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TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS
HIDDEN MARKOV MODELS

ADRIAN DUDA, GABRIELA SERBAN, DOINA TATAR

ABSTRACT. It is considerred in this moment that the use of mathematical
statistics methods in natural language processing represents a leading topic in
NLP. Statistical methods have first been applied in the ”speech-recognition”
area. While Hidden Markov Model (HMM) is unanimously accepted as a
mathematical tool in this area, its advantages have been less used in dealing
with understanding natural language. In this paper we propose a method for
association of a HMM to a context-free grammar (CFG). In this way, learning
a CFG with a correct parsing tree will be realized by learning a HMM.

Key words: probabilistic contex-free languages, hidden Markov mod-
els, natural language processing.

1. HiDDEN MARKOV MODEL (HMM).

HMM model is a generalization of Markov chains, being possible that more
arrows to go out for a given input. As in an HMM we can have more paths
coverred for the same input, it implies that P(wi ,) (which is the probability
to have as input a sequence made up of n words, wy wsy ---wy,, shortly written
as wy,n ) is calculated as the sum of the probabilities on all the possible paths.
Probability on a given path is calculated by multiplying the probabilities on each
segment (arrow) of that path.

Definition

An HMM is a 4-element structure < s', S, W, E > , where S is a (finite) set
of states, s* € S is the initial state, W is a set of input symbols (words), and E
is a set of transitions (labelled arrows). We consider the following order of the
elements of the sets S, W, E: S = (s',---57); W = (w!,---w®);

E=(el, --e).

Let us notice the difference between w; and w’: the first one means the i-th
element (word) of an input sequence, while the second one is the i-th element
of the W set. A transition is defined as a 4-element structure: (s?,s’, w* p) ,
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representing passing from state s’ to state s/ for input w*, transition evaluated
as having the probability p. As for a given input sequence we have more possible
paths, the states that it has been passed through is not deductible from input, but
hidden (this gives the name of the model we focus on). The sequence of states
81,82, - ,Sp41 that it has been passed through for an input w; ,, is marked by us
ShOI’tly with S1,n+1-

Algorithm to find the highest-probability-path. In the followings, we are
using Viterbi ’s algorithm to find the most probable path. Formally written, we
have to find

argmaz,, . P(wi n,S1,n+1)

where w1 5, is a sequence of input(entrance) words, and s1 ,41 is the set of states
that has been passed through. The main idea of the algorithm is calculating the
most, probable path beginning with the empty input sequence, and processing one
word at a time, then the next word that comes in the input sequence. At every
step, we calculate the most probable sequence of states which ends up with the
state s, i = 1,--+ ,0, where ¢ is the total number of states of the Markov model.
Formally, we denote: o;(t + 1) is the most probable sequence of states when it
was given as input the sequence of words wy, and the final state being s'. The
highest-probability-path we are looking for is

oi(n + 1) = argmazs, , ., P(wi, 51,4, S¢41 = 5%

and has as final state s’. Dynamic programming principle, that is fundamental
for Viterbi’s algorithm, allows us to make the following remarque: the highest-
probability-path to a state s’, when it is given as input the sequence Wi, is
made up of the maximum-probability-path with the input w1, with the final
state (let us note) s* , which is making the multiplication P (o (t))P(s* %% s%)
as maximal, and juxtaposing this so-obtained path with the state s’. Saying the
above in another way, o;(t + 1) is calculated like this:

0i(1) =s'i=1--0 0;(t+1) = oj(t)os’ ,j = argmazy=y ,(P(ok(t))P(s* = s%)).

In the above formula, ”o” represents concatenation.

Algorithm to calculate the probability of an input sequence. We are
mentioning here two algorithms to calculate the probability of an input sequence.
Let us note by «;(t + 1) the probability that the input sequence w; ; be accepted,
and having s’ as the final state. In other words:

it +1) = P(wi 4,801 = 5'),t >0 (1)

Let us notice that having all a;(n + 1) values calculated, the probability P(w; ;)
is given by:
n

P(win) =Y ai(n+1).

i=1
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Considering that w; o is the empty word, which has the acceptance probability 1
we have that a;(1) = 1., if j = 1, andit is 0 otherwise, corresponding to the fact
that the initial state of every path is s'. Calculation of a;(t) is done starting with
a;(1) , a;(2) and going until a;j(n + 1) , using the recursive relation:

i(t+1) Zaz 0.

The probabilities a;(t) are called forward probabilities. It is also possible to calcu-
late backwards probabilities, §;(t), with the following definition: f;(¢) represents
the acceptance-probability of input wy ,, if the state at step ¢ is s*. So:

Bi(t) = P(wyn | 8¢ = s%),t > 1.
The probability we are looking for will be

Bi(1) = P(wyp | s1 =s") = P(wi,n)

Calculation of § function is done starting with values:
Bl(n—l—l) :P(e | Spt+1 = 3’) =1,i=1,---,0

For the recursive case, we have:
Bi(t = 1) = P(wi—1,n | 51-1 = 5') ZP s7)B; (1)

Training Markov models. The training algorlthm of a Markov model used in
this paper is the Baum-Welch algorithm (or forward-backward). This one, having
given a certain training input sequence, it ajusts the probabilities of transitions in
the HMM, so that the respective sequence have an as big as possible acceptance
probability. Application of the algorithm has as prerequisite an HMM structure al-
ready having been defined, and only the probabilities of transitions still remaining
to be established. The probabilities of transitions are calculated with the formula

[2]

.wk .
Lok i J
P(si % 5i) = C(s" — s)

7o &)

1 e O(s755 o)
The C function in the above formula is calculated like this [2]:
7 wk ] 1 n i U)k ]
What can be immediately noticed in this formula is that, for the calculation

Wk

of C(s* % s7) we need to know path-probabilities, and so, the probabilities of
transitions for the HMM model. Therefore, we start with some ’guessed’ prob-
abilities, calculated with the help of the formula (3) the new values of function
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C(st N ) and then we adjust the probabilities of transitions using the formula
(2). The indicator showing the improvement level of probabilities is the growth
of the probability of input sequence P(ws ) compared to the previous estima-
tion. The process of recalculating transition probabilities is finished when these
probabilities no more suffers modifications considered as important.

2. PROBABILISTIC CONTEXT-FREE GRAMMARS.

Definition [3, 2]
A probabilistic context-free grammar (PCFG) is a 5-element structure < W, N, N*, R, P >
where

o W = {w,...,w”} represents a set of terminal symbols (we also call
them words);
e N={N' ... NV} represents a set of non-terminal symbols, and N is

the initial(start) symbol S;

e Ris a set of rules of form N? — ¢/ | where & € (N UW)*;

e P is a probability function associating to every rule N’ — & a proba-
bility P(N? — &7) so that the sum of probabilities of the rules having as
left-side member (deploying) the same non-terminal is 1.

The probability of a sequence w; , is equal with to sum of the probabilities of
all possible syntactical trees for the analysis of wy ,. The probability of a tree
is given by the multiplication of the probabilities of the used rules : P(T) =

Hrule rusedinT P(T)

2.1. Associating an HMM model to a PCFG grammar. In the followings,
we are providing a way of associating an HMM model to a PCFG grammar, so
that each derivation tree corespond to a path in HMM. This allows us to calculate
the probability of a sequence as the probability of an accepted sequence by an
HMM. In order to describe the algorithm of attaching a HMM to a PCFG, we
suppose that the PCFG is in Chomsky-normal-form, that is, all the rules have the
form:
X—=>YZorX —»a

where X,Y,Z are non-terminals, and a is terminal. There are three possible
situations to be discussed:

Case I. A rule has the form px : X — Y Z and there exist the rulespy : Y — a
and pz : Y — b. A derivation tree using these rules looks like that given in the
figure 1.

The corresponding path in an HMM is shown in the figure 2.

Case II. A rule has the form px : X — Y Z |, and there exist the rules
py : Y =>UV ,pu:U —>a,py:V = b pz:Z — c. A derivation tree using
these rules looks like in the figure 3.
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The corresponding path in an HMM is shown in the figure 4.

Case III. The rule has the form px : X — Y Z, and there exist the rules
pz:Z —->UV ,py:Y —a,py:U—b py:V — c. A derivation tree using
these rules looks like in figure 5.
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The corresponding path in an HMM is shown in the figure 6.
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Definition

A sequence wy,, € L(G) , where G is a PCFG, with the probability P(wy ),
if there is a parsing tree T' with the root S and the product of rules used for T is
P(wl,n).
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Definition

A sequence wy ,, is accepted by a HMM H with the probability P(w; ) if there
is a path from S ( the start node of HMM) to the final node s¢;, and the product
of probabilities on edges is P(wy ).

Theorem

If G is a probabilistic context-free grammar, H is the HMM associated with G
as above and the sequence wy , € L(G) with the probability P(w: ), then wy , is
accepted by H.

Proof Let us consider that w;, € G, where G is in Chomsky normal form.
We will prove by induction on the length m of the longest path in the parsing
tree of w; ,, that w; , is accepted by H. If the length m is 1, then w; , = a and
in H there is a path (as in Case IV above) from S to sy, labeled by a , of the
same probability. We will suppose that the implication is true for each sequence
obtained by a parsing tree with the longest path m — 1 and let as suppose that
the sequence wy,,, is obtained by a parsing tree T' with the longest path m. In this
parsing tree the first rule used is of the form pg : S =Y Z. In the tree T Y and
Z are roots of parsing tree T} and T5, with the longest path at most m — 1 and
with the frontiers P, and P». The frontier of T is w1 so wi,, = Py P. Consider
that we are in the Case I (the others cases are proved analogously). In this case
P is a = wy and P, is wy,,. By induction hypothesis P is accepted by a HMM
with the start symbol Z. The situation in Case I is as in figure 7.

OO0 -0
Y

S

Fig. 7

So, H accepts a P, = wy . The probability P(w; ) in T is obtained as the
product between pg , the probability of P;, and the probability of P,. In the Case
I the probability is: ps X py X Ps.

3. TRAINING PCFG - GRAMMARS.

The training of the PCFG-grammars is obtained based on the training algorithm
for HMM, by passing from a grammar to an HMM, as in the above mentioned
theorem. As we have said, Baum-Velch algorithm for training an HMM needs
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a given structure to be applied to. Just the same, for a PCFG, it is supposed
that the rules have already been defined. Let us consider the phrases used for
the training process as “parenthesis-ed’, which means, it is defined the way to
obtain items from lower-level items (closer to the border of the derivation tree).
In order to exemplify, look at the phrase: ” Salespeople sold the dog biscuits”
[2]. Let us now describe the needed steps when training a PCFG, and use the
above phrase for better understanding. Parenthesis-ing (Salespeople (sold (the
dog biscuits))), generates the folowing rules: s — npuvp ; np — noun ; np —
det noun noun; vp — verbnp . A second possible parenthesis-ing (incorrect) is:
(Salespeople (sold (the dog) biscuits)). According to this, we have the rules: s —
npup ; np — noun ; np — det noun ;vp — verbnp np. The overall set of rules we
have obtained is shown below, where the sum of probabilities of the rules having the
same non-terminal in the left-side member is s — npvp : 1.0; np — noun : 0.5;
np — det noun noun : 0.25; np — det noun : 0.25; vp — verbnp . 0.5; vp —
verbnp np : 0.5. We are transforming the so-obtained rules to be in Chomsky-
normal-form, starting with the rule np — noun : 0.5 and in the next step we
are modifying the rules containing more than two non-terminals in their right-side
member. After these being done, the final grammar becomes: s — npvp : 0.50;
s = nounvp : 0.50; np — det — n noun : 0.50; np — det noun : 0.50; vp —
verbnp . 0.20; vp — verbnoun .0.20; vp — verb — np np : 0.20; vp — verb —
np noun :0.20; vp — verb —n noun :0.20; det —n — det noun :1.0; v —np —
verbnp : 1.0; v — n — verbnoun : 1.0; noun — salespeople : 0.35; noun —
biscuits : 0.35; noun — dog : 0.40; verb — sold : 1.0; det — the : 1.0. Let us
now consider the first (correct) parenthesis-ing of the phrase: (Salespeople (sold
(the dog biscuits))). The derivation-tree of figure 8 corresponds to this situation.

The path in the HMM is given in figure 9.

As far as concerns the second (incorrect) parenthesis-ing, its corresponding
derivation-tree looks like in figure 10.

Initially, both of the derivation trees have the same probability (0.00245). After
the grammar has been trained with the correctly paranthesised phrase, the correct
tree has the probability 0.037037 while the incorrect one has the probability 0.000.

4. THE APPLICATION.

The application is written in Borland Pascal. The application has three parts:

e the first part(A) reads a HMM from a text file

e the second part(B), having as input a HMM and a given entry sequence, finds
the probability and also the most probable paths for the entry sequence

e the third part(C), executes the training of the given HMM, for a given entry
sequence.
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The algorithms used in the second and the third part of the application are
described above.
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The application will be sent at request by the second author. In the following
we will describe shortly this application.

The input data are read from a text file, which contains the given HMM, in
fact the number of states, the set of states, the initial state and the set
of transitions. We have to specify that the number of entries and the set of the
entries is not read from the input file, but is automatically calculated from the set
of transitions. We assume that each transition is identified by three components
s1,p, s2, where s1 and s2 are states, and p is the probability of the transition from
sl to s2 and also, a state is identified by a character (of course, this assumption is
not restrictive, if is necessary, a state could be identified by a string).

Constants.

eMaxNrStari = 25

- the maximum number of states
eMaxNrIntrari = 15

- the maximum number of entries
eMaxNrDrum = 10

- the maximum number of paths

Data types.

sir=array[1l..MaxNrStari] of char

- defines the type of the set of states of the HMM (each state is represented as a
character)

tranzitii=array[1..MaxNrStari,l..MaxNrIntrari,l..MaxNrStari] of real
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- defines the type of the set of transitions (the structure of a transition was de-
scribed above)

mat=array[1..MaxNrStari,1..MaxNrIntrari] of real

- defines the type of a matrix with MaxzNrStari lines and M axNrIntrari columns,
for representing the data type of the probabilities a;(t)

sirs=array[1..MaxNrDrum] of string;

- represents the type corresponding to the array of paths in the HMM (a path is
represented as a string - an array of characters).

Global variables.

es - a variable of type sir; represents the set (array) of states

ew - a variable of type sir; represents the set (array) of entries

ep - a variable of type tranzitii; represents the set (array) of transitions

esigma- a variable of type integer; represents the number of states

eni - a variable of type integer; represents the number of entries

esi - a variable of type integer; represents the index of the initial state in the
set of states

ealfa - a variable of type mat; represents the matrix containing as elements
the probabilities a;(t) (for a given entry sequence)

ebeta - a variable of type mat; represents the matrix containing as elements the
probabilities 3;(t) (for a given entry sequence)

ey - a variable of type string; represents an entry sequence (we assume that
the length of this sequence is less or equal than MaxzNrIntrari)

The algorithm performs the following steps:

Part A

e reads the input data(the HMM) from the text file.
Part B

e reads an entry sequence

e determines for the given entry y, the probabilities a;(t) and S;(t) (for all
i € [1..sigma] and ¢t € [1..length(y) + 1]

e using o and 8 (calculated at the preceding step), on determine the probability
of the entry sequence y

e determines and displays the most probable paths for the entry sequence

Part C

e reads the training entry sequence
e trains the HMM for the entry sequence, using the Baum-Welch algorithm

Subprograms used.
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Part A

(P) procedure citire(var sigma : integer;var s,w : sir;var p : tranzitii;var si :
integer;var ni : integer)

- reads the input data (the number of states, the set of states, the set of entries,
the set of transitions, the initial state, the number of entries) from a text file

Part B

(F) functionapare(x : string;s : sir;ns : integer) : integer

- determines the index of the string x in the array s having the dimension ns

(F) functional fa_j_tplusl(alfa: mat;j,t : integer;y : string) : real

- calculates a;(t + 1) for the entry sequence y

(F) function beta_i_tminusl(al fa,beta : mat;i,t : integer;y : string) : real

- calculates 3;(t — 1) for the entry sequence y

(P) procedure calcul _al fa_beta(var al fa, beta : mat;y : string)

- using the two above described functions, calculates the probabilities o;(t) and
Bi(t) (for all i € [1..sigma] and t € [1..length(y) + 1]

(P) procedure det_prob_intrare(y : string; var pro : real)

- calculates the probability p of the entry sequence y, as the sum of the elements
from the last column (length(y)+1) of the matrix alfa

(P) procedure det_drum_cel_mai_probabil(y : string;varn : integer;varz :
sirs; var max : real)

- determines the most probable paths for the entry sequence y, each path having
the probability maz (n represent the number of paths, z represent the array of
the most probable paths)

(P) procedure afisare_drum_cel_mai_probabil(y : string;n : integer; z : sirs; pro :
real)

- displays the most probable paths for the entry sequence y (the paths retained
by the above described procedure)

Part C.

(F) function calcul c_ik_j(i, k,j : integer;y : string) : real

- calculates the value of the numbering function C' for the states i, j and the
transition y[k] (y is the entry sequence), using the relation (3) given in subsection
1.1; this function uses the values «;(t) and 3;(t) calculated in part B

(P) procedure antrenare_hmm

- trains the HMM using a training entry sequence and the Baum-Welch algo-
rithm

Examples.
Part B.

Let us consider the following input file
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3 - the number of states
s - the first state

b - the second state

f - the third state

s - the initial state

s 0 s 0.05 - the following lines contain the transitions
s 1s0.05

s0bo0.9

b1s0.3

b 0s0.5

s1f0.1

bo0fo0.1

b1fo0.1

If the entry sequence is 001, then the results are

e the probability of the entry sequence is 0.0859

e the probability of the most probable path for the entry sequence is 0.0450
e the most probable path for the entry sequence is sbsf

Part C.

Let us consider the following input file, which codifies the HMM described in
section 3.

9

s - the state ”7S”

a - the state "noun”

b - the state ”vp”

c - the state ”verb-np”

d - the state ”verb”

e - the state "np”

h - the state ”det-n”

g - the state ”det”

f - the final state ”s-fin”

s - the initial state

s 1 a 0.5 - the transitions

ada 0.4-"d” codifies dog”

a S b 0.35 -"S” codifies ”Salespeople”
a b f0.35-"b” codifies ”biscuits”
b1lc 0.2-"1” codifies "\’
bldo0.2

cld 1.0

d s e 1.0 - ’s” codifies ”sold”
elh 0.5
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elg0.5

hlg1.0

gta 1.0 -"7t" codifies "the”
aS f0.35

dsf1.0

adfo0.4

sle0.5

adb0.40

The sequence which codifies the correct sentence (Salespeople(sold(the dog bis-
cuits))) (1) is 1Slslitdb.

The sequence which codifies the incorrect sentence (Salespeople(sold(the dog)
biscuits)) (2) is 1S1lsltdb.

The sequence which codifies the incorrect sentence (The dog(sold(the dog bis-
cuits))) (3) is ltdislltdb.

The results obtained for this HMM are the following

e in the given HMM, without training, the sentences 1 and 2 have the same
probability 0.00245 and the sentence (3) has the probability 0.0014

e after training the HMM for the first sentence (1), the probability for the
sentence 11is 0.037037, the probability for the sentence 2 is (.00 and the probability
for the sequence (3) is 0.00
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