of algorithms.

Figure 3 presents the diagram for ObjectDBManager class.

The ObjectDBManager object does not interact directly with the files in the
main folders. It is used by the server in order to know if these files exist in the
folder structure. AD Management component is responsible with creation and
updating of these files.

4. How HPCC WORKS

The AD management section of AD management and data delivery level is
responsible with creating the standard structure of folders and files. First, the AD
server section of the same level, by using AD object model, creates URLs for the
root group which are sent to the client. On his behalf, client displays in a tree
control the structure of HPCC Algorithm Store. When the user selects a specific
algorithm/group, the client applet sends the algorithm /group id to the server, and
the server builds the corresponding URLs, which are sent back to the client applet,
which displays them in a window.

The user can specify queries by using keywords or algorithm/group names. The
parameters are directed to the AD server, which builds the query string and uses
ObjectDBManager::doQuery to retrieve the results, considered as a heterogeneous
collection of AlgorithmInfo and GroupInfo objects. These results are sent back to
the client applet, which displays them in a window.

5. CONCLUSIONS AND FUTURE WORK

In this moment, the core part of HPCC application is already in place. The
remaining components (as client presentation, networking, AD management) will
be implemented soon.

REFERENCES

[1] Avram, D., M. Iurian, B Parv, A High Performance Computing Center Based On A Local
Network, in SYNASC 2000, The Second International Workshop on Symbolic and Numeric
Algorithms for Scientific Computation, West University, Timisoara, 4-6 Oct. 2000, 87-90.

[2] Parv, B., A Component-Based Model for Algorithms, Babeg- Bolyai Univ., Fac. Math. Comp.
Sci. Res. Sem, Seminar on Computer Science, 20 (1998), No. 2, 53-60.

38 MARIN IUGA AND BAZIL PARV

ObjectDEManager

private cotuection: java. sglConnection
private lasterrorindex inte ger

private errorme ssage s 5ting)

putlic Obje ctD BlWlathage 1)

putlic getlastErr o) inte ger

public ervorMle ssage(errood e integes) string

putlic opendgorittunBasel desoutcenam e String)

putlic dosed; gorithm Base()

putlic createD atastructur et ep ositorydit String, TRLpre fiv: String)
putlic sppend Al algorithm infoAlgorithmlnfoy boolean

putlic deletedl atind exinteger) hoole s

putlic replace Ar atind exinteger, dgorithin info.AsorithmInfo) boolean
putlic append Gl groupinfh: Grouplnfo) boolean

putlic deleteG] giindexinteges) hoolean

public replace GI{ gindex inte ger, groupitnfo; Grouplnfo) boole an
public dolueryw querrSting) jare Wil Ve ctor

private create OneTablelnam e:String, 30Latructur e String) ‘bo olean
private lo cate Al dindex:inte ger) hoolean

private 1o cateG I gindexinteger) -hoolean

Ficure 3. Class diagram — ObjectDBManager

[3] Pop D., S. Iurian, M. Iurian, B. Parv, C. Mihoc, Objectual Interfaces for Algorithm
Databases, Babeg-Bolyai Univ., Fac. Math. Comp. Sci. Res. Sem, Seminar on Computer
Science, 21 (1999), No. 2, 35-42.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, “BABES-BOLYAI” UNIVERSITY, CLUJ-
NAPOCA, ROMANIA
FE-mail address: marin|parv@cs.ubbcluj.ro

